第4章 无损数据压缩
- 格式:doc
- 大小:322.50 KB
- 文档页数:18
第1章 多媒体技术概要1.1 多媒体是什么?多媒体是融合两种或者两种以上媒体的一种人-机交互式信息交流和传播媒体。
使用的媒体包括文字、图形、图像、声音、动画和视像(video)。
1.4 无损压缩是什么?无损压缩是用压缩后的数据进展重构(也称复原或解压缩),重构后的数据及原来的数据完全一样的数据压缩技术。
无损压缩用于要求重构的数据及原始数据完全一致的应用,如磁盘文件压缩就是一个应用实例。
根据当前的技术水平,无损压缩算法可把普通文件的数据压缩到原来的1/2~1/4。
常用的无损压缩算法包括哈夫曼编码和LZW 等算法。
1.5 有损压缩是什么?有损压缩是用压缩后的数据进展重构,重构后的数据及原来的数据有所不同,但不影响人对原始资料表达的信息造成误解的数据压缩技术。
有损压缩适用于重构数据不一定非要和原始数据完全一样的应用。
例如,图像、视像和声音数据就可采用有损压缩,因为它们包含的数据往往多于我们的视觉系统和听觉系统所能感受的信息,丢掉一些数据而不至于对图像、视像或声音所表达的意思产生误解。
.711是哪个组织制定的标准?国际电信联盟(ITU)。
1.10 MPEG-1,MPEG-2和MPEG-4是哪个组织制定的标准?ISO/IEC ,即国际标准化组织(ISO)/ 国际电工技术委员会(IEC)。
第2章 无损数据压缩{,,}a b c 是由3个事件组成的集合,计算该集合的决策量。
(分别用Sh ,Nat 和Hart 作单位)。
H 0 = (log 23) Sh = 1.580 Sh= (log e 3) Nat = 1.098 Nat= (log 103) Hart = 0.477 Hart2.2 现有一幅用256级灰度表示的图像,如果每级灰度出现的概率均为()1/256i p x =,0,,255i =,计算这幅图像数据的熵。
22111()()log ()256(log )256256n i i i H X p x p x ==-=-⨯⨯∑=8 (位), 也就是每级灰度的代码就要用8比特,不能再少了。
多媒体通信复习答案第1章概述1.多媒体计算机与普通计算机区别的技术特征多媒体计算机增加了对包括伴音在内的活动图像的处理、存储和显示的能力,解决了停机存储、读取和显示两个时间上紧密相关的数字信号(即伴音信号和图像信号)时,如何在时间上保持同步的问题。
2.多媒体技术的特征是什么?信息媒体的多样化和媒体处理方式的多样化,集成性,交互性,实时性3、多媒体产生的技术背景是什么?多媒体技术产生的技术背景:多媒体数据压缩编码和解码技术;大规模集成电路技术的发展;大容量数字存储技术的发展4、多媒体系统的基本类型是什么?独立商亭式系统多媒体信息检索与查询多媒体会议与协同工作多媒体即时通信点播电视5、三网融合是指哪三网?电话服务的固定和移动通信网提供数据服务的计算机网提供电视服务的广播电视网第2章视觉特征和彩色电视信号1、图像对比度图像相邻区域或相邻点之间的亮度差别,对比度C=Imax/Imin2、视觉阈在给定的某个亮度环境下,人眼刚好(以50%的概率)能够区分两个相邻区域的亮度差别所需要的最低对比度3、对比度灵敏度视觉阀的倒数4、空间频率物理量在单位空间距离内周期性变化的次数fx=dφ(x)/dx5、色度学研究彩色的计量和计算的科学第3章数据压缩1、数据压缩方法分为哪几大类?基于像素的第一代图像压缩编码方法依赖于人类视觉特征的第二代图像压缩编码方法2、信息量I信息多少的量度 I=log(1/p)3、熵H熵实在平均意义上表征信源总体特征的一个物理量 H(X)=5、下取样、上取样下取样:由高取样率的样值去推算低取样率样点数值的技术上取样:由低取样率的样值去估计较高频率的取样点上的数值的技术6、DPCM差分脉冲编码调制简称为DPCM,是对模拟信号幅度抽样的差值进行量化编码的调制方式。
这种方式是用已经过去的抽样值来预测当前的抽样值,对它们的差值进行编码。
7、运动估值的主要方法块匹配方法和像素递归方法8、帧间预测方法有哪些?前向预测后向预测双向预测9、离散余弦变换选择不同的正交基向量,可以得到不同的正交变换。
一、单选题1. A/D 转换器的功能是将―。
A. 声音转换为模拟量B. 模拟量转换为数字量C. 数字量转换为模拟量D. 数字量和模拟量混合处理B2. D/A 转换器的功能是将―。
A. 声音转换为模拟量B. 模拟量转换为数字量C. 数字量转换为模拟量D. 数字量和模拟量混合处理C3. 在多媒体的模拟波形声音数字化时,常采用的标准采样频率为____。
A. 44.1KHzB.88.2KHzC.20KHzD.10KHz4. 标准是用于视频影像和高保真声音的数据压缩标准。
A.MPEGB.PEGC.JPEGA5. 在windows?中,录音机录制的声音文件扩展名是。
A. MIDB.WMAC.AVIB6. ―标准是静态数字图像数据压缩标准。
A. MPEGB.PEGC.JPEGC___ 。
A. 流媒体技术B. 网络信息传输技术C. 媒体技术D. 网络媒体技术 A8. ―是流媒体技术的基础。
A. 数据传输 B.数据压缩 C.数据存储D.数据运算B9. 通常所说的16位声卡的意思是―。
A. 声卡的数据和地址总线都是16位B. 声卡采样后的量化位数是16位C. 声卡信号处理时数据长度是16位D. 声卡采用16位的ISA 接口B10. 多媒体计算机在对声音讯息进行处理时,必须配备的设备室 _____ 。
A. 扫描仪 B.彩色打印机C.音频卡D.数码相机 C11. 以下—不是计算机中使用的声音文件格式。
A. WAVB.MP3C.TIFD.MIDC12. 以下 文件是视频影像文件。
A.MPG B.MP3 C.MID D.GIF第四章A D.JPGD.WAVD.JPG7. 把连续的影视和声音信息经过压缩后,放到网络媒体服务器上, 让用户边下载边收看,这种技术称为13.在goldwave主窗口中,要提高放音音量,应用菜单中的命令。
A.文件B.效果C.编辑D.选项B14.立体声双声道采样频率为44.1KHz,量化位数为8位,一分钟这样的音乐需要的存储量可按—公式计算。
《多媒体技术应用》课后习题及答案2009-12第一章习题一、填空题1.多媒体有、、等几个关键性。
2.多媒体外部设备一般分为系统和系统。
3.静态图素材包括和两大类。
4.多媒体制作分为、、、和五个步骤。
5.人机交互界面设计首先要确立,还应该遵循三个原则,它们是、、。
6.屏幕设计的布局应该遵循、、、和五个原则。
7.数据压缩方法可以分为和两大类。
8.目前已经公布的数据压缩标准有:用于静止图像压缩的标准;用于视频和音频编码的系列标准;用于的H.261、H。
263标准;用于的JBIG标准等。
9.光存储技术是一种通过方法读/写数据的存储技术,一般情况下使用作为光源,所以也可称为存储。
10.目前,可以从两个方面来看多媒体技术的发展方向:一是多媒体在朝着、方向发展;二是多媒体在、领域和发展异常迅速且卓有成效。
二、简答题1.多媒体产品的最大特点是什么?2.多媒体能做什么?3.简述多媒体的制作流程。
4.无损压缩和有损压缩有什么异同?5.什么是光存储技术?第一章习题答案一、填空题●1.多样化交互性集成性●2.输入输出●3.图形图像●4.创作脚本流程图素材选取与加工媒体集成产品发布●5.用户类型信息最小量原则帮助和提示原则媒体最佳组合原则●6.平衡原则预期原则经济原则顺序原则规则化原则●7.有损压缩无损压缩●8.JPEG MPEG 视频和音频通信二值图像编码●9.光学激光激光●10.智能化三维化二、简答题●1.多媒体产品的最大特点是什么?●答:多媒体技术具有以下的关键特性:多样化、交互性、集成性。
最大特点是交互性。
●交互性是影视作品和多媒体作品的主要区别,是多媒体产品的最大特点。
它允许用户参与其中,可以通过各种操作去控制整个过程,可以打乱顺序任意选择,可通过有意或无意的操作来改变某些音频或视频元素的特征。
交互实际上就是用户在某种程度上的参与。
●2.多媒体能做什么?●答:多媒体的应用已经涵盖到各行各业,如:广告、展示系统、计算机游戏、教学系统、办公自动化和会议系统、交互式数字电视等●3.简述多媒体的制作流程。
多媒体技术应用目录第一章多媒体技术概论 (2)本章习题(p15) (2)笔记重点知识: (3)第二章数字音频处理 (5)本章习题(P40) (5)笔记重点知识: (6)第三章视觉信息处理 (10)本章习题 (10)笔记知识要点: (11)第四章多媒体数据压缩与编码技术 (15)本章习题 (15)笔记知识重点 (16)第五章多媒体数据处理的技术标准 (17)本章习题 (17)笔记重点知识: (17)第十一章多媒体信息安全技术 (19)本章习题: (19)笔记重点知识 (19)名词解释 (22)重点问题回答: (24)第一章多媒体技术概论本章习题(p15)填空:1、国际电信联盟(ITU)将媒体分为6大类:A)感知媒体B)表达媒体C)呈现媒体D)储存媒体E)传输媒体F)交换媒体2、感知媒体是在多媒体应用中呈现给用户的媒体元素,主要包括:A)文本B)图形C)图像D)视频E)音频F)动画3、多媒体技术在娱乐领域的主要应用包括:A)家庭信息中心B)视频点播系统C)数字高清电视D)影视娱乐业4、多媒体数据库应当能够实现的功能:A)能够支持多种媒体数据类型和多个媒体对象合成方式B)能够为大量数据提供高性能的存储管理C)能够支持传统的数据库管理系统功能D)能够支持多媒体信息提取的功能E)为用户提供丰富便捷的交互手段简答:1、多媒体应用领域主要包括那些方面?A)娱乐B)教育与培训C)电子出版物D)集训、信息服务与广告E)工业控制与科学研究F)医疗影像与远程诊疗G)多媒体办公系统H)多媒体技术在通信系统中的应用2、简述多媒体所涉及的核心问题有哪些?A)多媒体信号数字化与计算机获取技术B)多媒体数据压缩编码和解码技术C)多媒体数据的实时处理和特效效果技术D)多媒体数据的输出与回放技术笔记重点知识:1)媒体的分类:感知媒体:(Perception Medium)是指人们的感受器官所能感受到的信息的自然种类。
(语言,音乐,图像,图形,计算机内数据等)表达媒体:(Representation Medium)为了加工处理和传输感知媒体而通过人工研究、构造出来的媒体。
多媒体技术基础第一章:多媒体技术概论1媒体:存储信息的实体;(多媒体)信息的载体。
2媒体的类型 :感觉媒体:直接作用于人的感官,使人直接产生感觉; 表示媒体:是为了加工、处理和传输感觉媒体而人为构造出来的一种媒体,即各种编码;显示媒体:是指感觉媒体与用于通信传输的电信号之间转换的一类媒体,即感觉媒体与计算机的界面。
又可分为两种:输入显示媒体和输出显示媒体;存储媒体:又称存储介质,保存表示媒体的介质;传输媒体:传输的物理载体,即用来将媒体从一处传送到另一处的物理载体。
3多媒体技术的定义:多媒体技术是利用计算机技术对多种信息进行综合处理、建立逻辑关系,集成为一个系统并具有交互性。
4多媒体的特征:多维化、集成性、交互性、数字化、实时性。
5多媒体技术所涉及的对象:文字和符号、矢量图形、位图图像对象、动画对象、音频对象视频对象。
6多媒体信息系统:开发系统、演示系统、培训系统、家庭系统7多媒体技术应用领域:教育(形象教学、模拟展示)、商业广告(特技合成、大型演示)、影视娱乐业(电影特技、变形效果)、医疗(远程诊断、远程手术)、旅游(景点介绍)、人工智能模拟(生物、人类智能模拟)。
8:相应习题见PPT。
第二章:多媒体硬件1 CD-ROM:构成: 激光驱动器、激光盘片;性质:只读属性 (不能写入,只能读出)、光学存储原理 (激光烧结)。
容量—— 650MB/74 min2CD-RW:性质:可读写属性 (CD-R盘片:追加写/读 CD-RW盘片:可读/擦写)、光学存储原理 (激光烧结)。
3DVD 标准 (Digital Versatile Disk)——采用MPEG-2压缩技术的标准,可存放488分钟影片、4.7GB~17GB的数据。
4 DVD规格:5 DVD的存储容量提高方法:第三章:多媒体数据压缩基础1数据压缩的必要性:图像信号:黑白480×360,8bit;大小是480 ×360÷1024=168.45KB 彩色大小是480 ×360×3÷1024=506.25KB;视频:PAL制每秒数据量506.25KB×25帧/秒=12.36MB/s。
一、单项选择题1、多媒体技术的主要特性有( D )。
A.多样性 B.多样性、集成性C.多样性、集成性、交互性 D.多样性、集成性、交互性、实时性2、( A )是多媒体计算机中直接和硬件打交道的软件。
A.多媒体操作系统 B.多媒体驱动软件C.多媒体创作软件 D.多媒体应用软件3、下列不属于多媒体技术中的媒体的范围的是( A )。
A.存储信息的实体B.信息的载体C.文本D.图像4、数字音乐存储到计算机的文件通常是以( A )为扩展名。
A.WAV B.MID C.GIF D.WMF5、多媒体数据具有( D )的特点。
A.数据量大和数据类型多B.数据类型间区别大和数据类型少C.数据量大、数据类型多、数据类型间区别小、输入和输出不复杂D.数据量大、数据类型多、数据类型间区别大、输入和输出复杂6、图像的主要指标为( B )。
A.大小、像素 B.分辨率、色彩数、灰度C.明亮度、分辨率 D.色彩数、像素、分辨率7、( A )文件是随着网络技术的发展而涌现出来的一种新的流式视频文件格式,是RealNETworks公司所制定的音频压缩规范中的一种。
A.RM文件 B.AVI文件 C.MOV文件 D.ASP文件8、( B ) 解压缩以后得到的数据与原始数据完全—样。
A.有损压缩 B.无损压缩 C.失真编码方法 D.视频压缩9、多媒体计算机系统的两大组成部分是( D )A.多媒体功能卡和多媒体主机 B.多媒体通信软件和多媒体开发工具C.多媒体输入设备和多媒体输出设备 D.多媒体计算机硬件系统和多媒体计算机软件系统10、CD-ROM( D )。
A.仅能存储文字B.仅能存储图像C.仅能存储声音D.能存储文字、声音和图像11、一般说来,要求声音的质量越高,则( B )。
A.采样精度越低和采样频率越低 B.采样精度越高和采样频率越高C.采样精度越低和采样频率越高 D.采样精度越高和采样频率越低12、音频与视频信息在计算机内是以( B )表示的。
第四章数字压缩编码技术1 数字压缩的必要性数字信号有很多优点,但当模拟信号数字化后其频带大大加宽,一路6MHz的普通电视信号数字化后,其数码率将高达167Mbps,对储存器容量要求很大,占有的带宽将达80MHz左右,这样将使数字信号失去实用价值。
数字压缩技术很好地解决了上述困难,压缩后信号所占用的频带大大低于原模拟信号的频带。
因此说,数字压缩编码技术是使数字信号走向实用化的关键技术之一,表4-1列出了各种应用的码率。
有线电视网中数字压缩技术主要包括用于会议电视系统的H.261压缩编码,用于计算机静止图像压缩的JPEG和用于活动图像压缩的MPEG数字压缩技术。
2 图像压缩编码的可能性从信息论观点来看,图像作为一个信源,描述信源的数据是信息量(信源熵)和信息冗余量之和。
信息冗余量有许多种,如空间冗余,时间冗余,结构冗余,知识冗余,视觉冗余等,数据压缩实质上是减少这些冗余量。
可见冗余量减少可以减少数据量而不减少信源的信息量。
从数学上讲,图像可以看作一个多维函数,压缩描述这个函数的数据量实质是减少其相关性。
另外在一些情况下,允许图像有一定的失真,而并不妨碍图像的实际应用,那么数据量压缩的可能性就更大了。
3 图像压缩编码方法的分类编码压缩方法有许多种,从不同的角度出发有不同的分类方法,比如从信息论角度出发可分为两大类:(1)冗余度压缩方法,也称无损压缩,信息保持编码或熵编码。
具体讲就是解码图像和压缩编码前的图像严格相同,没有失真,从数学上讲是一种可逆运算。
(2)信息量压缩方法,也称有损压缩,失真度编码或熵压缩编码。
也就是讲解码图像和原始图像是有差别的,允许有一定的失真。
应用在多媒体中的图像压缩编码方法,从压缩编码算法原理上可以分类为:(1)无损压缩编码种类·哈夫曼编码·算术编码·行程编码·Lempel zev编码(2)有损压缩编码种类·预测编码:DPCM,运动补偿·频率域方法:正文变换编码(如DCT),子带编码·空间域方法:统计分块编码·模型方法:分形编码,模型基编码·基于重要性:滤波,子采样,比特分配,矢量量化(3)混合编码·JBIG,H261,JPEG,MPEG等技术标准衡量一个压缩编码方法优劣的重要指标是:(1)压缩比要高,有几倍、几十倍,也有几百乃至几千倍;(2)压缩与解压缩要快,算法要简单,硬件实现容易;(3)解压缩的图像质量要好。
nyzf格式:一种高效的音频压缩算法第一章:引言随着数字音频设备的普及,音频压缩技术也日益成熟,小型设备能够存储更多音乐和音频文件。
然而,当前的音频压缩算法中,大多数都牺牲了音频质量以取得更小的文件大小。
因此,研究如何在保证音频质量的前提下,提高压缩率,一直是学术和工业界的研究重点。
就是这样一种高效的音频压缩算法。
它采用了一系列数据压缩技术,将CD音质音频文件压缩成更小的文件。
本文将对进行分析,并讨论其核心算法。
第二章:数据压缩技术数据压缩技术依据数据中冗余数据的类型,可分为两大类:有损压缩和无损压缩。
有损压缩:有损压缩是指在将数据压缩成小的存储空间时,会去掉一些未被人类感知到的重要数据。
这些数据既有音频频段中高频范围的杂波,也有预测算法中的误差值。
有损压缩算法的优点是压缩率较高,但是会对音质造成一定程度的影响。
无损压缩:无损压缩是指在将数据压缩成较小的存储空间时,没有失真或损失任何数据。
这些算法是基于一些数据压缩技术,如符号算法或哈夫曼算法。
但是与有损压缩算法相比,它们的压缩比率较低,需要更多的存储空间。
第三章:的编码流程是一种无损压缩算法,主要依靠预测算法和符号编码算法实现数据压缩。
预测编码:预测编码是一种利用一组已知的值预测未知的值的编码方法。
对于音频信号而言,它可以通过前一个样本点得到当前样本点和后一个样本点。
中的LMA预测模型通常是线性模型预测,其基本思想是用线性方程去描述当前样本点和历史样本点之间的关系。
当LMA预测模型得到之后,可以根据预测误差进行符号编码。
符号编码:符号编码是一种在给定基本符号的条件下,用变长编码节省存储空间并降低存储和传输成本的方法。
中主要使用了算术编码。
算术编码是对数据进行上下文建模,并对每个符号使用概率分布进行编码,大大提高了压缩比率。
的编码流程是:输入音频文件,通过预测模型进行预测,计算预测误差,然后根据符号编码进行压缩。
最终压缩后的数据可用于解码和播放。
第4章无损数据压缩数据压缩可分成两种类型,一种叫做无损压缩,另一种叫做有损压缩。
无损压缩是指使用压缩后的数据进行重构(或者叫做还原,解压缩),重构后的数据与原来的数据完全相同;无损压缩用于要求重构的信号与原始信号完全一致的场合。
一个很常见的例子是磁盘文件的压缩。
根据目前的技术水平,无损压缩算法一般可以把普通文件的数据压缩到原来的1/2~1/4。
一些常用的无损压缩算法有霍夫曼(Huffman)算法和LZW(Lenpel-Ziv & Welch)压缩算法。
有损压缩是指使用压缩后的数据进行重构,重构后的数据与原来的数据有所不同,但不影响人对原始资料表达的信息造成误解。
有损压缩适用于重构信号不一定非要和原始信号完全相同的场合。
例如,图像和声音的压缩就可以采用有损压缩,因为其中包含的数据往往多于我们的视觉系统和听觉系统所能接收的信息,丢掉一些数据而不至于对声音或者图像所表达的意思产生误解,但可大大提高压缩比。
本章主要介绍目前用得最多和技术最成熟的无损压缩编码技术,包括包含霍夫曼编码、算术编码、RLE编码和词典编码。
对于不打算开发压缩技术和编写压缩程序的读者可不必深究编译码的详细过程。
4.1 香农-范诺与霍夫曼编码香农-范诺编码算法需要用到下面两个基本概念:1. Entropy(熵)的概念1.熵是信息量的度量方法,它表示某一事件出现的消息越多,事件发生的可能性就越小,数学上就是概率越小。
2.某个事件的信息量用表示,其中为第个事件的概率,2. 信源S的熵的定义按照仙农(Shannon)的理论,信源S的熵定义为其中是符号在S中出现的概率;表示包含在中的信息量,也就是编码所需要的位数。
例如,一幅用256级灰度表示的图像,如果每一个象素点灰度的概率均为,编码每一个象素点就需要8位。
[例4.1] 有一幅40个象素组成的灰度图像,灰度共有5级,分别用符号A、B、C、D和E 表示,40个象素中出现灰度A的象素数有15个,出现灰度B的象素数有7个,出现灰度C 的象素数有7个等等,如表4-01所示。
如果用3个位表示5个等级的灰度值,也就是每个象素用3位表示,编码这幅图像总共需要120位。
H(S) = (15/40) ⨯(40/15) + (7/40) ⨯(40/7) + ∙∙∙ + (5/40) ⨯(40/5) =2.196这就是说每个符号用2.196位表示,40个象素需用87.84位。
最早阐述和实现这种编码的是Shannon(1948年)和Fano(1949年),因此被称为仙农-范诺(Shannon- Fano)算法。
这种方法采用从上到下的方法进行编码。
首先按照符号出现的频度或概率排序,例如,,,,和,如表4-02所示。
然后使用递归方法分成两个部分,每一部分具有近似相同的次数,如图4-01所示。
按照这种方法进行编码得到的总位数为91。
压缩比约为1.3 : 1。
表4-02 Shannon-Fano算法举例表(图4-01 香农-范诺算法编码举例4.1.2 霍夫曼编码霍夫曼(Huffman)在1952年提出了另一种编码方法,即从下到上的编码方法。
现仍以一个具体的例子说明它的编码步骤:1.初始化,根据符号概率的大小按由大到小顺序对符号进行排序,如表4-03和图4-02所示。
2.把概率最小的两个符号组成一个节点,如图4-02中的D和E组成节点P1。
3.重复步骤2,得到节点P2、P3和P4,形成一棵“树”,其中的P4称为根节点。
4.从根节点P4开始到相应于每个符号的“树叶”,从上到下标上“0”(上枝)或者“1”(下枝),至于哪个为“1”哪个为“0”则无关紧要,最后的结果仅仅是分配的代码不同,而代码的平均长度是相同的。
5.从根节点P4开始顺着树枝到每个叶子分别写出每个符号的代码,如表4-03所示。
6.按照仙农理论,这幅图像的熵为H(S) = (15/39) ⨯(39/15) + (7/39) ⨯(39/7) + ∙∙∙ + (5/39) ⨯(39/5) = 2.1859压缩比1.37:1。
表4-03 霍夫曼编码举例图4-02 霍夫曼编码方法霍夫曼码的码长虽然是可变的,但却不需要另外附加同步代码。
例如,码串中的第1位为0,那末肯定是符号A,因为表示其他符号的代码没有一个是以0开始的,因此下一位就表示下一个符号代码的第1位。
同样,如果出现“110”,那么它就代表符号D。
如果事先编写出一本解释各种代码意义的“词典”,即码簿,那么就可以根据码簿一个码一个码地依次进行译码。
采用霍夫曼编码时有两个问题值得注意:①霍夫曼码没有错误保护功能,在译码时,如果码串中没有错误,那么就能一个接一个地正确译出代码。
但如果码串中有错误,哪仅是1位出现错误,不但这个码本身译错,更糟糕的是一错一大串,全乱了套,这种现象称为错误传播(error propagation)。
计算机对这种错误也无能为力,说不出错在哪里,更谈不上去纠正它。
②霍夫曼码是可变长度码,因此很难随意查找或调用压缩文件中间的内容,然后再译码,这就需要在存储代码之前加以考虑。
尽管如此,霍夫曼码还是得到广泛应用。
与仙农-范诺编码相比,这两种方法都自含同步码,在编码之后的码串中都不须要另外添加标记符号,即在译码时分割符号的特殊代码。
此外,霍夫曼编码方法的编码效率比仙农-范诺编码效率高一些。
请读者自行验证。
4.2 算术编码算术编码在图像数据压缩标准(如JPEG,JBIG)中扮演了重要的角色。
在算术编码中,消息用0到1之间的实数进行编码,算术编码用到两个基本的参数:符号的概率和它的编码间隔。
信源符号的概率决定压缩编码的效率,也决定编码过程中信源符号的间隔,而这些间隔包含在0到1之间。
编码过程中的间隔决定了符号压缩后的输出。
算术编码器的编码过程可用下面的例子加以解释。
[例4.2] 假设信源符号为{00, 01, 10, 11},这些符号的概率分别为{ 0.1, 0.4, 0.2, 0.3 },根据这些概率可把间隔[0, 1)分成4个子间隔:[0, 0.1), [0.1, 0.5), [0.5, 0.7), [0.7,1),其中表示半开放间隔,即包含不包含。
上面的信息可综合在表4-04中。
表4-04 信源符号,概率和初始编码间隔如果二进制消息序列的输入为:10 00 11 00 10 11 01。
编码时首先输入的符号是10,找到它的编码范围是[0.5, 0.7)。
由于消息中第二个符号00的编码范围是[0, 0.1),因此它的间隔就取[0.5, 0.7)的第一个十分之一作为新间隔[0.5, 0.52)。
依此类推,编码第3个符号11时取新间隔为[0.514, 0.52),编码第4个符号00时,取新间隔为[0.514,0.5146),… 。
消息的编码输出可以是最后一个间隔中的任意数。
整个编码过程如图4-03所示。
图4-03 算术编码过程举例这个例子的编码和译码的全过程分别表示在表4-05和表4-06中。
根据上面所举的例子,可把计算过程总结如下。
考虑一个有M个符号的字符表集,假设概率,而。
输入符号用表示,第个子间隔的范围用表示。
其中,和,表示间隔左边界的值, 表示间隔右边界的值,表示间隔长度。
编码步骤如下:步骤1:首先在1和0之间给每个符号分配一个初始子间隔,子间隔的长度等于它的概率,初始子间隔的范围用[,)表示。
令,和。
步骤2:L和R的二进制表达式分别表示为:和其中和等于“1”或者“0”。
比较和:①如果,不发送任何数据,转到步骤3;②如果,就发送二进制符号。
比较和:①如果,不发送任何数据,转到步骤3;②如果,就发送二进制符号。
…这种比较一直进行到两个符号不相同为止,然后进入步骤3,步骤3:加1,读下一个符号。
假设第个输入符号为,按照以前的步骤把这个间隔分成如下所示的子间隔:令,和,然后转到步骤2。
表4-05 编码过程表4-06 译码过程[例3] 假设有4个符号的信源,它门的概率如表4-07所示:表4-07 符号概率概率输入序列为。
它的编码过程如图4-04所示,现说明如下。
输入第1个符号是,可知,定义初始间隔[,)=[0.5, 0.75),由此可知,左右边界的二进制数分别表示为:L=0.5=0.1(B),R =0.7=0.11… (B) 。
按照步骤2,,发送1。
因,因此转到步骤3。
输入第2个字符,,它的子间隔,)=[0.5, 0.625),由此可得=0.125。
左右边界的二进制数分别表示为:L=0.5=0.100 …(B),R=0.101… (B)。
按照步骤2,,发送0,而和不相同,因此在发送0之后就转到步骤3。
输入第3个字符,,, 它的子间隔[,)=[0.59375, 0.609375),由此可得=0.015625。
左右边界的二进制数分别表示为:=0.59375=0.10011 (B),=0.609375=0.100111 (B)。
按照步骤2,,,,但和不相同,因此在发送011之后转到步骤3。
…发送的符号是:10011…。
被编码的最后的符号是结束符号。
图4-04 算术编码概念就这个例子而言,算术编码器接受的第1位是“1”,它的间隔范围就限制在[0.5, 1),但在这个范围里有3种可能的码符, 和,因此第1位没有包含足够的译码信息。
在接受第2位之后就变成“10”,它落在[0.5, 0.75)的间隔里,由于这两位表示的符号都指向开始的间隔,因此就可断定第一个符号是。
在接受每位信息之后的译码情况如下表4-08所示。
表4-08 译码过程表在上面的例子中,我们假定编码器和译码器都知道消息的长度,因此译码器的译码过程不会无限制地运行下去。
实际上在译码器中需要添加一个专门的终止符,当译码器看到终止符时就停止译码。
在算术编码中需要注意的几个问题:1.由于实际的计算机的精度不可能无限长,运算中出现溢出是一个明显的问题,但多数机器都有16位、32位或者64位的精度,因此这个问题可使用比例缩放方法解决。
2.算术编码器对整个消息只产生一个码字,这个码字是在间隔[0, 1)中的一个实数,因此译码器在接受到表示这个实数的所有位之前不能进行译码。
3.算术编码也是一种对错误很敏感的编码方法,如果有一位发生错误就会导致整个消息译错。
算术编码可以是静态的或者自适应的。
在静态算术编码中,信源符号的概率是固定的。
在自适应算术编码中,信源符号的概率根据编码时符号出现的频繁程度动态地进行修改,在编码期间估算信源符号概率的过程叫做建模。
需要开开发态算术编码的原因是因为事先知道精确的信源概率是很难的,而且是不切实际的。
当压缩消息时,我们不能期待一个算术编码器获得最大的效率,所能做的最有效的方法是在编码过程中估算概率。
因此动态建模就成为确定编码器压缩效率的关键4.3 RLE编码现实中有许多这样的图像,在一幅图像中具有许多颜色相同的图块。