SPSS因子分析实例操作步骤
- 格式:doc
- 大小:718.00 KB
- 文档页数:12
spss因子分析案例在进行SPSS因子分析时,我们通常遵循以下步骤:数据准备、因子提取、因子旋转、因子得分和结果解释。
下面是一个因子分析的案例,展示了如何使用SPSS软件进行这一统计分析。
首先,我们需要准备数据。
这通常涉及收集问卷调查数据,其中包含多个项目或变量,这些变量被认为是潜在因子的指标。
在SPSS中,数据应该以数据集的形式输入,每个变量代表一个问卷项目,每个案例代表一个受访者的回答。
接下来,我们进行因子提取。
在SPSS中,我们可以通过“分析”菜单选择“降维”然后选择“因子”来开始因子分析。
在因子分析对话框中,我们需要指定分析的变量,并决定提取因子的方法。
常见的提取方法包括主成分分析和最大似然法。
此外,我们还需要决定因子提取的标准,如特征值大于1的规则或基于特定比例的方差提取。
因子提取后,我们通常需要进行因子旋转。
旋转的目的是使因子结构更加清晰,便于解释。
SPSS提供了多种旋转方法,如正交旋转(如Varimax)和斜交旋转(如Promax)。
旋转后,每个变量的因子载荷(即变量与因子的相关系数)将被重新估计。
然后,我们可以计算因子得分。
因子得分是每个受访者在每个因子上的估计得分,它可以帮助我们了解每个受访者在潜在因子上的位置。
在SPSS中,可以通过“保存”选项来保存因子得分,以便进一步分析。
最后,我们需要解释因子分析的结果。
这包括解释每个因子的含义,以及哪些变量与每个因子最相关。
我们可以通过查看因子载荷矩阵来完成这一步骤。
通常,载荷值较高的变量被认为是该因子的良好指标。
在实际应用中,因子分析可以帮助我们识别数据中的潜在结构,简化数据集,并为进一步的分析提供基础。
例如,在市场研究中,因子分析可以用来识别消费者行为的潜在维度,从而帮助企业更好地理解其客户群体。
通过上述步骤,我们可以使用SPSS软件有效地进行因子分析,从而揭示数据背后的潜在结构,并为决策提供支持。
如何利用SPSS做因子分析等分析SPSS是一款强大的统计分析软件,可以用于各种数据分析任务,包括因子分析。
因子分析是一种用于探究观测变量之间关系的统计方法,它可以帮助我们理解数据集中不同变量之间的相关性和结构。
下面是一个简要的关于如何利用SPSS进行因子分析的步骤:1.准备数据首先,需要确保将数据整理成适合因子分析的格式。
确保数据集中的变量是连续型变量,并且不存在缺失值。
如果存在缺失值,需要进行数据处理或进行数据填充。
2.导入数据打开SPSS软件,然后依次选择“File”、“Open”来导入数据文件。
选择正确的文件路径和文件名,然后点击“打开”按钮。
3.创建因子分析模型选择“Analyze”菜单下的“Dimension Reduction”子菜单,然后选择“Factor”。
将需要进行因子分析的变量移至右侧的“Variables”框中,然后点击“OK”按钮。
4.选择因子提取方法5.设置因子提取参数出现因子提取对话框后,可以选择提取的因子数目和提取标准。
默认情况下,SPSS会提取所有可能的因子。
也可以根据实际需要进行调整。
完成设置后,点击“Continue”按钮。
6.选择因子旋转方法因子旋转可帮助我们更好地理解因子结构。
在因子分析向导的旋转选项中,可以选择旋转方法,如正交旋转和斜交旋转等。
选择一个适合你的需求的旋转方法,然后点击“Rotation”按钮。
7.设置旋转参数出现旋转参数对话框后,可以选择旋转的方法和旋转的标准。
默认情况下,SPSS会选择最大方差法和标准负荷量,但你可以根据需要进行调整。
完成设置后,点击“Continue”按钮。
8.检查结果在因子分析向导的“Descriptives”选项中,可以查看因子提取和旋转后的结果。
这些结果包括因子载荷矩阵、公因子方差和解释方差等信息。
仔细检查结果,确保它们符合你的预期。
9.解释结果在进行因子分析后,需要解释因子载荷矩阵以及其他统计结果。
因子载荷矩阵可以告诉你每个变量与每个因子之间的关系。
SPSS因子分析实例操作步骤实验目的:引入2003~2013年全国的农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业7个产业的投资值作为变量,来研究其对全国总固定投资的影响。
实验变量:以年份,合计(单位:千亿元),农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业作为变量。
实验方法:因子分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.数据标准化:在最上面菜单里面选中Analyze——Descriptive Statistics——OK (变量选择除年份、合计以外的所有变量).2.降维:在最上面菜单里面选中Analyze——Dimension Reduction——Factor ,变量选择标准化后的数据.3.点击右侧Descriptive,勾选Correlation Matrix选项组中的Coefficients和KMO and Bartlett’s text of sphericity,点击Continue.4.点击右侧Extraction,勾选Scree Plot和fixed number with factors,默认3个,点击Continue.5.点击右侧Rotation,勾选Method选项组中的Varimax;勾选Display选项组中的Loding Plot(s);点击Continue.6.点击右侧Scores,勾选Method选项组中的Regression;勾选Display factor score coefficient matrix;点击Continue.7.点击右侧Options,勾选Coefficient Display Format选项组中所有选项,将Absolute value blow改为0.60,点击Continue.8.返回主对话框,单击OK.输出结果分析:1.描述性统计量Descriptive StatisticsN Minimum Maximum Mean Std. Deviation农、林、牧、渔业11 3.27 9.73 7.6645 1.97515采矿业11 .6 9.5 5.008 2.7092制造业11 .44 7.07 2.6900 2.22405电力、热力、燃气及水生产和11 3.36 15.05 10.3545 3.22751供应业建筑业11 1.79 23.51 7.8955 6.18302批发和零售业11 2.10 18.52 9.1018 5.50553交通运输、仓储和邮政业11 .82 8.39 2.7891 2.20903Valid N (listwise) 11该表提供分析过程中包含的统计量,表格显示了样本容量以及11个变量的最小值、最大值、平均值、标准差。
spss因子分析案例SPSS因子分析是一种用于探索或验证潜在结构的数据分析方法。
它将一组观测变量分解为几个潜在变量(或因子),以便更好地理解这些变量之间的关系。
假设我们有一个数据集,其中包含了一些心理测量量表的数据。
我们对这些测量量表进行因子分析,以了解是否可以将它们归类为几个互相关联的潜在因子。
我们将使用SPSS进行因子分析。
首先,我们打开SPSS,并加载数据集。
然后,我们选择'Analyze'菜单下的'Dimension Reduction',再选择'Factor'。
在'Factor'对话框中,我们将选择要进行因子分析的测量量表变量,并将它们添加到'Variables'框中。
然后,我们单击'Extraction'选项卡。
在'Extraction'选项卡中,我们需要选择一个因子抽取方法。
常用的方法包括主成分分析和最大似然估计。
在本例中,我们选择最大似然估计。
然后,我们单击'Rotation'选项卡。
因子旋转是为了使因子之间更易解释。
我们可以选择'Varimax'或'Promax'旋转方法。
在本例中,我们选择'Varimax'。
接下来,我们单击'Summary'选项卡,然后单击'Continue'。
最后,我们单击'OK'按钮开始进行因子分析。
SPSS将计算因子分析,并提供一个结果表。
在结果表中,我们可以看到每个测量量表变量在每个因子上的载荷值。
载荷值表示变量与因子之间的关联强度。
我们还可以看到每个因子的解释方差比例。
这个比例表示每个因子解释了多大比例的变量的方差。
我们希望尽可能多的方差被解释,以便更好地理解数据。
此外,结果表还提供了每个因子的特征值。
特征值表示因子的重要性,越大的特征值表示该因子在解释数据中起到更重要的作用。
因子分析SPSS操作因子分析是一种多变量统计方法,旨在发现潜在的结构和相关性,以便简化数据集并解释变量之间的关系。
SPSS(统计软件包社会科学)是一种广泛使用的统计软件,可以帮助研究人员进行因子分析。
在SPSS中进行因子分析的步骤如下:1.数据准备:-确保数据集已经导入到SPSS中。
-检查和清洗数据,确保数据完整、准确,并且符合因子分析的前提条件。
2.因子分析模型:- 打开SPSS软件并选择“Analyze”菜单。
- 从下拉菜单中选择“Dimension Reduction”>“Factor Analysis”。
3.变量选择:- 从左侧的变量列表中选择要进行因子分析的变量,并将它们移动到右侧的“Variables”框中。
-这些变量应该是连续变量,而非分类变量。
4.因子提取:- 在“Factor Analysis”对话框的“Extraction”选项卡中选择因子提取方法。
- 确定要提取的因子数量。
可以使用Kaiser标准(主成分分析时为特征值大于1)或Scree Plot来指导因子数量的选择。
5.因子旋转:- 进入“Rotation”选项卡,选择适当的因子旋转方法。
- 常用的方法包括Varimax、Promax、Quartimax等。
-因子旋转的目标是最大化因子载荷的简单性和解释性。
6.结果解释:-在因子分析的结果中,可以查看各个变量的因子载荷矩阵,它描述了每个变量在每个因子上的影响程度。
-可以选择将因子载荷阈值设置为一定值,以便筛选出具有较高负载的变量。
-查看每个因子的解释方差,以了解它们对原始变量的解释程度。
7.结果可视化:-可以使用SPSS的图表功能来可视化因子分析结果。
-比如,可以绘制因子载荷矩阵的热图,用不同颜色表示不同的负载水平。
-还可以绘制因子解释方差的条形图,以比较每个因子的贡献程度。
需要注意的是,因子分析在使用时需要考虑以下几点:-样本量必须足够大,一般建议至少大于观测变量数的10倍。
利用SPSS进行因子分析(R型)【例】与主成分分析的数据相同:全国30个省市的8项经济指标。
因子模型是一个封闭方程,通常采用主成分求解,称为“主因解”。
上次讲述的“利用SPSS进行主成分分析”的过程,实际上是因子分析的第一步。
在主成分分析基础上,加上因子旋转,就可完成基于主成分分析的所谓因子分析。
当然也可通过另外的途径进行因子分析,在此暂不涉及。
第一步:录入或调入数据(见图1)。
图1 录入工作表中的原始数据第二步,进行主成分分析(参见主成分分析部分,在此从略)。
第三步,因子正交旋转的系统设置。
沿着主菜单的“Analyze→Data Reduction→Factor…”路径打开因子分析选项框(图2),完成主成分分析的设置或过程以后,单击Rotation(旋转)按钮,打开“Factor Analysis: Rotation”(因子分析:旋转)选项单(图3),在Method(方法)栏中选中Varimax(方差极大正交旋转)复选项,此时Display(展示)栏中的RotatedSolution(旋转解)将被激活为系统默认态,选中Loading Plot(s)(载荷图)复选项,将会在输出结果中给出因子载荷图式。
注意此时的Maximum Iterations for Convergence(迭代收敛的最大次数)为系统默认的25次,如果数据变量较多或样本较大,经过25次迭代可能计算过程仍然未能收敛,需要改为50次、100次乃至更多,否则SPSS无法给出计算结果。
迭代次数越多,计算时间也就越长。
在多数情况下,不足25次迭代计算过程就会收敛。
图2 因子分析选项框图3 因子旋转对话框注意:与上述Maximum Iterations for Convergence(迭代收敛的最大次数)有关的设置是Extraction(提取)对话框中的迭代次数设置(图4),如果今后工作中修改了图3所示的迭代次数仍然未能给出结果,那就意味着图4所示的迭代次数设置没有增加;反过来也是一样。
利用SPSS进行因子分析(R型)【例】与主成分分析的数据相同:全国30个省市的8项经济指标。
因子模型是一个封闭方程,通常采用主成分求解,称为“主因解”。
上次讲述的“利用SPSS进行主成分分析”的过程,实际上是因子分析的第一步。
在主成分分析基础上,加上因子旋转,就可完成基于主成分分析的所谓因子分析。
当然也可通过另外的途径进行因子分析,在此暂不涉及。
第一步:录入或调入数据(见图1)。
图1 录入工作表中的原始数据第二步,进行主成分分析(参见主成分分析部分,在此从略)。
第三步,因子正交旋转的系统设置。
沿着主菜单的“Analyze→Data Reduction→Factor…”路径打开因子分析选项框(图2),完成主成分分析的设置或过程以后,单击Rotation(旋转)按钮,打开“Factor Analysis: Rotation”(因子分析:旋转)选项单(图3),在Method(方法)栏中选中Varimax(方差极大正交旋转)复选项,此时Display(展示)栏中的Rotated Solution(旋转解)将被激活为系统默认态,选中Loading Plot(s)(载荷图)复选项,将会在输出结果中给出因子载荷图式。
注意此时的Maximum Iterations for Convergence(迭代收敛的最大次数)为系统默认的25次,如果数据变量较多或样本较大,经过25次迭代可能计算过程仍然未能收敛,需要改为50次、100次乃至更多,否则SPSS无法给出计算结果。
迭代次数越多,计算时间也就越长。
在多数情况下,不足25次迭代计算过程就会收敛。
图2 因子分析选项框图3 因子旋转对话框注意:与上述Maximum Iterations for Convergence(迭代收敛的最大次数)有关的设置是Extraction(提取)对话框中的迭代次数设置(图4),如果今后工作中修改了图3所示的迭代次数仍然未能给出结果,那就意味着图4所示的迭代次数设置没有增加;反过来也是一样。
SPS咽子分析实例操作步骤实验目的:弓I入2003~201部全国的农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业7个产业的投资值作为变量,来研究其对全国总固定投资的影响。
实验变量:以年份,合计(单位:千亿元),农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业作为变量。
实验方法:因子分析法软件:spss19.0 操作过程:第一步:导入Excel数据文件1. open data document ------- o pen data ------- o pen;2. Opening excel data source OK.2. ------------------------------------------------------------- 降维:在最上面菜单里面选中Analyze ------------------------------------------ Dimension Reduction Factor ,变量选择标准化后的数据.3. 点击右侧 Descriptive ,勾选Correlation Matrix 选项组中的Coefficients 和 KMO and Bartlett ' s text of sphericity, 点击 Continue.Factor Anafysas; Descriptive'S-St^ tistics -------------------------------------------■ ■□■■■■■Man ■>^■■■■1 m ■■■ im ■■■■MBIII ■■ ■■■ nMBiinai ■■■ ma ・・・□ ^Univariate descriptiveshf li” ii-tliliRtlli iiiar-llii M III ■—Bllimi Hi nill^Q Initial sotuSon Correlation Matrix R CoefTidentsE Inv&rssU Signmcance leveisU Reproduced :Determinant[. _■ Ant -imageV KMO and Bartlett's t&st of sphericity[continue [ Can 用][ Help J4. 点击右侧 Extraction, 勾选 Scree Plot 和 fixed number with factors 默认3个,点击Continue.5. 点击右侧Rotation ,勾选Method选项组中的Varimax;勾选Display 选项组中的Loding Plot(s);点击Continue.6. 点击右侧Scores,勾选Method选项组中的Regression ;勾选Display factor score coefficient matrix ; 点击Continue.刮Factor Analysis: Factor Scores1/沧a用as variables IHM ■■■■KII ■■■ ■■ IMethod •-i(o-1Regression] © BartlettO Anderson-Rubin, Oi&pla/fader score Meffieiert matrix[cortinue -Cancel Help■—一』. _ • _ - 一」7. 点击右侧Options,勾选Coefficient Display Format 选项组中所有选项,将Absolute value blow 改为0.60 ,点击Continue.8. 返回主对话框,单击OK.输出结果分析:1.描述性统计量Descriptive Statistics该表提供分析过程中包含的统计量,表格显示了样本容量以及11个变量的最小值、最大值、平均值、标准差。
使用SPSS软件进行因子分析和聚类分析的方法随着统计分析软件的进步,SPSS(Statistical Package for the Social Sciences)软件作为一款功能强大、易于使用的统计分析工具受到广泛欢迎。
它能援助探究人员进行各种统计分析,其中包括因子分析和聚类分析。
本文将介绍如何使用SPSS软件进行因子分析和聚类分析,并针对每个分析方法提供详尽步骤和操作示例。
一、因子分析因子分析是一种常用的统计方法,在数据维度缩减和相关变量结构分析方面具有广泛的应用。
以下是使用SPSS软件进行因子分析的步骤:1. 数据筹办起首,需要将原始数据导入SPSS软件中。
可以通过选择“文件”>“打开”>“数据”,然后选择合适的数据文件进行导入。
确保数据是以矩阵的形式存储,每个变量占据一列,每个观察单位占据一行。
2. 因子分析设置在SPSS软件中,选择“分析”>“数据筹办”>“特殊分析”>“因子”。
在弹出的对话框中,选择需要进行因子分析的变量,将它们挪动到“因子”框中。
然后,选择所需的因子提取方法(如主成分分析或因子分析),并指定所需的因子个数。
可以选择默认值,也可以依据实际需求进行调整。
3. 统计输出完成因子分析设置后,点击“确定”按钮开始分析。
SPSS软件将生成一个因子分析结果报告。
报告中将包含因子载荷矩阵、特征值、诠释的方差比例等统计指标。
通过这些指标,可以对变量和因子之间的干系、每个因子的诠释能力进行分析。
4. 结果解读对于因子载荷矩阵,可以依据因子载荷的大小来裁定变量与因子之间的干系。
一般来说,载荷肯定值大于0.3的变量与因子之间具有显著关联。
诠释的方差比例表示每个因子能够诠释变量总方差的比例,一般来说,越大越好。
在解读结果时,需要综合思量因子载荷和诠释的方差比例。
二、聚类分析聚类分析是一种用于数据分类的统计方法。
它依据观测值之间的相似性将数据对象分组到不同的类别中。
SPSS因子分析实例操作步骤实验目的:引入2003~2013年全国的农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业7个产业的投资值作为变量,来研究其对全国总固定投资的影响。
实验变量:以年份,合计(单位:千亿元),农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业作为变量。
实验方法:因子分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.数据标准化:在最上面菜单里面选中Analyze——Descriptive Statistics——OK (变量选择除年份、合计以外的所有变量).2.降维:在最上面菜单里面选中Analyze——DimensionReduction——Factor ,变量选择标准化后的数据.3.点击右侧Descriptive,勾选Correlation Matrix选项组中的Coefficients和KMO and Bartlett’s text of sphericity,点击Continue.4.点击右侧Extraction,勾选Scree Plot和fixed number with factors,默认3个,点击Continue.5.点击右侧Rotation,勾选Method选项组中的Varimax;勾选Display选项组中的Loding Plot(s);点击Continue.6.点击右侧Scores,勾选Method选项组中的Regression;勾选Display factor score coefficient matrix;点击Continue.7.点击右侧Options,勾选Coefficient Display Format选项组中所有选项,将Absolute value blow改为0.60,点击Continue.8.返回主对话框,单击OK.输出结果分析:1.描述性统计量Descriptive StatisticsN Minimum Maximum Mean Std. Deviation农、林、牧、渔业11 3.27 9.73 7.6645 1.97515采矿业11 .6 9.5 5.008 2.7092制造业11 .44 7.07 2.6900 2.22405电力、热力、燃气及水生产和11 3.36 15.05 10.3545 3.22751供应业建筑业11 1.79 23.51 7.8955 6.18302批发和零售业11 2.10 18.52 9.1018 5.50553交通运输、仓储和邮政业11 .82 8.39 2.7891 2.20903Valid N (listwise) 11该表提供分析过程中包含的统计量,表格显示了样本容量以及11个变量的最小值、最大值、平均值、标准差。
2.KMO和球形Bartlett检验KMO and Bartlett's TestKaiser-Meyer-Olkin Measure of Sampling Adequacy. .744Bartlett's Test of Sphericity Approx. Chi-Square 97.122df 21Sig. .000该表给出了因子分析的KMO和Bartlett检验结果。
从表中可以看出,Bartlett球度检验的概率p值为0.000,即假设被拒绝,也就是说,可以认为相关系数矩阵与单位矩阵有显著差异。
同时,KMO值为0.744,根据KMO度量标准可知,原变量适合进行因子分析。
3.因子分析的共同度CommunalitiesInitial ExtractionZscore(农、林、牧、渔业) 1.000 .883Zscore: 采矿业 1.000 .741Zscore: 制造业 1.000 .974Zscore(电力、热力、燃气及水生产和供应业)1.000 .992Zscore: 建筑业 1.000 .987Zscore(批发和零售业) 1.000 .965Zscore(交通运输、仓储和邮政业)1.000 .935Extraction Method: Principal Component Analysis.表格所示是因子分析的共同度。
表格第二列显示初始共同度,全部为1.000;第三列是按照提取3个公因子得到的共同度,可以看到只有“采矿业”的共同度稍低,说明其信息丢失量稍严重。
4.因子分析的总方差解释Total Variance ExplainedComp onentInitial EigenvaluesExtraction Sums of SquaredLoadings Rotation Sums of Squared Loadings Total% ofVarianceCumulative% Total% ofVarianceCumulative% Total% ofVarianceCumulative%1 3.079 43.992 43.992 3.079 43.992 43.992 2.660 37.999 37.9992 2.353 33.608 77.600 2.353 33.608 77.600 2.346 33.517 71.5163 1.046 14.941 92.541 1.046 14.941 92.541 1.472 21.025 92.5414 .413 5.905 98.4465 .098 1.399 99.8456 .011 .152 99.9977 .000 .003 100.000Extraction Method: Principal Component Analysis.该表由3部分组成,分别为初始因子解的方差解释、提取因子解的方差解释和旋转因子解的方差解释。
个因子的特征跟都很大,从第四个开始,因子的特征根都小于一,且连线变得较平缓,及前三个因子对解释变量的贡献最大, 6. 旋转前的因子载荷矩阵该表空白处表示相应载荷小于0.3。
因子载荷矩阵中给出每一个变量在三个因子上的载荷。
在旋转前的载荷矩阵中所有变量在第一个因子上的载荷都较高,即与第一个因子的相关程度较高,第一个因子解释了大部分变量的信息;而后面两个因子与原始变量的相关程度较小,对原始变量的解释效果不明显,没有旋转的因子的含义很难解释。
7. 旋转后的因子载荷矩阵Rotated Component Matrix aComponent123Zscore(农、林、牧、渔业) .899Zscore(交通运输、仓储和邮政业) -.716 -.3.41Zscore: 采 矿 业.771 .352 Zscore(电力、热力、燃气及水生产和供应业).749.440.441Zscore: 建 筑 业 .985Zscore(批发和零售业).961Component Matrix aComponent123Zscore(电力、热力、燃气及水生产和供应业).871Zscore(交通运输、仓储和邮政业) -.860 Zscore: 采 矿 业 .857 Zscore(农、林、牧、渔业) .704 Zscore(批发和零售业) .726 .569 Zscore: 建 筑 业 .687 .364 Zscore: 制 造 业.600.793Extraction Method: Principal Component Analysis. a. 3 components extracted.Zscore: 制造业 .873Extraction Method: Principal Component Analysis.Rotation Method: Varimax with Kaiser Normalization.该表空白处表示相应载荷小于0.3。
因子载荷矩阵中给出每一个变量在三个因子上的载荷。
在旋转后的载荷矩阵中可以看出,与第一产业相关的产业在第一个因子上的载荷较高,与第二产业相关的产业在第二个因子上的载荷较高,与第三产业相关的产业在第三个因子上的载荷较高。
和没旋转相比,因子的含义清楚很多。
8.旋转空间的因子图该图为可以看做是旋转后的载荷矩阵的图形表示。
从图中又一次验证了前面旋转后的载荷矩阵对因子的解释。
8.因子得分系数Component Score Coefficient MatrixComponent1 2 3Zscore(农、林、牧、渔业) .445 .075 -.350Zscore: 采矿业.261 -.054 .093Zscore: 制造业-.180 .008 .761Zscore(电力、热力、燃气及.201 .182 .263水生产和供应业)Zscore: 建筑业-.074 .429 .156Zscore(批发和零售业) .071 .402 -.130Zscore(交通运输、仓储和邮-.322 .204 .050政业)Extraction Method: Principal Component Analysis.Rotation Method: Varimax with Kaiser Normalization.Component Scores.列出了采用回归法估算的因子得分系数,根据表中的内容可以写出因子得分函数F1=0.445*Zscore1+0.261*Zscore2-0.180*Zscore3+0.201*Zscore4-0.074*Zscore 5+0.071*Zscore6-0.322*Zscore7F2=0.075*Zscore1-0.054*Zscore2+0.008*Zscore3+0.182*Zscore4-0.429*Zscore 5+0.402*Zscore6-0.204*Zscore7F3=-0.350*Zscore1+0.093*Zscore2+0.761*Zscore3+0.263*Zscore4+0.156*Zscor e5-0.130*Zscore6+0.050*Zscore7不仅如此,原数据文件中增加了变量FAC_1和FAC_2、FAC_3,表示3个因子在不同年份的得分值。
9.总因子得分及排序附件:原始数据:标准化后的数据:。