晶体管原理(3-1)
- 格式:ppt
- 大小:738.00 KB
- 文档页数:16
功率场效应晶体管(MOSFET)原理功率场效应管(Power MOSFET)也叫电力场效应晶体管,是一种单极型的电压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。
由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空航天以及汽车等电子电器设备中。
但因为其电流、热容量小,耐压低,一般只适用于小功率电力电子装置。
一、电力场效应管的结构和工作原理电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。
在电力电子装置中,主要应用N沟道增强型。
电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。
小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面,横向导电。
电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。
按垂直导电结构的不同,又可分为2种:V形槽VV MOSFET和双扩散VD MOSFET。
电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。
N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如图1(a)所示。
电气符号,如图1(b)所示。
电力场效应晶体管有3个端子:漏极D、源极S和栅极G。
当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。
如果在栅极和源极之间加一正向电压U GS,并且使U GS大于或等于管子的开启电压U T,则管子开通,在漏、源极间流过电流I D。
U GS超过U T越大,导电能力越强,漏极电流越大。
二、电力场效应管的静态特性和主要参数Power MOSFET静态特性主要指输出特性和转移特性,与静态特性对应的主要参数有漏极击穿电压、漏极额定电压、漏极额定电流和栅极开启电压等。
{{分页}}1、静态特性(1)输出特性输出特性即是漏极的伏安特性。
3t1c像素驱动电路侦测补偿原理
3T1C(Three transistor-one capacitor)像素驱动电路是一种常见的动态驱动电路,常用于液晶显示器的像素驱动。
在3T1C像素驱动电路中,每个像素点包含3个晶体管(T1、T2和T3)和一个电容器(C)。
T1和T2分别作为开关管控制像素的放电和充电,T3用于控制每个像素点的输出。
当电压应用在T1上时,T1打开并给像素点充电,此时C开始储存电荷。
当T1关闭并将电压应用在T2上时,T2打开,C 开始释放储存的电荷,使得像素点的电压下降。
根据C中储存的电荷量的不同,像素点的电压变化也会不同。
为了确保每个像素驱动电路输出的电压准确可靠,需要进行电路的侦测和补偿。
侦测和补偿的原理主要包括以下几个步骤:
1. 侦测:通过特定的电路,对每个像素电路的电荷储存和释放过程进行检测。
通过测量电容器C中的电压变化,可以获得像素驱动电路的输出电压情况。
2. 比较:将每个像素驱动电路的输出电压与期望的电压进行比较,判断是否存在电压偏差。
如果存在电压偏差,需要进行补偿操作。
3. 补偿:根据比较的结果,通过调整某些参数或电路元件的电压,对像素驱动电路进行调整,以使输出电压恢复到期望的水平。
常见的补偿方法包括电流源校准、电容器校准等。
通过侦测和补偿原理,可以实现像素驱动电路的准确驱动,提高液晶显示器的显示效果和稳定性。
贝尔实验室晶体管原理
贝尔实验室晶体管的原理主要是通过控制材料内的电子流,实现对电路的放大和控制。
1947年12月23日,威廉·肖克利、约翰·巴丁和沃尔特·布拉顿在美国贝尔实验室发现了一种新型半导体器件——晶体管。
他们在实验室中使用了一个硅片和几根金属线制作出了世界上第一个晶体管。
晶体管的基本原理是“放大”,即用小电流去控制大电流。
此外,贝尔实验室在20世纪50年代还推动了数字交换机、金属氧化物半导体场效应晶体管(MOSFET)等重大发明,这些都体现了晶体管在电子技术中的重要作用和其背后的物理原理。
第3章习题解答习题来源:严国萍,龙占超,通信电子线路,科学出版社,2006年第一版,2009年第五次印刷,P89~P913-1. 解答晶体管低频放大器主要采用混合参数(H参数)等效模型分析方法;而晶体管高频小信号放大器主要采用形式等效电路(Y参数)以及物理模拟等效电路(混合π参数)分析方法。
分析方法的不同,本质原因在于晶体管在高频运用时,它的等效电路不仅包含着一些和频率基本没有关系的电阻,而且还包含着一些与频率有关的电容,这些电容在频率较高时的作用是不能忽略的。
高频小信号放大器不能用特性曲线来分析,这是因为特性曲线是晶体管低频运用时的工作曲线,是不随工作频率变化的;但晶体管在高频运用时,其结电容不可忽略,从而使得晶体管的特性随频率变化而变化。
因此在分析高频小信号时,不可用特性曲线来分析。
3-2. 解答r bb’含义:从晶体管内部结构可知,从基极外部引线b到内部扩散区中某一抽象点b’之间,是一段较长而又薄的N型(或P型)半导体,因掺入杂质很少,因而电导率不高,所以存在一定体积电阻,故在b-b’之间,用集总电阻r bb’表示。
r b’c含义:晶体管内部扩散区某一抽象点b’到集电极c之间的集电结电阻。
r bb’的影响:r bb’的存在,使得输入交流信号产生损失,所以r bb’的值应尽量减小,一般r bb’为15~50Ω。
r b’c的影响:因为集电结为反偏,所以r b’c较大,r b’c一般为10k~10MΩ,特别是硅管,r b’c很大,和放大器负载相比,它的作用往往可以忽略。
3-3. 解答g m是晶体管的跨导,反映晶体管的放大能力,即输入对输出的控制能力。
它和晶体管集电极静态电流(I E )大小有关。
3-4. 解答因为高频小信号放大器的负载是一个谐振回路,如果阻抗不匹配,会使输出信号幅度减小,而且会失真,为此,必须考虑阻抗匹配的问题。
3-5. 解答小信号放大器主要质量指标有:增益,通频带,选择性,工作稳定性,噪声系数这5个指标。
单结晶体管工作原理单结晶体管是一种半导体器件,广泛应用于电子设备中,如放大器、开关、振荡器等。
它是由一块单晶硅制成的,具有高频率、低噪声、低失真等优点,因此在通信、广播、电视等领域得到了广泛应用。
单结晶体管的工作原理主要涉及PN结、电场效应和空间电荷区等方面。
首先,当PN结处于正向偏置状态时,少数载流子(即空穴或电子)将被注入到另一侧,并在电场的作用下形成电流。
其次,当PN结处于反向偏置状态时,电场效应将导致载流子在晶体管中的运动,从而实现对电流的控制。
最后,空间电荷区的形成使得晶体管具有放大、开关等功能。
在实际应用中,单结晶体管的工作原理可以简单地概括为三个步骤,输入信号的注入、电场效应的调控和输出信号的放大。
当输入信号通过基极注入到晶体管中时,会在发射结和集电结之间形成电流。
随着输入信号的变化,电流也会相应地发生变化。
通过控制基极电流,可以改变发射结和集电结之间的电场分布,从而实现对输出信号的放大或调制。
除了放大作用外,单结晶体管还可以作为开关来控制电路的通断。
当基极电流为零时,晶体管处于截止状态,电路中没有电流通过;而当基极电流为正时,晶体管处于饱和状态,电路中允许通过大量电流。
这种开关特性使得单结晶体管在数字电路中得到了广泛应用,例如逻辑门、触发器、计数器等。
总的来说,单结晶体管的工作原理是基于半导体材料的PN结、电场效应和空间电荷区的作用。
通过对输入信号的控制,晶体管可以实现信号的放大、调制和开关等功能,从而在电子设备中发挥着重要的作用。
随着科技的不断发展,单结晶体管的工作原理也在不断完善和深化,为电子技术的发展提供了坚实的基础。
实验三 晶体管共射极单管放大器一、实验目的1. 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响2. 掌握放大器电压放大倍数A V 、输入电阻R i 、输出电阻R O 及最大不失真输出电压的测试方法。
3. 熟悉常用电子仪器及模拟电路实验仪的使用方法。
二、实验原理晶体管单级放大电路有三种基本接法,即共射电路、共集电路、共基电路。
三种基本接法的特点分别为:1. 共射电路既能放大电流又能放大电压,输入电阻在三种电路中居中,输出电阻大,频带较窄;常做为低频电压放大电路的单元电路。
2. 共集电路只能放大电流不能放大电压,是三种接法中输入电阻最大、输出电阻最小的电路,具有电压跟随的特点。
常用于电压放大电路的输入级和输出级,在功率放大电路中也常采用射极输出的形式。
3. 共基电路只能放大电压不能放大电流,输入电阻小,电压放大倍数和输出电阻与共射电路相当,但频率特性是三种接法中最好的电路,常用于宽频带放大器。
放大电路的主要性能指标有:放大倍数、输入电阻、输出电阻、通频带等。
而保证基本放大电路处于线性工作状态(不产生非线性失真)的必要条件是设置合适的静态工作点Q ,Q 点不但影响电路输出是否失真,而且直接影响放大器的动态参数。
本实验所采用的放大电路为电阻分压式工作点稳定的单管放大电路(图3-1)。
它的偏置电路采用R B1和R B2组成分压电路,因此基极电位U B 几乎仅决定于R B1与R B2对V CC 的分压,而与环境温度的变化无关;同时三极管的发射极中接有电阻R E ,它将输出电流I C 的变化引回到输入回路来影响输入量U BE ,以达到稳定静态工作点的目的。
当放大器的输入端加入输入信号u i 后,在放大器的输出端便可以得到一个与u i 相位相反,幅值被放大了的输出信号u O ,从而实现了电压放大。
图3-1电路的静态工作点可用下式估算:CC 2B 1B 1B B R +R R ≈U V C EBEB E I ≈R U U I -=)R R (I V ≈U E C C CC CE +-而电压放大倍数、输入电阻、输出电阻分别为: beLC V r R //R A β-= be 2B 1B i r //R //R =RC O R ≈R 注意:测量放大器的静态工作点时,应在输入信号u i =0的条件下进行。