人教版八年级下册第19章 一次函数综合应用(含答案)
- 格式:docx
- 大小:367.34 KB
- 文档页数:11
八年级下册第19章《一次函数》实际应用常考题专练(四)1.如图(1)所示,在A,B两地间有一车站C,甲汽车从A地出发经C站匀速驶往B地,乙汽车从B地出发经C站匀速驶往A地,两车速度相同.如图(2)是两辆汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a=km,b=h,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式(自变量取值范围不用写);(3)求行驶时间x满足什么条件时,甲、乙两车距离车站C的路程之和最小?2.书籍是人类进步的台阶.为了鼓励全民阅读,某图书馆开展了两种方式的租书业务:一种是使用租书卡,另一种是使用会员卡,图中l1,l2分别表示使用租书卡和会员卡时每本书的租金y(元)与租书时间x(天)之间的关系.(1)直接写出用租书卡和会员卡时每本书的租金y(元)与租书时间x(天)之间的函数关系式;(2)小红准备租某本名著50天,选择哪种租书方式比较合算?小明准备花费90元租书,选择哪种租书方式比较合算?3.元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?4.如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中,路程随时间变化的图象(分别是正比例函数图象和一次函数图象).求:(1)分别写出轮船和快艇行驶路程随时间变化的函数表达式.(2)经过多长时间,快艇和轮船相距20千米?5.甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA 表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:(1)求线段CD对应的函数关系式;(2)在轿车追上货车后到达乙地前,何时轿车在货车前30千米.6.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,匀速行驶,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的关系.根据图象回答:(1)甲、乙两地之间的距离为千米.(2)两车同时出发后小时相遇.(3)线段CD表示的实际意义是.(4)慢车和快车的速度分别为多少km/h?(写出计算过程)7.甲乙两人同时登同一座山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙在提速前登山的速度是米/分钟,乙在A地提速时距地面的高度b为米;(2)若乙提速后,乙比甲提前了9分钟到达山顶,请求出乙提速后y和x之间的函数关系式;(3)在(2)的条件下,登山多长时间时,乙追上了甲,此时甲距C地的高度为多少米?8.甲、乙两人参加从A地到B地的长跑比赛,两人在比赛时所跑的路程y(米)与时间x (分钟)之间的函数关系如图所示,请你根据图象,回答下列问题:(1)先到达终点(填“甲”或“乙”);甲的速度是米/分钟;(2)甲与乙何时相遇?(3)在甲、乙相遇之前,何时甲与乙相距250米?9.为深入推进“健康沈阳”建设,倡导全民参与健身,我市举行“健康沈阳,重阳登高”活动,广大市民踊跃参加.甲乙两人同时登山,2分钟后乙开始提速,且提速后乙登高速度是甲登山速度的3倍,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是每分钟米,乙在A地提速时距地面的高度b为米,乙在距地面高度为300米时对应的时间t是分钟;(2)请分别求出线段AB、CD所对应的函数关系式(需写出自变量的取值范围);(3)登山分时,甲、乙两人距地面的高度差为70米?10.甲、乙两辆汽车沿同一公路从A地出发前往路程为100千米的B地,乙车比甲车晚出发15分钟,行驶过程中所行驶的路程分别用y1、y2(千米)表示,它们与甲车行驶的时间x(分钟)之间的函数关系如图所示.(1)分别求出y1、y2关于x的函数解析式并写出定义域;(2)乙车行驶多长时间追上甲车?参考答案1.解:(1)两车的速度为:300÷5=60km/h,a=60×(7﹣5)=120,b=7﹣5=2,AB两地的距离是:300+120=420,故答案为:120,2,420;(2)设线段PM所表示的y与x之间的函数表达式是y=kx+b,,得,即线段PM所表示的y与x之间的函数表达式是y=﹣60x+300;设线段MN所表示的y与x之间的函数表达式是y=mx+n,,得,即线段MN所表示的y与x之间的函数表达式是y=60x﹣300;(3)设DE对应的函数解析式为y=cx+d,,得,即DE对应的函数解析式为y=﹣60x+120,设EF对应的函数解析式为y=ex+f,,得,即EF对应的函数解析式为y=60x﹣120,设甲、乙两车距离车站C的路程之和为skm,当0≤x≤2时,s=(﹣60x+300)+(﹣60x+120)=﹣120x+420,则当x=2时,s取得最小值,此时s=180,当2<x≤5时,s=(﹣60x+300)+(60x﹣120)=180,当5≤x≤7时,s=(60x﹣300)+(60x﹣120)=120x﹣420,则当x=5时,s取得最小值,此时s=180,由上可得,行驶时间x满足2≤x≤5时,甲、乙两车距离车站C的路程之和最小.2.解:(1)设直线l对应的函数解析式为y=kx,1200k=60,解得k=0.3,对应的函数解析式为y=0.3x,即直线l1对应的函数解析式为y=ax+b,设直线l2,解得,即直线l对应的函数解析式为y=0.2x+20,2由上可得,用租书卡时每本书的租金y(元)与租书时间x(天)之间的函数关系式是y =0.3x,用会员卡时每本书的租金y(元)与租书时间x(天)之间的函数关系式是y=0.2x+20;(2)当x=50时,租书卡的租金为0.3×50=15(元),会员卡的租金为0.2×50+20=30(元),∵15<30,∴小红准备租某本名著50天,选择租书卡租书方式比较合算;当y=90时,租书卡可以租用90÷0.3=300(天),会员卡可以租用(90﹣20)÷0.2=350(天),∵300<350,∴小明准备花费90元租书,选择会员卡租书方式比较合算.3.解:(1)设OA段图象的函数表达式为y=kx.∵当x=0.8时,y=48,∴0.8k=48,∴k=60.∴y=60x(0≤x≤0.8),∴当x=0.5时,y=60×0.5=30.故小黄出发0.5小时时,离家30千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(0.8,48),B(2,156)在AB上,,解得,∴y=90x﹣24(0.8≤x≤2);(3)∵当x=1.5时,y=90×1.5﹣24=111,∴156﹣111=45.故小黄出发1.5小时时,离目的地还有45千米.4.解:(1)设轮船行驶路程随时间变化的函数表达式是y=kx,∵点(8,160)在函数y=kx的图象上,∴160=8k,解得k=20,即轮船行驶路程随时间变化的函数表达式是y=20x;设快艇行驶路程随时间变化的函数表达式是y=ax+b,∵点(2,0),(6,160)在函数y=ax+b的图象上,∴,解得,即快艇行驶路程随时间变化的函数表达式是y=40x﹣80;(2)当20x=20时,得x=1,令|20x﹣(40x﹣80)|=20,解得,x1=3,x2=5,当x=6时,轮船行驶的路程为20×6=120,∵160﹣120>20,∴令20x=160﹣20,解得x=7,即当x=7时,快艇和轮船相距20千米,由上可得,经过1小时、3小时、5小时或7小时时,快艇和轮船相距20千米.5.解:(1)设线段CD对应的函数表达式为y=kx+b.将C(2,100)、D(4.5,400)代入y=kx+b中,得解方程组得所以线段CD所对应的函数表达式为y=120x﹣140(2≤x≤4.5).(2)根据题意得,120x﹣140﹣80x=30,解得.答:当x=时,轿车在货车前30千米.6.解:(1)由图象可得,甲、乙两地之间的距离为900千米,故答案为:900;(2)由图象可得,两车同时出发后4小时相遇,故答案为:4;(3)线段CD表示的实际意义是快车到达乙地后,慢车继续行驶到甲地,故答案为:快车到达乙地后,慢车继续行驶到甲地;(4)慢车的速度为:900÷12=75(km/h),快车的速度为:900÷4﹣75=225﹣75=150(km/h),即慢车和快车的速度分别为75km/h、150km/h.7.解:(1)由图象可得乙一分钟走了15米,则乙在提速前登山的速度是15米/分钟,2分钟走了30米,∴b=30,故答案为:15,30;(2)由图象可得:t=20﹣9=11分,设AB解析式为:y=kx+b,解得:∴线段AB解析式为:y=30x﹣30(2≤x≤11);(3)∵C(0,100),D(20,300)∴线段CD的解析式:y=10x+100(0≤x≤20),由∴∴经过6.5分钟后,乙追上甲,此时甲距C地的高度=165﹣100=65米.8.解:(1)由函数图象可知甲跑完全程需要20分钟,乙跑完全程需要16分钟,所以乙先到达终点;甲的速度==250 米/分钟.故答案为:乙;250.(2)设甲跑的路程y(米)与时间x(分钟)之间的函数关系式为y=kx,根据图象,可得y=x=250x,设甲乙相遇后(即10<x<16 ),乙跑的路程y(米)与时间x(分钟)之间的函数关系式为:y=kx+b.根据图象,可得,解得,∴y=500x﹣3000,联立两直线的解析式,解得,答:甲与乙在12分钟时相遇;(3)设此时起跑了x分钟,根据题意得或250x=3000﹣250,解得x=5或x=11.答:在甲、乙相遇之前,5分钟或11分钟时甲与乙相距250米.9.解:(1)由题意可得,甲登山的速度是每分钟(300﹣100)÷20=10(米),乙在A地提速时距地面的高度b=(15÷1)×2=30,乙在距地面高度为300米时对应的时间t=2+(300﹣30)÷(10×3)=11,故答案为:10,30,11;(2)由(1)可得,点A 的坐标为(2,30),点B 的坐标为(11,300), 设线段AB 对应的函数解析式为y =kx +a ,,解得,即线段AB 对应的函数解析式为y =30x ﹣30(2≤x ≤11);设线段CD 所对应的函数关系式是y =mx +n ,∵点C 的坐标为(0,100),点D 的坐标为(20,300),∴, 解得,即线段CD 所对应的函数关系式是y =10x +100(0≤x ≤20);(3)登山前2分钟,甲乙两人的最近距离是100+10×2﹣30=90(米), 当2≤x ≤11时,|(30x ﹣30)﹣(10x +100)|=70,解得x 1=3,x 2=10,当11<x ≤20时,令10x +100=300﹣70解得x =13,由上可得,登山3、10或13分钟时,甲、乙两人距地面的高度差为70米, 故答案为:3、10或13.10.解:(1)设y 1关于x 的函数解析为y 1=kx ,120k =100,得k =,即y 1关于x 的函数解析为y 1=x (0≤x ≤120),设y 2关于x 的函数解析为y 2=ax +b ,,得,即y 2关于x 的函数解析为y 2=x ﹣20(15≤x ≤90); (2)令x =x ﹣20,得x =40,40﹣15=25(分钟),即乙车行驶25分钟追上甲车.。
八年级下册第19章《一次函数》实际应用常考题专练(三)1.某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为L,机器工作的过程中每分钟耗油量为L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.2.甲、乙两车分别从相距480千米的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A 地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发后所用的时间x(时)的函数图象如图所示.(1)求t的值.(2)求甲车距它出发地的路程y与x之间的函数关系式.(3)直接写出两车相距120千米时乙车行驶的时间.3.甲、乙两车分别从A 、B 两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B 地行驶,两车之间的路程y (千米)与出发后所用时间x (小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V 甲、V 乙.(2)求m 的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.4.已知A 、B 两地之间有一条长240千米的公路.甲车从A 地出发匀速开往B 地,甲车出发两小时后,乙车从B 地出发匀速开往A 地,两车同时到达各自的目的地.两车行驶的路程之和y (千米)与甲车行驶的时间x (时)之间的函数关系如图所示.(1)甲车的速度为 千米/时,a 的值为 .(2)求乙车出发后,y 与x 之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.5.一辆货车从A地去B地,一辆轿车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,轿车的速度大于货车的速度.两辆车之间的距离为y(km)与货车行驶的时间为x(h)之间的函数关系如图所示.(1)两车行驶多长时间后相遇?(2)轿车和货车的速度分别为,;(3)谁先到达目的地,早到了多长时间?(4)求两车相距160km时货车行驶的时间.6.如图,一辆货车和一辆轿车先后从甲地开往乙地,线段OA表示货车离开甲地的距离y(km)与时间x(h)之间的函数关系;折线BCD表示轿车离开甲地的距离y(km)与时间x(h)之间的函数关系.请根据图象解答下列问题:(1)甲、乙两地相距km,轿车比货车晚出发h;(2)求线段CD所在直线的函数表达式;(3)货车出发多长时间两车相遇?此时两车距离甲地多远?7.小蕾家与外婆家相距270km ,她假期去看望外婆,返回时,恰好有一辆顺路车可以带小蕾到A 服务区,于是,小蕾与爸爸约定,她先搭乘顺路车到A 服务区,爸爸驾车到A 服务区接小蕾回家.两人在A 服务区见面后,休息了一会儿,然后小蕾乘坐爸爸的车以60km /h 的速度返回家中.返回途中,小蕾与自己家的距离y (km )和时间x (h )之间的关系大致如图所示.(1)求小蕾从外婆家到A 服务区的过程中,y 与x 之间的函数关系式;(2)小蕾从外婆家回到自己家共用了多长时间?8.甲、乙两店销售同一种蔬菜种子.在甲店,不论一次购买数量是多少,价格均为4.5元/kg .在乙店价格为5元/kg ,如果一次购买2kg 以上的种子,超出2kg 部分的种子价格打8折.设小明在同一个店一次购买种子的数量为xkg (x >0).(1)设在甲店花费y 1元,在乙店花费y 2元,分别求y 1,y 2关于x 的函数解析式;(2)若小明计划在同一个店将45元全部用于购买这种蔬菜种子,则他在哪个店购买种子的数量较多?9.在一条笔直的公路上有A ,B ,C 三地,C 地位于A ,B 两地之间,甲车从A 地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地,在甲车出发至甲车到达C 地的过程中,甲、乙两车与C 地的距离y 1(单位:km ),y 2(单位:km )与甲车行驶时间t (单位:h)之间的函数关系如图.请根据所给图象解答下列问题:(1)求甲、乙两车的行驶速度;与甲车行驶时间t之间的函数关系式;(2)求乙车与C地的距离y2(3)求乙车出发多少小时,两车相遇?10.某人因需要经常去复印资料,甲复印社按A4纸每10页2元计费,乙复印社则按A4纸每10页1元计费,但需按月付一定数额的承包费.两复印社每月收费情况如图所示,根据图中提供的信息解答下列问题:(1)乙复印社要求客户每月支付的承包费是元;(2)当每月复印页时,两复印社实际收费相同;(3)如果每月复印200页时,应选择复印社?参考答案1.解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L),机器工作的过程中每分钟耗油量为:(30﹣5)÷(60﹣10)=0.5(L),故答案为:3,0.5;(2)当10<x≤60时,设y关于x的函数解析式为y=ax+b,,解得,,即机器工作时y关于x的函数解析式为y=﹣0.5x+35(10<x≤60);(3)当3x=30÷2时,得x=5,当﹣0.5x+35=30÷2时,得x=40,即油箱中油量为油箱容积的一半时x的值是5或40.2.解:(1)(480﹣60)÷60=420÷60=7(小时),t==3,即t的值是3;(2)当0≤x≤3时,设y与x的函数关系式为y=kx,360=3k,得k=120,即当0≤x≤3时,y与x的函数关系式为y=120x,当3<x≤4时,y=360,当4<x≤7,设y与x的函数关系式为y=ax+b,,得,即当4<x≤7,y与x的函数关系式为y=﹣120x+840,由上可得,y与x的函数关系式为y=;(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时),甲乙第一次相遇前,60+(60+120)×(m﹣1)+120=480,得m=,甲乙第一次相遇之后,60+(60+120)×(m﹣1)=480+120,得m=4,甲车返回A地的过程中,当m=5时,两车相距120+1×60=180(千米),(120﹣60)×(m﹣5)=180﹣120,得m=6,答:两车相距120千米时乙车行驶的时间是小时、4小时或6小时.3.解:(1)由图可得,,解得,,答:甲的速度是60km/h乙的速度是80km/h;(2)m=(1.5﹣1)×(60+80)=0.5×140=70,即m的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180÷(60+80)=,若甲车没有故障停车,则可以提前:1.5﹣=(小时)两车相遇,即若甲车没有故障停车,可以提前小时两车相遇.4.解:(1)由题意可知,甲车的速度为:80÷2=40(千米/时);a=40×6×2=480,故答案为:40;480;(2)设y与x之间的函数关系式为y=kx+b,由图可知,函数图象经过(2,80),(6,480),∴,解得,∴y与x之间的函数关系式为y=100x﹣120(2≤x≤6);(3)两车相遇前:80+100(x﹣2)=240﹣100,解得x=;两车相遇后:80+100(x﹣2)=240+100,解得x=,答:当甲、乙两车相距100千米时,甲车行驶的时间是小时或小时.5.解:(1)由图象可得,两车行驶1小时后相遇;(2)由图象可得,轿车的速度为:180÷1.8=100(km/h),货车的速度为:180÷1﹣100=80(km/h),故答案为:100km/h,80km/h;(3)由题意可得,轿车先到达目的地,180÷80﹣1.8=2.25﹣1.8=0.45(小时),即轿车先到达目的地,早到了0.45小时;(4)设两车相距160km时货车行驶的时间为a小时,相遇前:180﹣160=(100+80)a,解得a=,相遇后,80a=160,解得a=2,由上可得,两车相距160km时货车行驶的时间是小时或2小时.6.解:(1)由图象可得:甲、乙两地相距300km,轿车比货车晚出发1.2小时;(2)设线段CD所在直线的函数表达式为:y=kx+b,由题意可得:解得:∴线段CD所在直线的函数表达式为:y=110x﹣195;(3)设OA解析式为:y=mx,由题意可得:300=5m,∴m=60,∴OA解析式为:y=60x,∴∴答:货车出发3.9小时两车相遇,此时两车距离甲地234千米.7.解:(1)设y与x之间的函数关系式为y=kx+b,根据题意得:,解得,∴y与x之间的函数关系式为y=﹣90x+270(0≤x≤2);(2)把x=2代入y=﹣90x+270,得y=﹣180+270=90,从A服务区到家的时间为:90÷60=1.5(小时),2.5+1.5=4(小时),答:小蕾从外婆家回到自己家共用了4小时.8.解:(1)由题意可得,y=4.5x,1=5x,当0≤x≤2时,y2=5×2+(x﹣2)×5×0.8=4x+2,当x>2时,y2(2)当y=45时,在甲店中,45=4.5x,得x=10,在乙店中,45=4x+2,得x=10.75,∵10<10.75,∴在乙店购买的数量较多.9.(1)甲车行驶速度是240÷4=60(km/h),乙车行驶速度是200÷(﹣1)=80(km/h),∴甲车行驶速度是60km/h,乙车行驶速度是80km/h;=200;(2)当0≤t≤1时,y2=kt+b,当1<t≤时,设y2∵图象过点(1,200),(,0),∴,∴,∴y=﹣80t+280;2当<t≤4时,∵(4﹣)×80=40(km),∴图象过点(4,40),=kt+b,设y2∵图象过点(4,40),(,0),∴,∴,=80t﹣280.∴y2=;∴y2(3)设乙车出发m小时,两车相遇,由题意得:80m+60(m+1)=200+240,解得:m=.∴乙车出发小时,两车相遇.10.解:(1)由图可知,乙复印社要求客户每月支付的承包费是18元,故答案为:18;(2)设甲对应的函数解析式为y=ax,50a=10,解得,a=0.2,即甲对应的函数解析式为y=0.2x,设乙对应的函数解析式为y=kx+b,,得,即乙对应的函数解析式为y=0.1x+18,令0.2x=0.1x+18,解得,x=180,答:当每月复印180页时,两复印社实际收费相同,故答案为:180;(3)当x=200时,甲复印社的费用为:0.2×200=40(元),乙复印社的费用为:0.1×200+18=38(元),∵40>38,∴当x=200时,选择乙复印社,故答案为:乙.。
人教版初中数学 八年级下册第19章 一次函数综合练习(含答案)一、单选题1.如图在梯形ABCD 中,AD ∥BC ,∠A =60°,动点P 从A 点出发,以1cm/s 的速度沿着A →B →C →D 的方向不停移动,直到点P 到达点D 后才停止。
已知△PAD 的面积S(单位:2cm )与点P 移动的时间t(单位:s)的函数关系如图所示,则点PA.6B.7C.334+D.324+参考答案:D 2.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子的价格打6折,设购买种子的数量为x 千克,付款金额为y 元,则y与x 的函数关系的图像大致是( )参考答案:B3.如图,一次函数()21y m x =--的图象经过二、三、四象限,则m 的取值范围是( )A .m >0B .m <0C .m >2D . m <2参考答案:DD C B A x y O4.一次函数3y kx =+中,当2x =时,y 的值为5,则k 的值为( )A.1B.-1C.5D.-5参考答案:A5.直线1y x =-+经过的象限是( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四像限参考答案:B 6.若一次函数b kx y +=的图象经过(-2,-1)和点(1,2),则这个函数的图象不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:D7.将函数3y x =-的图像沿y 轴向上平移2个单位长度后,所得图像对应的函数关系式为( )A .32y x =-+B .32y x =--C .3(2)y x =-+D .3(2)y x =--参考答案:A8.下列函数:①y =;②y =213x y +=;④1y x =.其中是一次函数有( )A.①②B.③④C.①③D.②④参考答案:C二、填空题9.已知动点P 以每秒2cm 的速度沿图甲的边框按从B →C →D →E →F →A 的路径移动,相应的△ABP 的面积S 与时间t 之间的关系如图乙中的图象表示.若AB=6cm ,试回答下列问题:图甲图乙(1)图甲中的BC 长是(2)图乙中的a 是(3)图甲中的图形面积是(4)图乙中的b 是参考答案:(1)8cm(2)24(3)60(4)1710.已知自变量为x 的函数m mx y -+=2是正比例函数,则m=________,•该函数的解析式为_________.参考答案:2; x y 2=11.甲、乙两人练习跑步,路程S (米)与所用的时间t (分)之间的关系如图所示,他们跑完80米的平均速度分别为甲V ,乙V (米/分),根据图形可知:(1)2分钟时,甲比乙多跑 米.(2)6分钟时,乙比甲多跑 米.(3) 2分钟以后,甲V = (米/分), 乙V = 米/分.参考答案:(1)10(2)310 (3)10;340’ 12.若()232-+=-m x y m 是正比例函数,则m= 。
人教版八年级下册数学第十九章一次函数含答案一、单选题(共15题,共计45分)1、在同一坐标系中,函数y=ax2与y=ax﹣a(a≠0)的图象的大致位置可能是()A. B. C.D.2、已知直线y=mx+n(m,n为常数)经过点(0,﹣2)和(3,0),则关于x的方程mx+n=0的解为()A. x=0B. x=1C. x=﹣2D. x=33、小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点MB.点NC.点PD.点Q4、以下各点中,在正比例函数y=2x图象上的是()A.(2,1)B.(1,2)C.(—1,2)D.(1,—2)5、若正比例函数的图像经过点(-1,2),则这个图像必经过点()A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)6、有一道题目:已知一次函数y=2x+b,其中b<0,…,与这段描述相符的函数图像可能是()A. B. C.D.7、y= x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根8、图中两直线l1, l2的交点坐标可以看作方程组( )的解.A. B. C. D.9、汽车油箱中有油,平均耗油量为,如果不再加油,那么邮箱中的油量(单位:)与行驶路程(单位:)的函数图象为()A. B. C.D.10、二次函数的图象如图所示,反比列函数与正比列函数在同一坐标系内的大致图象是()A. B. C.D.11、在平面直角坐标系中,一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限12、如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,设第n(n是正整数)个图案是由y个基础图形组成的,则y与n之间的关系式是()A.y=4nB.y=3nC.y=6nD.y=3n+113、已知一次函数,图象与轴、轴交点、点,得出下列说法:①A ,;② 、两点的距离为5;③ 的面积是2;④当时,;其中正确的有()A.1个B.2个C.3个D.4个14、一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间x(h)之间的函数关系的是()A. B. C. D.15、关于x的反比例函数y=(k为常数)的图象如图所示,则一次函数y=kx+2﹣k的图象大致是()A. B. C. D.二、填空题(共10题,共计30分)16、小兵早上从家匀速步行去学校,走到途中发现数学书忘在家里了,随即打电话给爸爸,爸爸立即送书去,小兵掉头以原速往回走,几分钟后,路过一家书店,此时还未遇到爸爸,小兵便在书店挑选了几支笔,刚付完款,爸爸正好赶到,将书交给了小兵.然后,小兵以原速继续上学,爸爸也以原速返回家.爸爸到家后,过一会小兵才到达学校.两人之间的距离y(米)与小兵从家出发的时间x(分钟)的函数关系如图所示.则家与学校相距________米.17、如图,直线交坐标轴于两点,则不等式的解是________.18、如图,一次函数y=kx+b与y=﹣x+5的图象的交点坐标为(2,3),则关于x的不等式﹣x+5>kx+b的解集为________.19、若一次函数y=kx+b(k≠0)的图象不过第四象限,且点M(﹣4,m)、N (﹣5,n)都在其图象上,则m和n的大小关系是________.20、甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B 运动,乙从点B出发,向终点A运动.已知线段AB长为90cm,甲的速度为2.5cm/s.设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中线段DE所表示的函数关系式为________.(并写出自变量取值范围)21、函数的图象经过的象限是________.22、如图平面直角坐标系中,直线y=kx+1与x轴交于点A点,与y轴交于B 点,P(a,b)是这条直线上一点,且a、b(a<b)是方程x2﹣6x+8=0的两根.Q是x轴上一动点,N是坐标平面内一点,以点P、B、Q、N四点为顶点的四边形恰好是矩形,则点N的坐标为________或________.23、一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m=________.24、如图,在平面鱼角坐标系xOy中,A(﹣3,0),点B为y轴正半轴上一点,将线段AB绕点B旋转90°至BC处,过点C作CD垂直x轴于点D,若四边形ABCD的面积为36,则线AC的解析式为________.25、已知平面上四点,,,,直线 y=mx-3m+2 将四边形分成面积相等的两部分,则的值为________.三、解答题(共5题,共计25分)26、一次函数y =kx+b()的图象经过点,,求一次函数的表达式.27、在直角坐标系中直接画出函数y=|x|的图象;若一次函数y=kx+b的图象分别过点A(-1,1),B(2,2),请你依据这两个函数的图象写出方程组的解.28、已知反比例函数的图象经过点,若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数图象与x 轴的交点坐标.29、如图,一次函数的图象与反比例函数(x>0)的图象交于点P,PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、点=27,.D,且S△DBP(1)求点D的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?30、已知一次函数的图象经过和(-3,3)两点,求这个一次函数的表达式并画出它的图象.试判断点P(-1,1)是否在这个一次函数的图象上.参考答案一、单选题(共15题,共计45分)1、A2、D3、D4、B5、D6、A7、A8、B9、B10、B11、C12、D13、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、三、解答题(共5题,共计25分)26、27、30、。
人教版 八年级数学下册 第19章 一次函数 综合练习(含答案)一、选择题(本大题共10道小题)1. 已知函数图象如图所示,则此函数的解析式为( )A .2y x =-B .2(10)y x x =--<<C .12y x =-D . 1(10)2y x x =--<<2. 一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )A .0B .1C .2D .33. 已知函数y =kx +b 的图象如图,则y =2kx +b 的图象可能是( )4. 若直线(2)6y m x =--与x 轴交于点()60,,则m 的值为( )A.3B.2C.1D.05. 甲、乙两人准备在一段长为1200 m 的笔直公路上进行跑步,甲、乙跑步的速度分别为4 m /s 和6 m /s ,起跑前乙在起点,甲在乙前面100 m 处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离y (m )与时间t (s )的函数图象是( )6. 一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是()A .0x >B .0x <C .2x >D .2x <7. 已知15y x =-,221y x =+.当12y y >时,x 的取值范围是()A .5x >B .12x < C .6x <- D .6x >-8. 某污水处理厂的一个净化水池设有2个进水口和1个出水口,三个水口至少打开一个.每个进水口进水的速度由图甲给出,出水口出水的速度由图乙给出.某一天0点到6点,该水池的蓄水量与时间的函数关系如图丙所示.通过对图象的观察,小亮得出了以下三个论断:⑴0点到3点只进水不出水;⑵3点到4点不进水只出水,⑶4点到6点不进水也不出水.其中正确的是( )A .⑴B .⑶C .⑴⑶D .⑴⑵⑶甲 乙 丙(小时)))9. 把一个二元一次方程组中的两个方程化为一次函数画图象,所得的两条直线平行,则此方程组( ) A.无解 B.有唯一解 C.有无数个解 D.以上都有可能10. 若0ab >,0bc <,则a ay x b c=-+经过( ) A .第一、二、三象限 B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限二、填空题(本大题共5道小题)11. 已知3a y ax -=,若y 是x 的正比例函数,则a 的值是 .12. 将直线2y x =向右平移2个单位所得的直线的解析式是 .13.若一次函数12(1)12y k x k =-+-的图像不过第一象限,则k 的取值范围是___________.14. 如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是________.15. 一个一次函数的图象与直线59544y x =+平行,与x 轴,y 轴分别交于A ,B 两点,并且通过()125--,,则在线段AB 上(包括端点A ,B 两点),横纵坐标都是整数的点有_______个.三、解答题(本大题共5道小题)16. 已知1(2)2m y m x m -=-++是一次函数,求它的解析式.17.刚回营地的两个抢险分队又接到救灾命令:一分队立即出发赶往30千米外的A 镇;二分队因疲劳可在营地休息a(0≤a ≤3)小时再赶往A 镇参加救灾.一分队出发后得知,唯一通往A 镇的道路在离营地10千米处发生塌方,塌方处地形复杂,必须由一分队用1小时打通道路.已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时.(1)若二分队在营地不休息,问二分队几个小时能赶到A 镇?(2)若需要二分队和一分队同时赶到A 镇,二分队应在营地休息几个小时? (3)下列图象中,①②分别描述一分队和二分队离A 镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为所有可能合理图象的代号,并说明它们的实际意义.18. 已知一次函数y 6kx b =++与一次函数2y kx b =-++的图象的交点坐标为A (2,0),求这两个一次函数的解析式及两直线与y 轴围成的三角形的面积.19. 已知正比例函数y x =。
一次函数知识点总结+习题解析一,函数1.函数的概念:在某一变化过程中,可以取不同数值的量,叫做变量在一些变化过程中,还有一种量,它的取值始终保持不变,我们称之为常里。
在某一变化过程中,有两个量,如x和y,对于x的每一个值,y都有唯一的值与之对应,其中x是自变量,y是因变量,此时称y是x的函数.例如:y=3x+5,其中3,5叫做常量,x叫做自变量,y随x的改变而改变(即有原因的改变)叫因变量,也可称作y是x的函数2.表示方法(1)解析法:用数学式子表示函数的方法叫做解析法。
如:S=30t,S=πR2;.(2)列表法:通过列表表示函数的方法.(3)图象法:用图象直观、形象地表示一个函数的方法.3.关于函数的关系式(解析式)的理解:(1)函数关系式是等式,例如y=4x就是一个函数关系式.(2)函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边代数式中的变量是自变里,等式左边的一个字母表示函数.例如:y=2x-4中x是自变量,y是x的函数。
(3)函数关系式在书写时有顺序性。
就表示x是y的函数。
例如:y=2x+3是表示y是x的函数,若写成x=y−32(4)求y与x的函数关系时,必须是只用变量x的代数式表示y,得到的等式右边只含x的代数式.即y=ax+b(a≠0)的形式4.自变量的取值范围:(1)很多函数中,自变量由于受到很多条件的限制,有自己的取值范围,例如y= √X−3中,自变量x受到开平方运算的限制,有X-3≥0即x≥3;还会涉及到一些实际应用中的变量存在意义,例如面积,路程,时间都必须大于等于0才会有意义。
(2)在初中阶段,自变量的取值范围考虑下面几个方面:①整式型:一切实数②根式型:当根指数为偶数时,被开方数为非负数。
(如√2x−5有意义其中2x-5≥0)成立即有意义则2x+1≠0))③分式型:分母不为0.(如3x−22x+1④复合型:不等式组(即同时满足多个不等式都成立的未知数的集合)⑤应用型:实际有意义即可(如时间,面积,路程等需要≥0,人,房子等必须为正整数)中的自变量x的取值范围是例题1:函数y=√x+5x+4答案: x≥-5且x≠-4解:根据题意得{x +5≥0①x +4≠0②由①得x≥-5 由②得x≠-4 所以x≥-5且x≠-4解析:因为二次根式内的任意数(代数式)大于等于0,分数/分式有意义的前提条件是分子不等于0,所以得{x +5≥0①x +4≠0②,解两个不等式,求同时满足两个不等式得解得集合,即所以x≥-5且x≠-4 点评:考查一次函数自变量的取值范围,(分子分母有意义),解不等式方程组例题2:函数y=√|2x−6|−2x−7中的x 的取值范围是答案:x≥4 且x≠7或x≤2 解:根据题意得 {||2x −6|−2≥①x −7≠0②由①|2x-6|-2≥0得|2x-6|≥2, 去绝对值得,2x-6≥2或2x-6≤-2 解的x≥4或x≤2③ 由②得x≠7④结合③④的公共解集得x≥4 且x≠7或x≤2解析:因为二次根式内的任意数(代数式)大于等于0,分数/分式有意义的前提条件是分子不等于0,所以得|2x-6|-2≥0,又因为绝对值大于等于0,所以得2x-6≥2或2x-6≤-2,分别解出①式和②式x 的解集,求出同时满足两个不等式的公共解集即是答案(画图求解最易) 点评:考查一次函数自变量的取值范围(分子分母有意义),解不等式方程组,去绝对值5.函数图象:函数的图象是由平面直角中的一系列点组成的.6.函数图像的位置决定两个函数的大小关系: (1)图像y1在图像y2的上方↔y1>y2; (2)图像y1在图像y2的下方↔y1<y2;(3)特別说明:图像y 在x 轴上方y>0;图像y 在x 轴下方y<0例題3:如图直线L 1:y 1=k 1x +b 1与L 2:y 2=k 2x+b 2直线在在同一平面直角坐标系中的图象如图所示,则关于x 的不等式y1>y2的解集为( ) A 、x>1 B 、x く1 C 、x>2 D 、x く2答案:AA、x>1B、xく1C、x>2D、xく2解:由图像可得,在交点右侧y1>y2,在交点左侧y1<y2,交点坐标为(1,2),所以x>1时y1>y2,答案选A解析:在平面直角坐标系中,一次函数图像在在x取同一值,直线在上方的y值大于直线在下方的y值。
人教版数学八年级下册第19章《一次函数》单元综合练习含答案解析一.选择题(共10小题)1.一本笔记本3元,买x本需要y元,在这一问题中,自变量是()A.笔记本B.3C.x D.y2.下列变量之间的关系不是函数关系的是()A.一天的气温和时间B.y2=x中的y与x的关系C.在银行中利息与时间D.正方形的周长与面积3.某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0.5元,若普通车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是()A.y=0.5x+5000B.y=0.5x+2500C.y=﹣0.5x+5000D.y=﹣0.5x+25004.函数中自变量x的取值范围是()A.x≥3B.x≤7C.3≤x≤7D.x≤3或x≥7 5.当x=3时,函数y=x﹣2的值是()A.﹣2B.﹣1C.0D.16.下列函数中y是x的一次函数的是()A.B.y=3x+1C.D.y=3x2+17.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的面积S随着边长x的变化而变化B.正方形的周长C随着边长x的变化而变化C.水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t (min)的变化而变化D.面积为20的三角形的一边a随着这边上的高h的变化而变化8.两条直接y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A.B.C.D.9.下列图象中,可以表示一次函数y=kx+b与正比例函数y=kbx(k,b为常数,且kb≠0)的图象的是()A.B.C.D.10.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>2C.函数图象与y轴的交点坐标为(0,2)D.函数图象经过第一、二、四象限二.填空题(共8小题)11.快餐每盒5元,买n盒需付m元,则其中常量是.12.当m=时,函数y=(m﹣1)x+m是常值函数.13.佛山移动公司有一种手机资费套餐,月租费16元,免费市话通话时间40分钟,超出部分每分钟0.25元,设该套餐每月市话话费为y元,月市话通话时间为x(x>40)分钟,则y与x的函数关系式为.14.已知函数,则自变量x的取值范围.15.函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=.16.若函数y=(m﹣2)是正比例函数,则m的值是.17.在平面直角坐标系中,函数y=kx+b的图象如图所示,则kb0(填“>”、“=”或“<”).18.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是;若x+y =0,则点P在坐标平面内的位置是;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.三.解答题(共7小题)19.“十一”期间,小华约同学一起开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱余油量为25升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每干米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=60(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.20.已知等式y﹣ax2+2a﹣1=0(1)若等式中,已知a是非零常量,请写出因变量y与自变量x的函数解析式;当﹣1≤x≤3时,求y的最大值和最小值及对应的x的取值;(2)若等式中,x是非零常量,请写出因变量y与自变量a的函数解析式,并判断x在什么范围内取值时,y随a的增大而增大.21.已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:.22.如图1,A是上一动点,D是弦BC上一定点,连接AB,AC,AD.设线段AB的长是xcm,线段AC的长是y1cm,线段AD的长是y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点A在上的不同位置,画图、测量,得到了y1,y2的长度与x的几组值:位置1位置2位置3位置4位置5位置6位置7位置8 x/cm0.000.99 2.01 3.46 4.98 5.847.078.00y1/cm8.007.46 6.81 5.69 4.26 3.29 1.620.00y2/cm 2.50 2.08 1.88 2.15 2.99 3.61 4.62m 请直接写出上表中的m值是;(2)在同一平面直角坐标系xOy中,描出补全后表中各组数据所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为cm;当AC=2AD时,AB的长度约为cm.23.已知函数y=(m﹣1)x+n,(1)m为何值时,该函数是一次函数(2)m、n为何值时,该函数是正比例函数24.已知一次函数y=﹣2x+4,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当x时,y>2.25.在同一平面直角坐标系中,画出函数y=2x,y=﹣x+6,y=x+2,y=4x﹣4的图象.(1)观察这四个图象,说出它们共同特点;(2)若函数y=kx+5的图象也有该特点,求k的值.参考答案与试题解析一.选择题(共10小题)1.一本笔记本3元,买x本需要y元,在这一问题中,自变量是()A.笔记本B.3C.x D.y【分析】根据函数的定义进行解答即可.【解答】解:在这个问题中,x和y都是变量,且x是自变量.故选:C.2.下列变量之间的关系不是函数关系的是()A.一天的气温和时间B.y2=x中的y与x的关系C.在银行中利息与时间D.正方形的周长与面积【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:A、一天的气温和时间的关系是函数关系,故本选项不合题意;B、y2=x中的y与x的关系不是函数关系,故本选项符合题意;C、在银行中利息与时间是函数关系,故本选项不合题意;D、正方形的周长与面积是函数关系,故本选项不合题意;故选:B.3.某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0.5元,若普通车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是()A.y=0.5x+5000B.y=0.5x+2500C.y=﹣0.5x+5000D.y=﹣0.5x+2500【分析】根据题意可以写出题目中的函数解关系式,从而可以解答本题.【解答】解:由题意可得,y=0.5x+(5000﹣x)×1=﹣0.5x+5000,故选:C.4.函数中自变量x的取值范围是()A.x≥3B.x≤7C.3≤x≤7D.x≤3或x≥7【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得x﹣3≥0且7﹣x≥0,解得x≥3且x≤7,所以3≤x≤7.故选:C.5.当x=3时,函数y=x﹣2的值是()A.﹣2B.﹣1C.0D.1【分析】把x的值代入函数关系式计算,得到答案.【解答】解:当x=3时,函数y=x﹣2=3﹣2=1,故选:D.6.下列函数中y是x的一次函数的是()A.B.y=3x+1C.D.y=3x2+1【分析】一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.根据一次函数的定义条件进行逐一分析即可.【解答】解:A、y=不是一次函数,是反比例函数,不合题意;B、y=3x+1是一次函数,符合题意;C、y=不是一次函数,不合题意;D、y=3x2+1不是一次函数,是二次函数,不合题意.故选:B.7.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的面积S随着边长x的变化而变化B.正方形的周长C随着边长x的变化而变化C.水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t (min)的变化而变化D.面积为20的三角形的一边a随着这边上的高h的变化而变化【分析】先依据题意列出函数关系式,然后依据函数关系式进行判断即可.【解答】解:A、S=x2是二次函数,故A错误;B、C=4x是正比例函数,故B正确;C、V=10﹣0.5t,是一次函数,故C错误;D、a=,是反比例函数,故D错误.故选:B.8.两条直接y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A.B.C.D.【分析】根据一次函数图象的性质加以分析即可,一次项系数决定直线的走向,常数项决定直线与y轴的交点位置.【解答】解:根据一次函数的图象与性质分析如下:A.y1=ax﹣b:a>0,b<0;y2=bx﹣a:a<0,b<0.A错误;B.y1=ax﹣b:a>0,b<0;y2=bx﹣a:a>0,b<0.B正确;C.y1=ax﹣b:a>0,b>0;y2=bx﹣a:a<0,b<0.C错误;D.y1=ax﹣b:a>0,b>0;y2=bx﹣a:a>0,b<0.D错误;故选:B.9.下列图象中,可以表示一次函数y=kx+b与正比例函数y=kbx(k,b为常数,且kb≠0)的图象的是()A.B.C.D.【分析】根据一次函数的图象与系数的关系,由一次函数y=kx+b图象分析可得k、b的符号,进而可得k•b的符号,从而判断y=kbx的图象是否正确,进而比较可得答案.【解答】解:根据一次函数的图象分析可得:A、由一次函数y=kx+b图象可知k<0,b>0,kb<0;正比例函数y=kbx的图象可知kb<0,故此选项正确;B、由一次函数y=kx+b图象可知k>0,b>0;即kb>0,与正比例函数y=kbx的图象可知kb<0,矛盾,故此选项错误;C、由一次函数y=kx+b图象可知k<0,b>0;即kb<0,与正比例函数y=kbx的图象可知kb>0,矛盾,故此选项错误;D、由一次函数y=kx+b图象可知k>0,b<0;即kb<0,与正比例函数y=kbx的图象可知kb>0,矛盾,故此选项错误;故选:A.10.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>2C.函数图象与y轴的交点坐标为(0,2)D.函数图象经过第一、二、四象限【分析】利用一次函数的性质逐一判断后即可确定正确的选项.【解答】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∵y的值随着x增大而减小,∴当x>0时,y<2,∴选项B符合题意;C、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项C不符合题意;D、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项D不符合题意;当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:B.二.填空题(共8小题)11.快餐每盒5元,买n盒需付m元,则其中常量是5.【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.【解答】解:单价5元固定,是常量.故答案为:5.12.当m=1时,函数y=(m﹣1)x+m是常值函数.【分析】直接利用常值函数的定义分析得出答案.【解答】解:当m﹣1=0时,函数y=(m﹣1)x+m是常值函数,故m=1时,y=1.故答案为:1.13.佛山移动公司有一种手机资费套餐,月租费16元,免费市话通话时间40分钟,超出部分每分钟0.25元,设该套餐每月市话话费为y元,月市话通话时间为x(x>40)分钟,则y与x的函数关系式为y=0.25x+6.【分析】根据题意可得等量关系:话费=月租费16元+超出40分钟部分话费,根据等量关系列出函数解析式即可.【解答】解:由题意得:y=16+(x﹣40)×0.25=16+0.25x﹣10=0.25x+6,故答案为:y=0.25x+6.14.已知函数,则自变量x的取值范围x>.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,2x﹣3>0,解得x>.故答案为:x>.15.函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=﹣2.【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,即可得出m的值.【解答】解:根据一次函数的定义可得:m﹣2≠0,|m|﹣1=1,由|m|﹣1=1,解得:m=﹣2或2,又m﹣2≠0,m≠2,则m=﹣2.故答案为:﹣2.16.若函数y=(m﹣2)是正比例函数,则m的值是﹣2.【分析】直接利用正比例函数的定义直接得出答案.【解答】解:∵函数y=(m﹣2)是正比例函数,∴m2﹣3=1,m﹣2≠0,解得:m=±2,m≠2,故m=﹣2.故答案为:﹣2.17.在平面直角坐标系中,函数y=kx+b的图象如图所示,则kb<0(填“>”、“=”或“<”).【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,∴kb<0.故答案为:<18.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是在一、三象限的角平分线上;若x+y=0,则点P在坐标平面内的位置是在二、四象限的角平分线上;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.【分析】(1)根据互为相反数的两个数的和等于0判断出x、y互为相反数,然后解答.(2)根据点Q到两坐标轴的距离相等列出方程,然后求解得到a的值,再求解即可.【解答】解:(1)∵点P的坐标为(x,y),若x=y,∴点P在一、三象限内两坐标轴夹角的平分线上.∵x+y=0,∴x、y互为相反数,∴P点在二、四象限内两坐标轴夹角的平分线上.故答案为:在一、三象限的角平分线上.在二、四象限的角平分线上.(2)∵点Q到两坐标轴的距离相等,∴|2﹣2a|=|8+a|,∴2﹣2a=8+a或2﹣2a=﹣8﹣a,解得a=﹣2或a=10,当a=﹣2时,2﹣2a=2﹣2×(﹣2)=6,8+a=8﹣2=6,当a=10时,2﹣2a=2﹣20=﹣18,8+a=8+10=18,所以,点Q的坐标为(6,6)或(﹣18,18).三.解答题(共7小题)19.“十一”期间,小华约同学一起开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱余油量为25升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每干米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=60(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.【分析】(1)单位耗油量=耗油量÷行驶里程,剩余油量=油箱内油的升数﹣行驶路程的耗油量;(2)把x=60千米代入剩余油量公式,计算即可;(3)计算出35﹣3=32升油能行驶的距离,与200千米比较大小即可得.【解答】解:(1)该汽车平均每千米的耗油量为(35﹣25)÷80=0.125(升/千米),∴行驶路程x(千米)与剩余油量Q(升)的关系式为Q=35﹣0.125x;(2)当x=60时,Q=35﹣0.125×60=27.5(升),答:当x=60(千米)时,剩余油量Q的值为27.5升;(3)他们能在汽车报警前回到家,(35﹣3)÷0.125=256(千米),由256>200知他们能在汽车报警前回到家.20.已知等式y﹣ax2+2a﹣1=0(1)若等式中,已知a是非零常量,请写出因变量y与自变量x的函数解析式;当﹣1≤x≤3时,求y的最大值和最小值及对应的x的取值;(2)若等式中,x是非零常量,请写出因变量y与自变量a的函数解析式,并判断x在什么范围内取值时,y随a的增大而增大.【分析】(1)解方程得到y=ax2﹣4a+2,当x=﹣1时,y=5a+2,当x=3时,y=﹣3a+2,当a>0时当a<0时,根据题意求出结论即可;(2)解方程得到y=(x2﹣4)a+2,根据一次函数的性质解答即可..【解答】解:(1)∵y﹣ax2+2a﹣1=0,∴y=ax2﹣4a+2,当x=﹣1时,y=5a+2,当x=3时,y=﹣3a+2,当a>0时,﹣3a+2≤y≤5a+2,∴y的最大值是5a+2,对应的x的取值﹣1,最小值是﹣3a+2,对应的x的取值是3,当a<0时,5a+2≤y≤﹣3a+2,∴y的最大值是﹣3a+2,对应的x的取值3,最小值是5a+2,对应的x的取值是﹣1;(2)∵y﹣ax2+2a﹣1=0,∴y=(x2﹣4)a+2,当x2﹣4>0时,y随a的增大而增大,即x<﹣2或x>2时,y随a的增大而增大.21.已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:当0<x<1时,y随x的增大而减小.【分析】(1)根据表中x,y的对应值即可得到结论;(2)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为7所对应的函数值即可;②利用函数图象的图象求解.【解答】解:(1)当自变量是﹣2时,函数值是;故答案为:(2)该函数的图象如图所示;(3)当x=2时所对应的点如图所示,且m=;故答案为:;(4)函数的性质:当0<x<1时,y随x的增大而减小.故答案为:当0<x<1时,y随x的增大而减小.22.如图1,A是上一动点,D是弦BC上一定点,连接AB,AC,AD.设线段AB的长是xcm,线段AC的长是y1cm,线段AD的长是y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点A在上的不同位置,画图、测量,得到了y1,y2的长度与x的几组值:位置1位置2位置3位置4位置5位置6位置7位置8 x/cm0.000.99 2.01 3.46 4.98 5.847.078.00y1/cm8.007.46 6.81 5.69 4.26 3.29 1.620.00y2/cm 2.50 2.08 1.88 2.15 2.99 3.61 4.62m 请直接写出上表中的m值是 5.5;(2)在同一平面直角坐标系xOy中,描出补全后表中各组数据所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为 5.7cm;当AC=2AD时,AB的长度约为 4.2cm.【分析】(1)由位置可知,AB=0时,即AB两点重合,此时AC=BC=8,AD=BD=2.5,再根据当y1=AC时,即A与重合即可求出表格中m=CD.(2)根据表中数据描点连线即可.(3)根据函数图象分别找出y1=y2和y1=2y2时对应的x即可.【解答】解:(1)∵当x=0时,y1=8,y2=2.5,∴BC=8cm,BD=2.5,∴当x=8.0时,即A点与C点重合,∴y2=AB=CD=BC﹣BD=8﹣2.5=5.5(cm),故答案为:5.5(2)(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为5.7cm;当AC=2AD时,AB的长度约为4.2cm.故答案为:5.7;4.2.23.已知函数y=(m﹣1)x+n,(1)m为何值时,该函数是一次函数(2)m、n为何值时,该函数是正比例函数【分析】(1)直接利用一次函数的定义得出答案;(2)直接利用正比例函数的定义得出答案.【解答】解:(1)∵函数y=(m﹣1)x+n,∴当m﹣1≠0时,该函数是一次函数,即m≠1;(2)当m≠1,且n=0时,该函数是正比例函数.24.已知一次函数y=﹣2x+4,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当x<1时,y>2.【分析】(1)分别求出直线与x轴、y轴的交点,画出函数图象即可;(2)根据函数图象可直接得出结论.【解答】解:(1)∵当x=0时y=4,∴函数y=﹣2x+4的图象与y轴的交点坐标为(0,4);∵当y=0时,﹣2x+4=0,解得:x=2,∴函数y=﹣2x+4的图象与x轴的交点坐标(2,0).函数图象如图所示.(2)由图象可得,当x<1时,y>2.故答案为:<1.25.在同一平面直角坐标系中,画出函数y=2x,y=﹣x+6,y=x+2,y=4x﹣4的图象.(1)观察这四个图象,说出它们共同特点;(2)若函数y=kx+5的图象也有该特点,求k的值.【分析】(1)根据一次函数的图象是直线,画出图象即可;(2)根据图象过定点,代入得出k的值即可.【解答】(1)解:如图:共同特点是:此组直线均经过(2,4),∵解方程组得,,∴直线y=2x,y=﹣x+6过(2,4)点.对于直线y=x+2,当x=2时,y=4;对于直线y=4x﹣4,当x=2时,y=4;∴验证发现此组直线均经过(2,4);(2)把(2,4)代入y=kx+5得4=2k+5,得k=﹣.。
人教版八年级下《第19章一次函数实际应用》练习及答案1.等腰三角形的周长是40cm,腰长y(cm)是底边长x(cm)的函数解析式正确的是( )A.y=﹣0.5x+20(0<x<20)B.y=﹣0.5x+20(10<x<20)C.y=﹣2x+40(10<x<20)D.y=﹣2x+40(0<x<20)2.已知直线y=mx+n,其中m,n是常数且满足:m+n=6,mn=8,那么该直线经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限3.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限4.已知直线y=kx-4(k<0)与两坐标轴所围成的三角形面积等于4,则直线的表达式为()A.y=-x-4B.y=-2x-4C.y=-3x+4D.y=-3x-45.已知直线y=kx+b,若k+b=-5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.已知一次函数y=2x+a,y=-x+b的图象都经过A(-2,0),且与y轴分别交于B、C两点,则△ABC 的面积为( )A.4B.5C.6D.77.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n >0的整数解为()A.﹣1B.﹣5C.﹣4D.﹣38.一次函数y=(m2-4)x+(1-m)和y=(m-1)x+m2-3的图象与y轴分别交于点P和点Q,若点P与点Q关于x轴对称,则m= .9.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于.10.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l 1、l 2分别表示小敏、小聪离B 地距离y km 与已用时间x h 之间的关系,则小敏、小聪行走速度分别是( )A.3 km/h 和4 km/hB.3 km/h 和3 km/hC.4 km/h 和4 km/hD.4 km/h 和3 km/h 11.函数y=-3x +2的图象上存在点P,使得点P•到x 轴的距离等于3,则点P•的坐标为 . 12.过点(﹣1,7)的一条直线与x 轴,y 轴分别相交于点A ,B,且与直线123+-=x y 平行.则在线段AB 上,横、纵坐标都是整数的点的坐标是 .13.一次函数y=kx+b ,当1≤x ≤4时,3≤y ≤6,则的值是 .14.已知A 地在B 地正南方3 km 处,甲、乙两人同时分别从A 、B 两地向正北方向匀速直行,他们与A 地的距离s (km )与所行的时间t (h )之间的函数图象如图所示,当行走3 h 后,他们之间的距离为 km.15.在如图所示的平面直角坐标系中,点P 是直线y=x 上的动点,A (1,0),B (2,0)是x 轴上的两点,则PA+PB 的最小值为 .16.已知y+2与2x-1成正比例,且x=3时y=-4. (1)求y 与x 之间的函数关系式; (2)当y=-1 时,求x 的值.17.如图1所示,在A ,B 两地之间有汽车站C 站,客车由A 地驶往C 站,货车由B 地驶往A 地.两车同时出发,匀速行驶.图2是客车、货车离C 站飞路程y 1,y 2(千米)与行驶时间x (小时)之间的函数关系图象.(1)填空:A ,B 两地相距 千米;(2)求两小时后,货车离C 站的路程y 2与行驶时间x 之间的函数关系式; (3)客、货两车何时相遇?18.为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费,设某户每月用水量为x (立方米),应交水费为y (元). (1)分别写出用水未超过7立方米和多于7立方米时,y 与x 间的函数关系式;(2)如果某单位共有用户50户,某月共交水费541.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?19.已知某市2013年企业用水量x (吨)与该月应交的水费y (元)之间的函数关系如图. (1)当x ≥50时,求y 关于x 的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x 超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收20x元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.20.从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?21.某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A 种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.22.2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?23.已知某服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.(1)求y(元)与x(套)之间的函数表达式,并求出自变量的取值范围.(2)当生产M型号的时装多少套时,能使该厂所获利润最大?最大利润是多少?24.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=-2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1与直线y=kx+4与y轴所围成的△ABC的面积等于;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若-2<x0<-1,求k的取值范围.25.已知C 坐标为(2,0),P 坐标为(x,y),直线y=-x+4与x 轴、y 轴分别交于A 、B 两点.若点P(a,b)在直线y=-x+4上.(1)求出A 、B 坐标,并求出△AOB 的面积;(2)若点P 在第一象限内,连接PC,OP,△OPC 的面积为S,请找出S 与a 之间的函数关系式,并求出a 的取值范围;(3)当△OPC 的面积等于6时,求P 点坐标.(4)点P 在移动的过程中,若△BCP 为等腰三角形,求找出满足条件的点P 坐标.(直接写出答案)答案详解1.【解答】解:根据三角形周长等于三边之和可得:2y=40﹣x∴y=20﹣0.5x ,又知道x 为底边⇒x <2y ,x >y ﹣y ∴可知0<x <20故选A . 2.解答:∵mn=8>0,∴m 与n 为同号,∵m+n=6,∴m >0,n >0,∴直线y=mx+n 经过第一、二、三象限,故选B .3.解答: 解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过一、二、四象限, ∴图象不经过第三象限.故选C .4.解析:直线y=kx -4(k <0)与两坐标轴的交点坐标为(0,-4),)0,4(k,∵ 直线y=kx -4(k <0)与两坐标轴所围成的三角形面积等于4,∴ 4×)4(k×=4,解得k=-2,则直线的表达式为y=-2x -4.故选B .5.解:∵k+b=﹣5,kb=6,∴k <0,b <0.∴直线y=kx+b 经过二、三、四象限,即不经过第一象限.故选A .6.【解答】解:将A 的坐标分别代入一次函数y=2x+a ,y=﹣x+b 中,可得a=4,b=﹣2,那么B ,C 的坐标是:B (0,4),C (0,﹣2),因此△ABC 的面积是:BC ×OA ÷2=6×2÷2=6.故选C .7.解:∵直线y=﹣x+m 与y=nx+4n (n ≠0)的交点的横坐标为﹣2, ∴关于x 的不等式﹣x+m >nx+4n >0的解集为x <﹣2,∴关于x 的不等式﹣x+m >nx+4n >0的整数解为﹣3,故选D .8.【解答】解:∵y=(m 2﹣4)x+(1﹣m )和y=(m ﹣1)x+m 2﹣3的图象与y 轴分别交于点P 和点Q ,∴P (0,1﹣m ),Q (0,m 2﹣3)又∵P 点和Q 点关于x 轴对称∴可得:1﹣m=﹣(m 2﹣3)解得:m=2或m=﹣1.∵y=(m 2﹣4)x+(1-m )是一次函数,∴m 2﹣4≠0,∴m ≠±2,∴m=﹣1.故答案为:﹣1. 9.解:如图,直线y=k 1x+b 1(k 1>0)与y 轴交于B 点,则OB=b 1,直线y=k 2x+b 2(k 2<0)与y 轴交于C,则OC=﹣b 2,∵△ABC 的面积为4,∴OA •OB+421=⋅OC OA ,∴4)(22122121=-⨯+⨯b b ,解得:b 1﹣b 2=4.故答案为4.10.解析:∵ 通过图象可知的函数表达式为的函数表达式为=-4 +11.2 ,∴ 小敏行走的速度为11.2÷2.8=4(km/h ),小聪行走的速度为4.8÷1.6=3(km/h ).故选D.11.解析:∵ 点P 到x 轴的距离等于3,∴ 点P 的纵坐标为3或-3.11.当y=3时,x=-31;当y=-3时,x=35,∴ 点P 的坐标为(3,31-)或)3,35(-.12.解:∵过点(﹣1,7)的一条直线与直线123+-=x y 平行,设直线AB 为y=﹣x+b ; 把(﹣1,7)代入y=﹣x+b ;得7=+b ,解得:b=211,∴直线AB 的解析式为y=﹣x+211, 令y=0,得:0=﹣x+211,解得:x=311,∴0<x <的整数为:1、2、3;把x 等于1、2、3分别代入解析式得4、、1;∴在线段AB 上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).故答案为(1,4),(3,1). 13.解:当k >0时,此函数是增函数,∵当1≤x ≤4时,3≤y ≤6,∴当x=1时,y=3;当x=4时,y=6,∴⎩⎨⎧=+=+643b k b k ,解得⎩⎨⎧==21b k ,∴=2;当k <0时,此函数是减函数,∵当1≤x ≤4时,3≤y ≤6,∴当x=1时,y=6;当x=4时,y=3,∴⎩⎨⎧=+=+346b k b k ,解得⎩⎨⎧=-=71b k ,∴=﹣7.故答案为:2或﹣7.14.解析:由题意可知甲走的是路线AC ,乙走的是路线BD , 因为直线AC 过点(0,0),(2,4),所以S AC =2t .因为直线BD 过点(2,4),(0,3),所以321+=t S BD .当t=3时,23=-BD AC S S . 15.解:如图,作A 点关于直线y=x 的对称点A ′,连接A ′B ,交直线y=x 于点P ,此时PA+PB 最小, 由题意可得出:OA ′=1,BO=2,PA ′=PA ,∴PA+PB=A ′B=52122=+.故答案为:5.16.解:(1)因为y+2与2x-1成正比例,所以可设y+2=k(2x-1)将x=3,y=-4代入,得52-=k ,所以函数关系式为5854--=x y .(2)将y=-1代入x=54-17.解:(1)填空:A ,B 两地相距420千米;(2)由图可知货车的速度为60÷2=30千米/小时,货车到达A 地一共需要2+360÷30=14小时, 设y 2=kx+b ,代入点(2,0)、(14,360)得⎩⎨⎧=+=+3601402b k b k ,解得⎩⎨⎧-==6030b k ,所以y 2=30x ﹣60;(3)设y 1=mx+n ,代入点(6,0)、(0,360)得⎩⎨⎧==+36006n n m 解得⎩⎨⎧=-=36060n m ,所以y 1=﹣60x+360由y 1=y 2得30x ﹣60=﹣60x+360解得x=314答:客、货两车经过314小时相遇. 18.【解答】解:(1)未超出7立方米时:y=x ×(1+0.2)=1.2x ;超出7立方米时:y=7×1.2+(x ﹣7)×(1.5+0.4)=1.9x ﹣4.9; (2)当某户用水7立方米时,水费8.4元.当某户用水10立方米时,水费8.4+5.7=14.1元,比7立方米多5.7元. 8.4×50=420元,还差541.6﹣420=121.6元,121.6÷5.7=21.33. 所以需要22户换成10立方米的,不超过7立方米的最多有28户. 19.解答: 解:(1)设y 关于x 的函数关系式y=kx+b , ∵直线y=kx+b 经过点(50,200),(60,260)∴⎩⎨⎧=+=+2606020050b k b k 解得⎩⎨⎧-==1006b k∴y 关于x 的函数关系式是y=6x ﹣100;(2)由图可知,当y=620时,x >50∴6x ﹣100=620,解得x=120. 答:该企业2013年10月份的用水量为120吨. (3)由题意得6x ﹣100+20x (x ﹣80)=600,化简得x 2+40x ﹣14000=0 解得:x 1=100,x 2=﹣140(不合题意,舍去).答:这个企业2014年3月份的用水量是100吨. 20.解答:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时, ∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1 (2)小明骑车到达乙地的时间为0.5小时,∴B (0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C (0.6,4.5).设直线AB 的解析式为y=k 1x+b 1,由题意,得⎩⎨⎧+=+=11115.05.63.05.4b k b k ,解得:⎩⎨⎧==5.11011b k ,∴y=10x+1.5(0.3≤x ≤0.5);设直线BC 的解析式为y=k 2+b 2,由题意,得⎩⎨⎧+=+=22226.05.45.05.6b k b k ,解得:⎩⎨⎧=-=5.162022b k ,∴y=﹣20x+16.5(0.5<x ≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h ,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t ,则第二次经过该地点的时间为(t+0.15)h ,由题意,得 10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km . 21.解:(1)设A 、B 两种奖品单价分别为x 元、y 元,由题意,得 ⎩⎨⎧=+=+95356023y x y x ,解得:⎩⎨⎧==1510y x .答:A 、B 两种奖品单价分别为10元、15元. (2)由题意,得)100(1510m m W -+=m m 15150010-+=m 51500-=由⎩⎨⎧-≤≤-)100(3115051500m m m ,解得:7570≤≤m .由一次函数m W 51500-=可知,W 随m 增大而减小∴当75=m 时,W 最小,最小为11257551500=⨯-=W (元)答:当购买A 种奖品75件,B 种奖品25件时,费用W 最小,最小为1125元.22.解答: 解:(1)设该企业2013年处理的餐厨垃圾x 吨,建筑垃圾y 吨,根据题意,得⎩⎨⎧+=+=+880052003010052001625y x y x ,解得⎩⎨⎧==20080y x .答:该企业2013年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2014年处理的餐厨垃圾x 吨,建筑垃圾y 吨,需要支付这两种垃圾处理费共a 元,根据题意得,⎩⎨⎧≤=+xy y x 3240,解得x ≥60.a=100x+30y=100x+30(240﹣x )=70x+7200,由于a 的值随x 的增大而增大,所以当x=60时,a 值最小,最小值=70×60+7200=11400(元). 答:2014年该企业最少需要支付这两种垃圾处理费共11400元. 23.解:(1)y=50x+45(80-x)=5x+3600.∵ 两种型号的时装共用A 种布料[1.1x +0.•6(80-x )]米≤70米, 共用B 种布料[0.4x+0.9(80-x )]米≤52米,解得40≤x ≤44. 而x 为整数,∴x=40,41,42,43,44,∴ y 与x 的函数表达式是y=5x+3 600(xx=40,41,42,43,44). (2)∵ y 随x 的增大而增大,∴ 当x=44时,y 最大=3 820,即生产M 型号的时装44套时,该厂所获利润最大,最大利润是3 820元.24.解:(1)①∵直线y =-2x +1过点B ,点B 的横坐标为-1,∴y =2+1=3,∴B(-1,3), ∵直线y =kx +4过B 点,∴3=-k +4,解得:k =1; ②∵k =1,∴一次函数解析式为:y =x +4,∴A(0,4),∵y =-2x +1,∴C(0,1),∴AC =4-1=3,∴△ABC 的面积为12×1×3=32,故答案为:32(2)∵直线y =kx +4(k ≠0)与x 轴交于点E(x 0,0),-2<x 0<-1,∴当x 0=-2, 则E(-2,0),代入y =kx +4得:0=-2k +4,解得:k =2,当x 0=-1,则E(-1,0),代入y =kx +4得:0=-k +4,解得:k =4,故k 的取值范围是:2<k <4 25.解:(1)A(4,0),B(0,4);S △OAB =8(2)将P(a,b)代入y=-x+4得,b=-a+4,S △OPC =)40(4)4(221<<+-=+-⨯⨯a a a(3)10,64;2,646)4(221=-=+--==+-=+-⨯⨯a a a a a ,,P(-2,6)或(10,6) (4)(2,2),(4-2,2),(24+,-2)。
人教版初中数学八年级下册第19章一次函数综合应用(含答案)一、单选题1.如图,在平面直角坐标系中,边长为1的正方形ABCD 中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()参考答案:D2.甲、乙两人分别从A B、两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离()y m与甲所用时间(min)x之间的函数关系如图所示.有下列说法:①A B、之间的距离为1200m;②乙行走的速度是甲的1.5倍;③960b=;④34a=.以上结论正确的有()A.①② B.①②③ C.①③④ D.①②④参考答案:D二、填空题yx1212PA DCBOyx123412Oyx123412Oyx123412Oyx123412O3.在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C 、…、正方形1n n n n A B C C -,使得点1A 、2A 、3A 、…在直线l 上,点1C 、2C 、3C 、…在y 轴的正半轴上,则点n B 的坐标是 .参考答案:()12,21n n --【解析】点1B 、2B 、3B 、4B …的横坐标分别为:1、2、4、8…,所以n B 的横坐标为12n -;点1B 、2B 、3B 、4B …的纵坐标分别为:1、3、7、15…,所以n B 的纵坐标为21n-,所以点n B 的坐标为()12,21n n --。
4.已知点()211,a a A ,()322,a a A ,()433,a a A ,……()1,+n n n a a A (n 为正整数)都在一次函数y =x +3上的图象上,若21=a ,则2014a = .参考答案:60415.直线26y x =-+与x 轴的交点坐标是 ,与y 轴的交点坐标是 。
与坐标轴围成的三角形的面积是 。
参考答案: (3,0),(0,6),96.如图,在平面直角坐标系中,点A (0,4),B (3,0),连接AB .将△ACB 沿过点B 的直线折叠,使点A 落在x 轴上的点A ’处,折痕所在的直线交y 轴正半轴于点C ,则直线BC 的解析式参考答案:1322y x =-+ 7.在平面直角坐标系xOy 中,点A 、B 的坐标分别为(3,m )、(3,m+2),直线y=2x+b 与线段AB 有公共点,则b 的取值范围为 (用含m 的代数式表示).参考答案:m ﹣6≤b ≤m ﹣48.直线()0y 111>k b x k +=与()0y 222<k b x k +=相交于点(-2,0),且两直线与y 轴围成的三角形面积为4,那么12b b -等于__________.参考答案:49.一个正比例函数图像与一次函数1y x =+-的图象相交于点P ,则这个正比例函数的表达式是 .参考答案:2y x =- 三、解答题10.已知一次函数y kx b =+的图象经过点A(-2,-4),且与正比例函数12y x =的图象相交于点B(4,a),求: (1)a 的值 (2)k 、b 的值(2)求出这两个函数的图象与y 轴围成的三角形的面积参考答案:解(1)把代入12y x =得2a = 所以点B 的坐标为(4,2)把A(-2,-4) 、B(4,2)代入y kx b =+得4224k bk b-=-+⎧⎨=+⎩解得12k b =⎧⎨=-⎩,所以一次函数为2y x =-(2)当0x =时,102y x ==,所以12y x =的图象与y 轴相交于点(0,0) 当0x =时,22y x =-=-,所以2y x =-的图象与y 轴相交于点(0,-2) 所以,11222222A S x =⨯-⨯=⨯⨯= 11.如图,在△ABC 中,∠C=︒90,AC=3,BC=4,点D ,E 分别在AC ,BC 上(点D与点A ,C 不重合),且∠DEC=∠A ,将△DCE 绕点D 逆时针旋转90°得到△DC ′E ′.当△DC ′E ′的斜边、直角边与AB 分别相交于点P ,Q (点P 与点Q 不重合)时,设CD=x ,PQ=y . (1)求证:∠ADP=∠DEC ;(2)求y 关于x 的函数解析式,并直接写出自变量x 的取值范围.参考答案:(1)证明:如图1中,∵∠EDE′=∠C=︒90,∴∠ADP+∠CDE=︒90,∠CDE+∠DEC=︒90,∴∠ADP=∠DEC.(2)解:如图1中,当C′E′与AB相交于Q时,即<x≤时,过P作MN ∥DC′,设∠B=α∴MN⊥AC,四边形DC′MN是矩形,∴PM=PQ•cosα=y,PN=×(3﹣x),∴(3﹣x)+y=x,∴y=x﹣,当DC′交AB于Q时,即<x<3时,如图2中,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN是矩形,∴PN=DM ,∵DM=(3﹣x ),PN=PQ •sin α=y , ∴(3﹣x )=y , ∴y=﹣x+.综上所述,y=12.如图,直线1322y x=+与x 轴交点A ,与直线y x =交点B (1)求点B 的坐标 (2)求sin BAO ∠的值参考答案:解:(1)联立方程得:13222y x y x⎧=+⎪⎨⎪=⎩ ,得12x y =⎧⎨=⎩ 所以点B 的坐标为:B(1,2) (2)当0x =时,133222y x =+=当13022y x =+=时,3x =- 所以点A 坐标为A(-3,0),点C 坐标为30,2C ⎛⎫⎪⎝⎭,进而可得AC = 在Rt △AOC中,所以32sin 35CO BAO AC ∠===13.如图,直线的解析式为,且与x 轴交于点D ,直线经过点A 、B ,直线、交于点C .(1)求点D 的坐标; (2)求直线的解析表达式; (3)求△ADC 的面积;(4)在直线上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请直接..写出点的坐标.参考答案:解:(1)直线:33+-=x y 与x 轴交于点D , 当y =0时,033=+-x ,解得,x =1 所以点D 的坐标是(1,0)(2)由图可知直线过点A (4,0)、B (3,-3/2), 设其解析式为b kx y +=,把A 、B 的坐标代入得:1l 33y x =-+1l 2l 1l 2l 2l 2l P 1l 2l所以△ADC 的面积是293321=⨯⨯14.如图,已知函数12y x b =-+的图象与x 轴、y 轴分别交于点A ,B ,与函数y x =的图象交于点M ,点M 的横坐标为2.在x 轴上有一点P(a ,0)(其中a >2),过点P 作x 轴的垂线,分别交函数12y x b =-+和y=x 的图象于点C ,D.(1) 求点A 的坐标; (2) 若OB=CD ,求a 的值.参考答案:解:(1) ∵点M 在函数y=x 的图象上,且横坐标为2, ∴ 点M 的纵坐标为2. ∵ 点M(2,2)在一次函数12y x b =-+的图象上, ∴ 1222b -⨯+=.∴ b=3. ∴ 一次函数的表达式为132y x =-+.令y=0,得x=6.∴ 点A 的坐标为(6,0); (2) 由题意得1,32C a a ⎛⎫-+ ⎪⎝⎭,D(a ,a). ∵ OB=CD ,∴ a-⎝ ⎛⎭⎪⎫-12a +3=3,1332a a ⎛⎫--+= ⎪⎝⎭∴ a=4.15.已知一次函数b kx y +=的图象经过点(-1,-5),且与正比例函数x y 21=的图象相交于点(2,a),求(1)a 的值 (2)k ,b 的值(3)这两个函数图象与x 轴所围成的三角形的面积。
参考答案:解:(1)把点(2,m )代入x y 21=得,m=1 (2)把点(-1,-5)、(2,1)代入y =kx +b 得,⎩⎨⎧=+-=+-125b k b k ,解得,⎩⎨⎧-==32b k ∴ 一次函数的解析式为:32-=x y(3)如图,直线32-=x y 与x 轴交于点B(3/2,0)与直线x y 21=相交于点A (2,1)∴23=OB∴431232121=⨯⨯=⋅=∆A OAB y OB S16.在直角坐标系中,有四个点A (-8,3)、B (-4,5)、C (0,n )、D(m,o),当四边形ABCD 的周长最短时,求m 和n 的值。
参考答案:解,如图即为点C 和点D , 点A ’坐标为(-8,-3),点B ’(4,5)所以直线A ’B ‘所在直线为2733y x =+由此可知两个交点分别为7D ,02⎛⎫- ⎪⎝⎭,7C 0,3⎛⎫⎪⎝⎭17.已知一次函数b kx y +=的图象经过点(-1,-5),且与正比例函数x y 21=的图象相交于点(2,a),求(1)a 的值 (2)k ,b 的值(3)这两个函数图象与x 轴所围成的三角形的面积。
参考答案:解:(1)把点(2,m )代入x y 21=得,m=1 (2)把点(-1,-5)、(2,1)代入y =kx +b 得,⎩⎨⎧=+-=+-125b k b k ,解得,⎩⎨⎧-==32b k ∴ 一次函数的解析式为:32-=x y(3)如图,直线32-=x y 与x 轴交于点B(3/2,0)与直线x y 21=相交于点A (2,1) ∴23=OB ∴431232121=⨯⨯=⋅=∆A OAB y OB S。