内插滤波器及其FPGA实现
- 格式:pdf
- 大小:131.49 KB
- 文档页数:3
cic滤波器的FPGA实现发布时间:2016-01-26 15:07:21技术类别:CPLD/FPGA一、关于多采样率数字滤波器很明显从字面意思上可以理解,多采样率嘛,就是有多个采样率呗。
前面所说的FIR,IIR滤波器都是只有一个采样频率,是固定不变的采样率,然而有些情况下需要不同采样频率下的信号,具体例子我也不解释了,我们大学课本上多速率数字信号处理这一章也都举了不少的例子。
按照传统的速率转换理论,我们要实现采样速率的转换,可以这样做,假如有一个有用的正弦波模拟信号,AD采样速率是f1,现在我需要用到的是采样频率是f2的信号,传统做法是将这个经过f1采样后的信号进行DA转换,再将转换后的模拟信号进行以f2采样频率的抽样,得到采样率为f2的数字信号,至此完成采样频率的转换但是这样的做法不仅麻烦,而且处理不好的话会使信号受到损伤,所以这种思想就被淘汰了,现在我们用到的采样率转换的方法就是抽取与内插的思想。
二、抽取先来总体来解释一下抽取的含义:前面不是说,一个有用的正弦波模拟信号经采样频率为f1的抽样信号抽样后得到了数字信号,很明显这个数字信号序列是在f1频率下得到的,现在,假如我隔几个点抽取一个信号,比如就是5吧,我隔5个点抽取一个信号,是不是就是相当于我采用了1/5倍f1的采样频率对模拟信号进行采样了?所以,抽取的过程就是降低抽样率的过程,但是我们知道,这是在时域的抽样,时域的抽样等于信号在频域波形的周期延拓,周期就是采样频率,所以,为了避免在频域发生频谱混叠,抽样定理也是我们要考虑的因素下面来具体来介绍如上图所示,假如上面就是某一有用信号经采样频率f1抽样得到的频谱,假设这时候的采样频率为8Khz ,可以通过数格子得到,从0到F1处有8个空格,每个空格代表1Khz,有些朋友可能会问,这不是在数字频域吗,单位不是π吗,哪来的hz?是的,这里是数字频域,采样频率F1处对应的是2π,这里只是为了好解释,我们用模拟频率来对应数字频率。
DVB-S中可变插值率CIC滤波器设计及其FPGA实现作者:张文坡常亮史丽荣来源:《现代电子技术》2008年第11期摘要:在数字上变频中常用的CIC滤波器的基础上,提出了一种适用于DVB-S系统的可变插值率CIC滤波器的实现结构,首先实现一个内插因子为2的CIC滤波器单元,然后根据不同的内插因子要求,来重复地调用这些内插因子为2的基本滤波器模块,这种CIC滤波器的实现结构符合结构化的设计思想。
通过Verilog HDL语言在FPGA上对其进行了仿真、综合给出了相应的仿真结果,并成功应用于DVB-S系统中。
关键词:积分梳状滤波器;FPGA;插值;数字上变频;数字视频广播中图分类号:TN911.73 文献标识码:B文章编号:1004-373X(2008)11-103-Design of Variable Interpolated Filter CIC in DVB-S and Its FPGA RealizationZHANG We,,(1.Jiazai Telecommunication Equipment Co.Ltd.,Xi′an,710075,China;2.Satellite Application System Department of China Academy of SpaceTechnology,Beijing,100086,China;3.Xi′an Node Science Technology Co.Ltd.,Xi′an,710075,China)Abstract:In this paper,a new variable interpolated filter in DVB-S(Digital Vidoe Broadcast by Satellite) is introduced based on the common filter of cascaded integrator comb.Firstly a CIC filter module with interpolation factor 2 is designed,then we could reuse the basic module according to the interpolation factor.Based on the theory of CIC filter,the filter with FPGA is simulated and synthesized,the results is given,and realizes it in the system of DVB-S.Keywords:CIC;FPGA;interpolation;digital up converter;DVBCIC(Cascaded Integrator Comb)滤波器是现代数字上变频的核心技术,具有简单而高效的结构。
基于 FPGA 的数字滤波器设计与实现引言:数字滤波器是现代信号处理的重要组成部分。
在实际应用中,为了满足不同信号处理的需求,数字滤波器的设计与实现显得尤为重要。
本文将围绕基于 FPGA的数字滤波器的设计与实现展开讨论,介绍其工作原理、设计方法以及优势。
同时,还将介绍一些实际应用场景和案例,以展示基于 FPGA 的数字滤波器在实际应用中的性能和效果。
一、数字滤波器的基本原理数字滤波器是一种将输入信号进行滤波处理,改变其频谱特性的系统。
可以对频率、幅度和相位进行处理,实现信号的滤波、去噪、增强等功能。
数字滤波器可以分为无限脉冲响应滤波器(IIR)和有限脉冲响应滤波器(FIR)两种类型。
IIR滤波器是通过递归方式实现的滤波器,其输出信号与过去的输入信号和输出信号相关。
FIR滤波器则是通过纯前馈结构实现的,其输出信号仅与过去的输入信号相关。
两种类型的滤波器在性能、复杂度和实现方式上存在一定差异,根据具体的应用需求选择适合的滤波器类型。
二、基于 FPGA 的数字滤波器的设计与实现FPGA(Field-Programmable Gate Array)是一种可编程逻辑器件,通过可编程逻辑单元(PLU)、可编程连线(Interconnect)和可编程I/O(Input/Output)实现。
其可编程性使得 FPGA 成为数字滤波器设计与实现的理想平台。
1. FPGA的优势FPGA具有以下几个优势,使得其成为数字滤波器设计与实现的首选平台:灵活性:FPGA可以根据设计需求进行自定义配置,可以通过修改硬件逻辑来满足不同应用场景的需求。
可重构性:FPGA可以重复使用,方便进行修改和优化,减少芯片设计过程中的成本和风险。
高性能:FPGA具有并行处理的能力,可以实现多通道、高速率的实时数据处理,满足对于实时性要求较高的应用场景。
低功耗:FPGA可以进行功耗优化,通过减少冗余逻辑和智能布局布线来降低功耗。
2. 数字滤波器的实现方法基于 FPGA 的数字滤波器的实现方法主要有两种:直接法和间接法。
基于FPGA的中值滤波算法的实现1.背景知识中值滤波法是⼀种⾮线性平滑技术,它将每⼀像素点的灰度值设置为该点某邻域窗⼝内的所有像素点灰度值的中值.中值滤波是基于排序统计理论的⼀种能有效抑制噪声的⾮线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中⼀点的值⽤该点的⼀个邻域中各点值的中值代替,让周围的像素值接近的真实值,从⽽消除孤⽴的噪声点。
⽅法是⽤某种结构的⼆维滑动模板,将板内像素按照像素值的⼤⼩进⾏排序,⽣成单调上升(或下降)的为⼆维数据序列。
⼆维中值滤波输出为g(x,y)=med{f(x-k,y-l),(k,l∈W)} ,其中,f(x,y),g(x,y)分别为原始图像和处理后图像。
W为⼆维模板,通常为3*3,5*5区域,也可以是不同的的形状,如线状,圆形,⼗字形,圆环形等。
中值滤波法对消除椒盐噪声⾮常有效,在光学测量条纹图象的相位分析处理⽅法中有特殊作⽤,但在条纹中⼼分析⽅法中作⽤不⼤.中值滤波在图像处理中,常⽤于保护边缘信息,是经典的平滑噪声的⽅法。
2.中值滤波理论中值滤波是⼀种⾮线性滤波,在数字图像处理中,对于 N X N (N 为奇数) 中值滤波器,可以滤除⼩于或等于邻域中(N 2- 1)/2 个像素的噪声并且较好地保持图像的边缘[3]。
对图像进⾏中值滤波处理⾸先要确定⼀个模板 N ×N ,⼀般选取 3X 3 或 5 ×5。
中问位置的图像数据的表达式为f (x ,y ) = med{f (x ± k,Y ± Z) , (K≤ (N -1) /2,Z≤ (N-1) /2) }要得到模板中数据的中间值,⾸先要将数据按⼤⼩排序,然后根据有序的数字序列来找中问值。
中值滤波排序的过程有很多成熟的算法,如冒泡排序、⼆分排序等,⼤多是基于微机平台的软件算法,⽽适合硬件平台的排序算法则⽐较少。
3.FPGA硬件实现⽅法L(1,1) L(1,2) L(1,3)L(2,1) L(2,2) L(2,3)L(3,1) L(3,2) L(3,3)如上所⽰,为⼀个3x3的图像模板,第⼀步:分别对三⾏像素进⾏排序(例:由L11,L12,L13得到L1max,L1mid,L1min);第⼆步:分别对三⾏像素中的最⼤,中间和最⼩分别进⾏排序(例:由L1max,L2max,L3max得到Lmax_max,Lmax_mid,Lmax_min);第三步:对最⼤的最⼩,中间的中间以及最⼩的最⼤进⾏排序(例:由Lmax_min,Lmid_mid,Lmin_max得到midian);FPGA的算法实现步骤基本如此。
基于FPGA的数字滤波器设计与实现数字滤波器是信号处理中常用的工具,可以通过滤除不需要的频率成分或者增强需要的频率成分对信号进行处理。
在数字信号处理领域,基于FPGA的数字滤波器设计与实现是一项重要的研究课题。
本文将介绍FPGA数字滤波器的设计原理、实现方法和应用领域。
首先,我们来了解一下FPGA(可编程逻辑门阵列)是什么。
FPGA是一种可重构的硬件平台,它由大量的可编程逻辑门电路构成。
相比于传统的ASIC(专用集成电路)设计,FPGA具有更高的灵活性和可重构性,可以实现多种不同的电路功能。
在数字滤波器设计中,FPGA可以用来实现各种类型的滤波器,如低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
FPGA数字滤波器的设计通常包括以下几个步骤:1. 规格定义:确定滤波器的工作频率范围、滤波器类型(如FIR滤波器或IIR滤波器)、滤波器阶数和滤波器的性能指标等。
2. 滤波器设计:根据规格定义,选择适合的滤波器结构和滤波器系数设计方法,如窗函数法、频率采样法或者最小二乘法等。
设计好的滤波器可以通过MATLAB等工具进行模拟验证。
3. 滤波器实现:将滤波器设计转化为可在FPGA上实现的硬件描述语言(如VHDL或Verilog)。
在这个步骤中,需要将滤波器结构转化为逻辑电路,并根据具体的FPGA平台选择适合的资源分配和布局策略。
4. 仿真验证:使用EDA(电子设计自动化)工具对滤波器进行仿真验证,确保其在FPGA上的功能和性能与设计规格一致。
5. 实际实现:将经过仿真验证的滤波器设计烧录到FPGA 芯片中,并进行实际的性能测试。
测试结果可以与仿真结果进行比较,来评估滤波器的实现质量。
FPGA数字滤波器的设计和实现具有以下几个优势:1. 高性能:FPGA提供了大量的逻辑资源和高速IO接口,可以实现复杂的滤波器结构和算法,并能够处理高速数据流。
2. 低功耗:相比于通用处理器,FPGA的功耗较低,可以在不牺牲性能的情况下降低系统的功耗。