防砂工艺
- 格式:ppt
- 大小:1.94 MB
- 文档页数:54
压裂充填防砂工艺经济评价
压裂充填防砂工艺是一种用于油田开发中的采油方法,通过在油层中
施加高压力的液体,将砂砾性物质压裂成小颗粒,然后通过注入充填材料
来防止砂粒再次封堵油井,从而提高油井的产能和采收效率。
在进行压裂
充填防砂工艺之前,进行经济评价是非常重要的,可帮助决策者评估该工
艺的可行性和经济性。
1.投资成本评估:评估该工艺的初始投资成本,包括压裂设备、充填
材料、人工成本等。
同时,还需要考虑到设备的维护与维修成本,在整个
项目周期内进行合理的财务计划。
2.生产效益评价:通过采用压裂充填防砂工艺,油井的产能和采收效
率会有所提高。
评价生产效益主要根据油井的产量增加情况和油田开发的
周期来进行。
3.成本效益评价:评估工艺的成本效益比,即投入和产出之间的比例
关系。
该工艺能否降低生产成本,并提高每桶油的产出价值,从而使项目
变得经济可行。
4.风险评估:评估压裂充填防砂工艺的风险,并进行风险管理。
包括
工艺的技术可行性、环境风险、设备故障风险等,通过合理的风险控制措
施来降低潜在的风险。
5.社会效益评价:评估该工艺对当地经济和社会的影响。
包括提供就
业机会、增加当地税收、改善能源安全等多方面的社会效益。
经济评价的方法主要包括财务分析、成本效益分析、投资回报率分析等。
通过对各项指标的评估,可以得出该工艺是否具有经济可行性的结论,以便决策者做出合理的决策。
总之,压裂充填防砂工艺经济评价是一个复杂的过程,需要综合考虑多个因素。
只有进行全面的经济评价,才能确保该工艺对于油田开发是可行和经济的选择。
胜利油田防砂工艺技术体系胜利油田防砂工艺技术体系是指为了解决油井开发过程中砂控问题而采取的一系列措施和技术手段。
胜利油田是我国大陆架油气资源的重要产区之一,由于油井开采时,地层内部岩石破碎、颗粒松散等原因,会产生大量的砂层,导致油井设备堵塞甚至造成油井无法正常生产。
因此,防止砂层进入油井,保持油井的通畅是非常重要的。
胜利油田防砂工艺技术体系主要包括以下几个方面的内容:1. 地层评价技术:通过对目标层地质结构、岩石力学性质等进行综合分析和评估,预测砂控风险,确定适当的防砂措施。
2. 钻井液体系技术:通过控制钻井液的粘度、密度、滤失性等参数,减小井壁与地层之间的差异,防止砂层进入井筒。
3. 钻具和井壁完井技术:通过选择合适的钻具和完井工具,并采取钻井液的撤出、井壁套管的加强等措施,防止砂层进入井筒。
4. 阻砂装置技术:通过安装阻砂器、套管等装置来隔离砂层,防止其进入井筒。
5. 水平井防砂技术:水平井是近年来常用的一种开发手段,通过合理的导流设计和水平段的防砂措施,能够提高井底流体的载砂能力,最大限度地减少砂层进井量。
6. 后期砂控技术:井筒中的砂层和颗粒有时会由于油井开采过程中的地层变形、液流变化等因素而脱落,阻塞了生产设备。
后期砂控技术主要是针对这些问题,通过清砂工艺、冲砂工艺等方法,降低砂层的影响,恢复正常的生产。
胜利油田防砂工艺技术体系的应用可以有效地保证油井的正常开采和生产。
通过合理的防砂措施,可以减少油井设备堵塞的风险,提高油井的产能和经济收益。
而且,胜利油田防砂工艺技术体系还可以减少环境污染,避免砂层进入油气管道,将对环境的负面影响降到最低。
总之,胜利油田防砂工艺技术体系是一套完整的工艺体系,通过地层评价、钻井液体系、钻具和井壁完井以及阻砂装置等多种措施和技术手段,可以有效地防止砂层进入油井,保持油井的通畅,提高油井产能和经济效益。
在油田开发中的应用具有重要意义。
油井开采工艺离不开信息化、智能化、机械化技术的应用。
受机械使用寿命、生产时间的影响,可能会加剧套管破损现象,进而为防砂工艺技术提供了更多的难度。
由此可见,需解决油井开采技术中气井出砂、细粉砂井的问题,有利于避免油井出砂而造成的负面影响。
另外,需采用该工艺改善油井的渗透率,这对于提高油井工艺开采效率是有利的。
一、压裂防砂工艺技术原理1.工艺技术概况。
压裂防砂工艺技术是使用树脂涂层涂抹石英砂,使材料表面有一层保护膜,有利于提高油井的导流功能。
工艺进行中,需及时注入高性能的树脂砂,确保井口裂缝处或亏空段有支撑剂作用,能改善该部位的核心功能。
当支撑剂注入需要管控的裂缝部位时,需提高中央部位的温度参数,致使树脂层发生作用。
通过让保护层实现软化,引导其发生固化聚合反应,确保砂砾可以和保护层更紧实的粘合在一起,有利于防治井口出砂的现象,也能实践油层的改造作用。
通过该方式的优化,能提高油田井口的使用年限,且效果比之前更好。
2.压裂防砂工艺应用原理。
该工艺的出砂原理是基于拉伸、剪切、粘结的过程,实现压裂防砂的目标,也能防治孔隙坍塌的情况。
首先,剪切破坏会导致地层岩石的输送效率,需利用拖曳作用引导岩石颗粒落至指定区域,使指定区域能够在压裂防砂的作用中实现造缝控制,确保流入该区域的液体由单一的方向变成双线性。
其次,单一方向流向大多为径向流状,而此时石油会渗透至井底处,会导致井口、井底部分的压力不断提升,以此形成一个陡峭的压力带,当石油越靠近井壁时,压力也会随之提升。
导致这一情况的原因是由于压力的分布,使压力区域底部的和底边边缘的压差始终在一定范围内,也能控制压差在集中区域地带。
当低端压力不稳定时,可能会引发砂块性能不稳定,导致流体会呈现双线性流状态。
此时需使用这一情况改变压力梯度,控制其压力梯度会随着应力而发货所能改变,使油泄流至地层底部,增大了地底的阻力。
若产生较大部分的裂缝时,会提升井底原油的渗流面积,引发锈蚀情况,降低了流体对地层颗粒的冲击速度。
防沙设施生产工艺流程概述防沙设施是用于防治沙漠化、保护土地和生态环境的重要手段之一。
其生产工艺流程包括原料准备、设备调试、生产加工和质量检测等环节。
本文将对防沙设施生产工艺流程进行概述,以供参考。
一、原料准备防沙设施的生产原料主要包括混凝土、钢筋、模具等。
在生产之前,首先需要进行原料的准备工作。
这包括根据生产计划确定所需原料的种类和数量,并进行检查和采购。
同时,还需要对原料进行质量检验,确保其符合相关标准和要求。
二、设备调试设备调试是保证生产过程正常进行的重要环节。
在生产之前,需要对相关设备进行调试,确保其正常工作。
这包括设备的安装、组装、接线等操作,以及对设备的功能进行测试和调整。
只有确保设备正常运行,才能保证后续的生产加工环节顺利进行。
三、生产加工生产加工是防沙设施生产工艺流程中的核心环节。
在设备调试完成后,可以开始进行生产加工工作。
这包括混凝土的搅拌、浇筑,钢筋的裁剪、焊接,以及模具的制作和使用等。
在生产加工过程中,需要严格按照工艺要求操作,确保产品的质量和技术指标。
四、质量检测质量检测是防沙设施生产工艺流程中不可或缺的环节。
通过对产品进行质量检测,可以确保产品符合相关标准和要求,以及满足客户的需求。
质量检测包括对混凝土强度、钢筋焊接质量、尺寸精度等进行测试和评估。
只有通过质量检测的产品才能进入下一个环节,或者最终出厂销售。
总结:通过以上概述,我们可以看出防沙设施生产工艺流程的主要环节包括原料准备、设备调试、生产加工和质量检测。
每个环节都有其特定的要求和重要性,都需要精细操作和严格把控。
只有确保每个环节的顺利进行,才能生产出高质量的防沙设施产品,以应对沙漠化和保护土地生态环境的需求。
常用防砂工艺讲座CATALOGUE目录•防砂工艺简介•砾石层防砂工艺•复合防砂工艺•水泥砂浆防砂工艺•选择合适的防砂工艺•防砂工艺案例分享定义防砂工艺是指通过一定的技术手段,防止地下砂石流入井筒或管道内,以保证采油、采气、供水等作业的正常进行。
分类根据不同的防砂原理和技术特点,防砂工艺可分为机械防砂、化学防砂、热力防砂和复合防砂等四种类型。
定义与分类复合防砂综合利用上述两种或多种防砂方法,以达到更好的防砂效果。
常见的复合防砂方法有机械-化学复合防砂、机械-热力复合防砂等。
工作原理机械防砂利用机械装置或材料阻挡、固定砂粒,防止其流动或进入井筒。
常见的机械防砂方法有滤砂管、割缝筛管、绕丝筛管等。
化学防砂利用化学剂或树脂等材料与地层砂粘合,形成致密的挡砂层,以防止砂粒进入井筒。
化学防砂适用于渗透性较好的地层。
热力防砂通过加热或烧结地层,使地层中的砂粒固定或烧结成一体,防止其流动或进入井筒。
热力防砂适用于深层高温地层。
应用范围油、气、水等管道的防砂;水库、堤坝等水利工程的防渗、防漏及加固处理;其他需要进行防砂处理的作业。
建筑地基加固及地下工程的防水渗漏处理;油田、气田、水井等采收作业的防砂;工艺原理砾石层防砂工艺是通过在油井周围铺设一层或多层砾石,以阻挡地层中的砂粒进入井筒中,从而防止砂堵和增产。
砾石层能够有效地过滤流经它的流体,留下大颗粒的砂粒,而让小颗粒的油、气和水通过。
在油井生产过程中,砾石层能够维持地层的稳定,提高采收率,延长油井寿命。
砾石层防砂施工流程包括以下步骤1. 准备工作:清理施工现场,准备所需设备和材料。
2. 下入套管:将带有筛管的套管下入到井筒中,以作为过滤层的基础。
施工流程施工流程4. 填充粘性物质在砾石层上方填充粘性物质,以保护砾石层不受流体冲刷和侵蚀。
5. 安装封隔器在套管顶部安装封隔器,以隔离油层和上部流体。
3. 填充砾石将筛选好的砾石填充到套管中,形成过滤层。
6. 压井测试进行压井测试以确保砾石层能够有效地过滤流体。
分层防砂工艺技术分层防砂工艺技术是一种用于控制河流、河口、港口等水域沉积物运移的技术。
它通过将河道或港口划分为多个层次,采取适当的工程措施,以减少沉积物的运动和沉积,提高水体的通行能力和水动力条件,从而达到防止砂淤、保持航道畅通的目的。
在分层防砂工艺技术中,常用的措施包括河道或港口的疏浚和导流、沉沙池的建设和维护、河床和岸坡的整治等。
下面将从这些方面分别进行介绍。
疏浚和导流是分层防砂的重要手段之一。
通过对河道或港口进行疏浚,可以清除堆积在河底或港池中的沉积物,增加水体的通行能力。
同时,在疏浚的过程中,可以采取导流措施,将沉积物引导到特定的区域,避免其再次堆积在航道或港口中。
导流可以通过设置引导堤、建设导流渠道等方式来实现。
沉沙池的建设和维护也是分层防砂的重要措施之一。
沉沙池是一种专门用于沉积物沉淀和储存的设施,可以有效地减少沉积物的运动和沉积。
在河道或港口的适当位置建设沉沙池,可以将大部分的沉积物截留在其中,保持航道或港口的畅通。
同时,定期清理和维护沉沙池,将沉积物进行处理,有利于保持其功能的正常运行。
对河床和岸坡进行整治也是分层防砂的重要措施之一。
河床和岸坡是河流或港口中沉积物易于积聚的地方,对其进行整治可以减少沉积物的运动和沉积。
河床整治可以采取加固河床、疏通河道等方式,增加水流的流速和冲刷力,防止沉积物的堆积。
岸坡整治可以采取加固岸坡、修建护岸等方式,减少因河岸坍塌而导致的沉积物输入。
分层防砂工艺技术是一种有效控制沉积物运移的技术。
通过疏浚和导流、沉沙池的建设和维护、河床和岸坡的整治等措施,可以减少沉积物的运动和沉积,提高水体的通行能力和水动力条件,保持航道或港口的畅通。
这些措施需要在工程实践中根据具体情况进行合理选择和应用,并定期进行维护和管理,以确保其长期有效性。
分层防砂工艺技术的应用将为河流、河口、港口等水域的可持续发展提供重要支持。
防砂⽅法防砂⽅法⼀、项⽬简介防砂管结构:精密复合防砂筛管具有防砂效果好,结构简单、使⽤时效长、渗流⾯积⼤、出油率⾼、作业⽅便等特点。
该产品从内到外由中⼼管、防砂过滤套、不锈钢外保护套等组成。
中⼼管采⽤API标准套管或油管,防砂过滤套可分别⽤⾦属丝编织⽅孔⽹、⾦属丝编织密纹⽹,也可根据实际技术要求为⽤户设计过滤⾯积⼤,可⾃洁、不宜堵塞的滤材结构。
产品可⽤于各类油、⽓、⽔井的防砂,以达到保护井下及地⾯设备的⽬的,提⾼出油率延长油井的使⽤寿命。
性能特点:这种筛管具有极佳的整体强度和抗变形能⼒。
空隙度最⾼可达90%,抗堵塞能⼒强,渗透率⾼、耐⾼温、抗腐蚀、防砂范围⼴,适⽤于各种不同油层。
有效的控制砂的粒径,过滤效率达99.5%.。
使⽤性能可靠,是机械防砂领域中的⾼新技术之⼀。
⼆、以准噶尔盆地出砂分布情况为例予以简要说明浅层稠油藏处于准噶尔盆地西北缘油⽓富集区,属砂岩油藏,由于地层本⾝结构疏松,加上采取的注⾼温⾼压蒸汽的强采⽅式,致使在油⽥开发的同时就伴随着不同程度的出砂,随着开发的延续,出砂井⽇益增多,出砂情况也更趋复杂、加剧。
油井出砂致使油井⽣产周期缩短,油井产量⼤减,甚⾄造成油井停产、报废,严重制约了油井潜能的充分发挥,同时也使开采设备、地⾯⼯艺情况迅速恶化,严重影响了油⽥的⾼效稳产。
三、机械防砂⼯艺应⽤现状1、防砂技术现状及应⽤情况对于出砂油藏,防砂是油⽓藏开采不可缺少的环节,对原油的稳定开采起着重要的作⽤。
进⼊20世纪90年代以来,随着加⼯⼯艺的不断进步以及防砂认识的深化,积极研发出了⼤量的新⼯艺、新⽅法,特别是在机械防砂⽅⾯,取得飞速的发展。
由于机械防砂较化学防砂价格便宜,且对地层⽆污染,⽬前国内外防砂是以机械防砂为主。
浅层稠油所采⽤的机械防砂⼯艺按挡砂程度的不同可分为:机械防砂⼯艺和机械排砂⼯艺。
1.1、机械防砂⼯艺(1)砾⽯充填防砂:将筛管下⼊井内后,⽤⾼渗透砾⽯充填于筛管和套管的环空之间,有的还将⼀部分砾⽯通过射孔孔眼挤⼊周围地层中,形成多级过滤屏障,阻⽌油井出砂。
机械防砂工艺油水井机械防砂是在井内下入各种类型的防砂管柱,如割缝衬管、绕丝筛管、滤砂管、双层或多层筛管等,将地层砂砾阻挡在防砂管柱外。
为防止地层泥砂堵塞防砂管柱,可在防砂管柱外充填砾石,使地层结构保持相对稳定,以提高防砂效果、延长防砂有效期。
1管内绕丝筛管砾石充填防砂工艺1.1原理管内绕丝筛管砾石充填防砂工艺,是先将地面预制好的绕丝筛管和井下配套工具依次下入井内,使绕丝筛管对准出砂层位,然后用携砂液携带一定粒度的砾石向地层、炮眼及筛管与套管环空填充,如图1所示。
或先对地层和炮眼填砂,再下充填管柱对环形空间充填砾石。
充填砾石对地层砂形成挡砂屏障,绕丝筛管则使充填的砾石始终保持在防砂井段,确保挡砂屏障的形成,因此砾石粒度与地层砂粒度、绕丝筛管缝隙应有一定的对应关系,即选择的砾石必须能完全挡住地层砂。
图1套管内砾石充填图2金属绕丝筛管1.2砾石充填设计1.2.1砾石设计砾石设计主要是确定砾石的大小、几何形状及化学成分。
砾石粒径大小根据冲砂作业时采集的地层砂样来确定,通过砂样筛析,绘出S型筛析曲线,求出地层砂粒度中值d50,并根据砾石尺寸计算方法求得砾石粒度中值D50,然后圆整得标准工业砾石直径。
目前现场普遍应用sauder计算方法,即D50=(5~6)d50,这样的砾石不仅能阻止地层砂的流动,还能在生产过程中保持最大的有效渗透率。
为满足防砂作业需要,除控制砾石尺寸外,充填砾石还应满足以下要求:强度大,不易被压碎;颗粒均匀,圆度好;杂质含量少,不易堵塞地层。
目前,国内防砂用砾石仍以石英砂为主,材料来源较广,而且无需经过复杂的加工处理即可使用。
1.2.2筛管设计绕丝筛管是将不锈钢丝或窄铜条缠绕在中心管上,然后焊接而成,其腐蚀和磨损小、强度高、产能系数大。
中心管可用打孔管,也可用割缝衬管,如图2所示。
筛管绕丝缝隙宽度的大小,可根据地层砂粒径大小而定,原则上要求筛缝尺寸为充填砾石粒度中值的。
1/2~2/3,即δ=(1/2~2/3)D50筛管直径设计主要考虑两方面的因素:过流面积与充填层径向厚度。
技术总结——防砂工艺概述一、油、气井出砂危害油、气井出砂是石油开采遇到的重要问题之一。
如果砂害得不到治理,油、气井出砂会越来越严重,致使出砂油、气井不能有效的开发。
出砂的危害主要表现在以下三个方面:1.减产或停产作业2.地面和井下设备磨蚀3.套管损坏、油井报废二、油、气井出砂机理地层出砂没有明显的深度界限,一般来说,地层应力超过地层强度就有可能出砂。
地层强度决定于地层胶结物的胶结力、圈闭内流体的粘着力、地层颗粒物之间的摩擦力以及地层颗粒本身的重力。
地层应力包括地层结构应力、上覆压力、流体流动时对地层颗粒施加的推拽力,还有地层空隙压力和生产压差形成的作用力。
由此可见,地层出砂是又多种因素决定的。
主要可以分为先天原因和开发原因。
1.先天性原因先天性原因是指砂岩地层的地质条件,也就是砂岩地层含有胶结矿物数量的多少、类型的不同和分布规律的差异,再加上地质年代的因素,就形成了砂岩油、气藏不同的胶结强度。
一般来说,胶结矿物数量多,类型好,分布均匀,地质年代早,砂岩油、气藏的胶结强度就大,反之就小。
2.开发因素人为的开发因素造成油、气井出砂。
这些因素有的可以避免,有的不可能避免。
不恰当的开采速度以及采油速度的突然变化,落后的开采技术,低质量和频繁的修井作业,设计不良的酸化作业和不科学的生产管理等造成油气井出砂,这些都应当尽可能避免。
随着油、气田开发期延续,油、气层压力自然下降,储层砂岩体承载砂砾的负荷逐渐增加,致使砂砾间的应力平衡破坏,胶结破坏,造成地层出砂,这种出砂不可避免。
三、防砂方法分类传统的防砂方法主要有以下几种:1.砂拱防砂2.机械防砂3.化学防砂4.焦化防砂目前我们渤海地区采用的主要是机械防砂。
机械防砂一般分为两类,一类是下入预充填防砂管柱挡砂。
这种防砂方法简便易行,但效果差,寿命短。
原因是防砂管柱的缝隙或孔隙易被进入井筒的细地层砂所堵塞。
另一类是下入防砂管柱后再进行充填,充填材料一般是砾石。
这种防砂方法能有效的把地层砂限制在地层内,并能使地层保持稳定的力学结构,防砂效果好,寿命长。
常用防砂工艺技术浅析作者:杨燕来源:《商情》2014年第33期论述了绕丝筛管砾石充填、预充填双层绕丝筛管、粉末冶金滤砂管、金属棉砂管及预充填双层割缝管防砂工艺技术与应用原油开采防砂艺技术在众多增产措施中,防止油层出砂成为维护油田正常开采的一项重要措施,随着油田的开发,防砂工艺技术不断发展,一些常用防砂艺技术得以推广应用,并见到良好效果。
1绕丝筛管砾石充填防砂工艺1.1绕丝筛管砾石充填防砂技术原理及其特点绕丝筛管砾石充填防砂是利用选定缝隙尺寸的绕丝筛管下入油井,正对出砂油层。
然后在筛管周围填充一定粒度的砾石,形成一个二级拦截过滤体系。
充填砾石被阻挡在绕丝筛管周围,地层砂又被充填的砾石阻挡,留在油层。
而油层液体可以通过渗透性极好的砾石充真假支和流通面积极大的筛隙进入油井,使油井既能保证高产又能防止油层出砂。
防砂效果的好坏决定于充填层形成的质量,因为绕丝筛管缝隙较一般地层砂大,只能阻挡选定的充填砾石,而地层砂是靠充填层阻挡。
根据油层砂粒度中值大小,选用缝隙为0.3毫米绕丝筛管和粒度为0.4-0.8毫米的充填石英砂。
该方法具有防砂成功率高、有效期长、适应性强的特点,但由于它不能分层施工,动态监测困难,油井进入高含水后不利于采取堵水或其他措施,而且后期处理较困难等问题,使该方法油田高含水开发期的使用受到一定的限制。
1.2绕丝筛管砾石充填防砂适应条件适用于井斜小于45度,套管无变形破损,油井射孔井段一般小于30米;原油粘度小于3000毫帕.秒;日产液量大于15吨,含水小于90%的油井;至少一年内不进行油层改造或分层措施;注蒸汽井一般要求先注汽后再进行绕丝筛管砾石充填防砂。
1.3绕丝筛管砾石充填防砂应用情况及效果绕丝筛管砾石充填防砂工艺是国内外应用最广泛的一种机械防砂工艺技术,该技术自1980年代初从国外引入,经过十几年的不断改进和完善,已形成了一个综合配套工艺技术。
该技术具有防砂成功率高、有效期长、适用范围广的特点,是目前一种最为有效的防砂方法。
树脂胶结防砂工艺树脂胶结防砂工艺是向地层内注入一定数量的树脂溶液,依靠地层温度及固化剂的作用,将近井地带疏松地层胶结成具有一定强度和渗透率的人工井壁,从而阻止地层出砂的一种化学防砂方法。
1酚醛树脂防砂1.1原理酚醛树脂防砂是以苯酚、甲醛为主料,用烧碱作催化剂,经高温聚合反应生成棕褐色高分子酚醛树脂溶液,将此溶液与一定浓度的盐酸(固化剂)按比例混合后挤入地层,即变成热固性的酚醛树脂。
固化后的酚醛树脂具有一定的强度和渗透性,并具有良好的粘结性能,在井壁周围形成一道既能出油、出气、注水,又能阻挡地层砂砾的人工井壁,防止油水井出砂。
1.2材料配方1.2.1树脂溶液配方与合成方法苯酚:苯酚:烧碱=100:150:1.5(质量比)苯酚浓度:98%~100%,甲醛浓度:40%,烧碱纯度:98%~100%将一定量的苯酚、苯酚按比例混合于反应金中,缓慢间接加热并反复搅拌至沸腾(切忌用火直接加热,可用水或蒸汽作传热介质)。
再按比例加入烧碱反应1小时左右(温度保持在95~100℃之间),即可得到合格的酚醛树脂溶液。
1.2.2树脂胶结剂配方酚醛树脂溶液(12%~14%):盐酸=1:1(体积比)1.3主要技术指标1.3.1酚醛树脂溶液(1)深褐色粘性透明液体;(2)密度1.15~1.17g/cm3,粘度60~150mpa.s;(3)游离水含量不大于5%,游离盼含量应小于2.5%;(4)在25℃左右存放2~3个月,无脱水、胶凝、分层现象。
1.3.2酚醛树脂胶结剂酚醛树脂溶液与浓度为12%盐酸溶液混合后形成的固化树脂,技术指标如表1所示:表1酚醛树脂胶结剂主要技术指标稠化时间min 固化时间min抗压强度Mpa抗折强度Mpa抗拉强度Mpa孔隙度%渗透率μm2常温常压30~606020~258~102~430~40500~800压力10Mpa30~3520~2510~150不同浓度盐酸对酚醛树脂促凝作用如图1所示。
图1盐酸浓度对树脂固化时间的影响1.4用法与用量酚醛树脂溶液与浓度为12%的盐酸溶液按1:1的体积比配料,在地面混合均匀后挤入地层,挤封半径一般为0.6~0.7m。
防砂工艺技术防砂工艺技术主要是指在建筑、工程施工和土地治理等领域,采取一系列措施防止沙尘飞扬、泥石流等问题的技术手段。
下面将就防砂工艺技术进行一些简要的介绍。
首先,对于建筑施工领域来说,沙尘飞扬是一个普遍存在的问题。
为了防止沙尘飞扬对施工环境和劳动者健康的影响,可以采取一些防砂措施。
比如,在施工现场周围搭建围挡或围墙,用来防止风吹起大量扬尘;在易飞扬的地面上喷洒水雾,增加湿度,减少沙尘产生;使用喷雾装置,在施工过程中不断喷洒水雾,降低尘埃浓度;对于特别封闭的作业环境可以使用负压封闭作业,通过防止尘埃外泄来保护施工场地和劳动者的健康。
其次,对于土地治理领域来说,需要防止沙尘飞扬和泥石流等问题的发生。
在沙漠化地区或被侵蚀严重的地区,可以采取种植固沙植物的方法,通过植被的根系固定土壤,减少土壤侵蚀。
同时,还可以采取修建拦沙坝,截流沙漠化区域的流沙;修建护坡和固沙网,增加土壤的稳定性和抗侵蚀能力;进行人工造林,增加植被覆盖率,减少水土流失等措施来达到防砂的目的。
另外,在工程施工中,针对泥石流的防治也是非常重要的。
泥石流是一种水土流失严重,有强大破坏力的自然灾害。
为了防止泥石流对工程的影响,可以采取一些防砂工艺技术。
比如,在泥石流源头和河道下游修建拦砂坝和拦石坝,可以有效阻挡泥沙和石块的运移;在施工地点开展泥石流防治工作,包括加固边坡、设置拦截设施等;利用提前警报系统,对泥石流进行监测和预警,以减少对工程的影响。
总之,防砂工艺技术在建筑、工程施工和土地治理等领域起到了重要的作用。
通过合理的防砂工艺措施的采取,不仅可以保护环境,减少资源的浪费,还可以维护施工人员和周围居民的身体健康。
因此,加强防砂工艺技术的研究和应用,对于实现可持续发展具有重要意义。