油封产品失效模式分析
- 格式:ppt
- 大小:4.15 MB
- 文档页数:23
骨架油封的失效模式及排除方法1、概述骨架油封属于动密封元件,“临界油膜“的存在,是油封密封的充分必要条件,无泄漏的密封是不允许也是不存在的。
因为润滑油膜的存在是保证油封唇口实现润滑摩擦所必不可缺的,而润滑油膜的存在,使得一定量的泄漏不可避免。
对旋转用油封,在使用过程中,如果运行初期的50~100小时之内发生微量泄漏是允许的。
随着运转时间的加长,泄漏会逐渐停止,往往这样的油封寿命比较长。
在有效使用期限内,微量的泄漏是允许的,否则,必须按照油封的常见故障原因及排除方法进行处理。
2、油封的常见故障原因及排除方法a、骨架油封不良,造成早期泄漏唇口不良:原因:制造质量不佳,唇口有毛刺或缺陷。
排除方法:去除飞边毛刺或更换油封。
弹簧质量不佳或失效原因:制造质量不佳排除方法:更换油封弹簧径向力过小原因:弹簧过松,抱紧力过小排除方法:调整油封弹簧/装配不良,发生泄漏唇口有明显伤痕原因:装配时,油封通过键槽或螺纹,划伤唇口排除方法:更换油封,重新安装时,要用保护套,以保护油封唇口油封呈蝶形变形原因:油封安装工具不当排除方法:重新设计、制造油封安装工具油封唇口向装配反方向翻转或弹簧松脱原因:轴倒角不当,粗糙度过高或装配用力过大,致使油封唇部翻转或弹簧脱落排除方法:打磨轴端倒角,小心安装油封唇部与轴表面涂覆油脂过多,误判泄漏原因:装配时,油封唇部与轴表面涂覆油脂过多排除方法:待轴运转一段时间,油脂即可减少恢复正常/唇口磨损润滑不良,唇口工作面磨损严重,接触宽度超过1/3以上,呈现无光泽原因:润滑不良,接触表面与唇口产生干摩擦排除方法:保证润滑轴表面粗糙度较高原因:轴表面粗糙度较高,导致唇口磨损严重排除方法:降低轴的表面粗糙度润滑油有灰尘(杂质)或无防尘装置造成灰尘(杂质)等侵入原因:润滑油、油路系统清洁度不佳,灰尘(杂质)等侵入唇口与轴的接触表面,引起异常磨损;轴上粘附粉末硬质异物;装配时,铁屑等硬质异物刺入唇口;轴上或油封唇口误涂漆料;油封弹簧抱得太紧排除方法:保持润滑油清洁;加强油路系统清理;为了防止等侵入唇部,增设防尘装置;装配时,注意清洁;去除误涂的漆料唇口径向力过大,油膜破裂原因:弹簧过紧排除方法:调整或更换油封弹簧安装偏心,唇口滑动出现异常磨损,最大与最小磨损宽度呈对称分布;主唇与副唇滑动面痕迹的大小,两者随各自呈对称分布,但大小位置相反原因:箱体(壳体)、端盖、轴不同心,致使油封偏心运转;油封座孔过小,不适当的压入油封,以致倾斜排除方法:保证箱体(壳体)、端盖、轴装配后的整体同心度要求;保证油封座孔的尺寸要求油封与工作介质相容性不良,唇口软化、溶胀或硬化、龟裂原因:工作介质不匹配排除方法:根据实际工作介质选用适宜的油封材料或根据实际油封材料选用适宜的工作介质橡胶老化唇部过热硬化或龟裂原因:工作介质实际温度高于设计值,超过油封材料耐用限度排除方法:降低工作介质温度或更换耐热橡胶材料的油封润滑不良、唇部硬化或龟裂原因:润滑不良,发生干摩擦排除方法:保证润滑唇部溶胀、软化原因:橡胶对工作介质的相容性差;油封长时间浸泡于洗油或汽油中,使唇口溶胀排除方法:选用相容于工作介质的橡胶材料或选用适用于橡胶材料的的工作介质;不得使用洗油或汽油清洗油封轴表面粗糙度过高或过低原因:表面粗糙,磨损严重;表面太光,润滑油膜难以形成和保持,发生干摩排除方法:轴表面粗糙度采用适宜的加工方法保证表面粗糙度轴硬度不当,高于40HRC原因:试验表明,轴表面硬度高于40HRC时反而加速轴的磨损(表面镀铬除外)排除方法:轴表面硬度保持在30~40HRC,表面镀铬最好润滑油有杂质,表面磨损严重原因:润滑油不清洁排除方法:保证润滑油清洁偏心过大,轴径向摇动时有响声原因:轴承磨损、松旷;轴本身偏心排除方法:更换轴承,改用耐偏心轴承唇口处有灰尘,轴表面磨损严重原因:轴表面清洁度不足,粘附灰尘颗粒,侵入油封唇口,磨损轴表面;侵入铸造型砂,磨损轴表面;外部侵入灰尘,磨损轴表面;润滑油劣化,生成氧化物,侵入油封唇口,磨损轴表面排除方法:保证轴表面及油封的清洁;为了防止外部灰尘杂质的侵入,增加防尘装置;改用油脂润滑油轴的滑动表面有伤痕或砂眼原因:轴表面有工艺性龟裂或腐蚀点等,加剧磨损而泄漏;轴表面的伤痕、砂眼与油封唇口之间形成间隙而泄漏;轴表面碰伤或划伤排除方法:保证轴表面质量,严防磕碰轴表面的滑动部分有方向性的加工痕迹原因:轴表面留有细微螺纹旋槽等车削或磨削加工痕迹,形成泵吸作用而泄漏排除方法:保证轴表面精加工工艺。
电机油封失效原因概述说明以及解释1. 引言1.1 概述本文旨在对电机油封失效原因进行概述说明和解释。
电机油封作为电机的重要组成部分,在保护电机内部免受外界物质侵蚀和润滑电机工作过程中起着至关重要的作用。
然而,由于各种原因,电机油封可能会发生故障,导致严重后果。
因此,了解电机油封失效原因并采取相应的解决方法和预防措施具有重要意义。
1.2 文章结构本文将分为五个主要部分进行论述。
首先是引言部分,对文章内容进行概述说明,并介绍了文章的结构安排。
接下来,第二部分将详细探讨电机油封失效的定义与背景信息,并进一步列举具体的失效原因。
第三部分将以故障影响为切入点,对电机油封失效之后可能带来的后果进行深入分析。
第四部分将提供解决方法和预防措施来解决或避免这些问题的发生。
最后,在结论中将总结全文,并提出未来研究方向。
1.3 目的本文的主要目的是为读者提供关于电机油封失效原因的全面概述和解释,帮助读者更好地理解电机油封在电机工作中所扮演的重要角色。
通过了解导致油封失效的具体原因和可能产生的后果,读者能够采取针对性的措施来避免或解决这些问题。
此外,本文也将为进一步研究电机油封失效提供一些可行的研究方向。
2. 电机油封失效原因2.1 定义和背景介绍电机油封是一种用于密封电机内部零部件与外部环境之间的装置。
其主要功能是防止润滑油或冷却液从电机中泄漏,并阻挡外界灰尘、水气等有害物质进入电机内,以保护电机的正常运行。
然而,由于工作环境的恶劣条件和不可避免的磨损,电机油封可能会失效。
失效的油封可能导致润滑油泄漏、污染环境,甚至引发电机故障。
因此,了解电机油封失效原因对于提高电机使用寿命和减少故障率具有重要意义。
2.2 失效原因一首先,一种常见的导致电机油封失效的原因是磨损。
由于长时间的摩擦和振动,油封表面会逐渐磨损,并形成微小裂纹或缺陷。
这些缺陷可能使橡胶材料变硬,失去弹性,并且不能再有效地密封润滑油或冷却液。
其次,化学侵蚀也是导致油封失效的因素之一。
油封失效故障点分析古婷;孙建明【摘要】在变速箱密封系统中,油封的作用无可替代,但因其复杂的工况,油封的故障不可避免.文章介绍了一种油封失效分析思路,并从设计角度提出如何从设计上规避油封失效,旨在找出问题根本原因,降低故障发生.【期刊名称】《汽车实用技术》【年(卷),期】2017(000)016【总页数】3页(P190-191,203)【关键词】油封;漏油;装配;加工;材料【作者】古婷;孙建明【作者单位】陕西法士特齿轮有限责任公司,陕西西安 710119;陕西法士特齿轮有限责任公司,陕西西安 710119【正文语种】中文【中图分类】U472CLC NO.: U472 Document Code: A Article ID: 1671-7988 (2017)16-190-03 油封作为一种高技术含量的密封零件,在汽车发动机、变速箱中被广泛应用。
由于其应用环境的复杂性和自身重要性,油封需要耐高低温、耐高压、耐特殊介质,适应高速、震动和满足汽车使用寿命。
因此其不可避免会出现多种失效模式,本文就骨架油封在变速箱上的应用为例,分析油封失效的故障点。
旨在为今后故障排查提供一种思路。
油封失效的统一表现为漏油,引起漏油的原因有以下几种:1)油封非正常磨损;2)油封偏磨;3)油封划伤、开裂;4)油封老化、变形;5)润滑脂涂抹太多,堵塞回油线。
a)尺寸要求:实物尺寸是否满足设计要求,包括公差及磨损量,磨损量需通过光学影像检测仪检测。
b)材料要求:材料性能是否满足设计要求,油封常用氟橡胶的材料性能指标包括:硬度、拉伸强度、拉断伸长率、压缩永久变形、耐热老化、耐油等。
c)性能要求:油封能否满足整车使用要求,一般在设计时通过试验验证,试验包括高低温测试和寿命试验。
与油封配合的轴及油封座的精度都极大的影响着油封的使用性能,因此轴和油封座的精度需要严格控制。
a)轴尺寸经过检测值与设计值对比,确认轴加工是否满足设计要求。
b)油封座尺寸经过检测值与设计值对比,确认油封座加工是否满足设计要求。
橡胶密封件的失效分析橡胶密封件常见的失效原因主要有4种:设计错误、选材错误、密封件质量问题和使用不当。
1. 设计错误设计错误通常是由於设计人员对产品认识不足造成的。
比如对密封件承受的压力估计不足、对密封面上接触应力分布的认识有误、安放密封件的沟槽设计不合理等。
有限元分析(FEA)常常被用来辅助密封件的设计和失效分析。
我们曾为某美国客户做过一个密封件,该密封件以塑料为主体,局部包上橡胶。
客户在检测零件的过程中发现,塑料部分在测试时容易破裂,从而得出结论是:塑料件在二次成型时(即将橡胶包覆在塑料件上)被损坏了。
经我们分析後发现,塑料件都是在一个地方破裂的。
通过有限元分析,我们发现,塑料件的破损部位实际上是密封件受到最大应力的地方,此处应力已经远远超过塑料所能承受的。
如果在设计的时候客户就用有限元方法分析过该产品,不但可以避免类似的错误,还可以节省其时间和金钱。
当然,想要成功的分析预测橡胶密封件的性能,不但要有合适的有限元分析软件,还要有丰富的材料经验、建模经验和长期的数据积累。
2. 选材错误常用的橡胶密封材料有三元乙丙橡胶(EPDM)、丁腈橡胶(NBR)、硅橡胶(VMQ)、氟橡胶(FKM或者FPM)和氯丁橡胶(CR)等。
这些橡胶的特性各不相同,应用也不同。
选择材料要从多方面考虑,比如使用温度、材料是否耐受介质、材料的硬度、压缩永久变形和耐磨性等各种因素。
选材错误常常是因为设计人员对各种材料的性能不熟悉。
一个经验丰富的橡胶密封件供应商能一开始就指出选材的问题。
我们有个国内客户不喜欢正在使用的O圈,因为这个O圈很容易坏。
我们检查了更换下来的样品,发现样品表面有龟裂,纹路很像臭氧老化。
我们又询问了O圈的使用环境,发现周围有很多机械设备和电动马达。
这下答案就有了:电动马达的火花能产生臭氧,造成了局部小环境臭氧浓度较高;而客户所选材料为丁腈橡胶,不耐受臭氧。
为了验证结论,我们在实验室臭氧老化箱中做了测试,结果客户提供的新O圈表面也出现了类似的裂纹。
石油化工釜用机械密封的失效分析和对策【摘要】釜用机械密封发生失效的重要表现就是泄漏。
在现实操作中,根据泄漏情况对机械密封出现的泄漏原因进行分析。
本文主要分析了釜用机械密封失效概述,釜用机械密封出现的失效现象,密封失效的原因及采取的对策。
【关键词】釜用机械密封失效通常釜用机械密封属于内装式,对工作的研究分析造成了一些困难。
必须对机械密封产生的泄漏通道实行一般性分析。
1 釜用机械密封失效概述釜类反应设备中机械密封属于精密的零部件,按照统计的釜用机械密封资料说明,大概有半数釜维修的原因是机械密封。
运行半年之后的釜,发生机械密封失效的就有半数。
虽然这项统计并不是十分全面和准确,但是能够说明易损件的重要特征就是密封。
造成机械密封早期失效的原因比较多,因此,根据具体情况,认真分析失效出现的原因,并且采取积极措施,最终保证机械密封的稳定性。
2 釜用机械密封出现的失效现象2.1 摩擦端面产生的泄漏(1)端面缺乏平整性。
端面具有的粗糙度与平面度没有符合指定要求,或者是在使用之前已经遭遇了损害,因此出现了泄漏。
此时应当重新进行抛光研磨或者使用新的密封环。
通常情况下密封端面具有的平面度小于0.9μm。
(2)端面之间产生了异物。
没有完全清除污物,装配过程中没有充分清洗。
这时候需要将端面上的污物清除重新组织装配。
(3)错误安装。
安装设计尺寸不符合设计图纸要求,需要认真阅读安装说明及其图表,对安装具体尺寸重新进行调整;安装非补偿环需保持倾斜,假如安装压盖出现倾斜,应当重新进行安装。
与此同时检验密封环与压盖端面上各点之间距离是否保持一致,避免转销在密封环中的凹槽中,或者是否顶到底部凹槽。
总装过程中需均匀锁紧压盖螺钉。
2.2 密封圈补偿环位置出现的泄漏(1)辅助密封圈产生的质量问题,例如橡胶密封圈上的断面出现超差尺寸,压缩率没有达到规定要求,由此产生的质量问题包括:缩裂、过度修边、流痕等,需要替换合格产品。
(2)安装密封圈过程出现的损伤,例如安装v形圈时割伤了唇口,橡胶制件表面出现了划痕,这些都属于密封出现问题的具体原因。
油封常见失效原因分析及改善一、唇部泄漏(内径)失效项目失效模式失效起因建议措施轴表面唇部磨损大,在磨表面粗糙度超出标准值的修正轴的表面粗糙度符合标准值Ra=0.2~0.8μm。
粗糙度损面上有圆周方Ra=0.2~0.8μm,导致异常磨损。
过大向的条纹。
指定轴的表面粗糙度更换。
唇润滑不唇部磨损大,磨损润滑油不足,造成唇部干摩擦,产生补充润滑油至指定量再旋转。
部足面失去光泽。
异常磨损。
磨内压大唇部磨损大,有凹压力超出油封设计值。
改用耐压型油封。
损槽。
设通气孔使成为不带压力的结构。
异物卡唇部磨损大,有条泥沙与灰尘附着在轴与油封唇部,造装配时轴与油封上不要沾染上泥沙与灰尘。
咬纹和凹槽。
成唇部卡咬。
装配环境恶劣时,在油封上加上防尘唇的设计。
润滑不唇部光滑、有光润滑油不足,造成唇部干摩擦,产生泽,唇部硬化表面补充润滑油至指定量再旋转。
足异常磨损。
发生龟裂。
唇唇部光滑、有光部异常高温度超出油封设计值。
改用耐热性良好的橡胶材料。
泽,唇部硬化表面硬温发生龟裂。
唇部温升超出橡胶的耐热极限。
避免唇部温升过高。
化唇部接触面宽大、改用耐压油封。
内压大有光泽,唇部硬化压力超出油封设计值。
设通气孔使成为不带压力的结构。
表面发生龟裂。
装配尺寸太小,勉强安装,造成油封使用适合尺寸的装配孔。
唇倾斜。
倾斜安唇部与轴接触宽部装配孔未倒角,勉强安装,造成油封装度不均匀对称。
将装配孔倒角,尺寸适当偏倾斜。
磨没有适当的装配工装。
选用合适的装配工装损安装偏唇部与轴接触宽轴与装配孔的中心在移位的状况下提高轴与装配孔的通信度。
心度不均匀对称。
安装及运转。
唇唇部材改用适当的润滑油部润滑油与橡胶不适合,造成唇部膨料不适唇部膨胀、软化软胀、软化。
改用适当的橡胶材料合化油组装不在组装时压坏唇部而使腰部产生龟使轴与装配孔同心,注意装配。
封良裂。
腰油封腰部有龟裂改用耐压型油封。
部内压大压力超出油封设计值。
破设通气孔使成为不带压力的结构。
损轴倒角轴端倒角尺寸及角度不正确,使唇部使倒角尺寸与角度适合,组装时在倒角处涂上润滑唇不良在轴端卡住,造成损伤。
a)条纹破损b)凹槽破损图1 油封唇口微观的条纹和凹槽破损图2 油封唇口偏磨油封唇口偏磨现象主要有三方面原因:一是零部件精度,二是压装过程,三是后驱动桥变形。
1)零部件精度方面,一是受油封孔与轴承孔同轴度不良影响,旋转轴偏离油封孔中心导致偏磨;二是油封孔孔径尺寸偏小,造成油封变形引起偏磨。
2)压装过程中,因油封压入速度过快且保压时间不足、油封非垂直压入导致油封唇口等,导致偏磨现象产生。
3)驱动桥变形主要由于超载造成,导致后驱动桥半轴油封偏磨。
后驱动桥油封失效整改措施1.油封唇口卡咬失效模式整改1)装配过程增加防护。
安装主齿油封时,在主齿花键上安装主齿花键保护套,主齿油封安装后取下。
半轴油封安装,同样在半轴花键上安装保护套,安装完成后取下。
2)装配过程增加吸尘。
在主减速器总成与后驱动桥桥壳合装前,对后驱动桥桥壳内部进行吸尘处理,以降低桥壳内部杂质含量。
3)优化后驱动桥桥壳内阻油环结构,减小车辆在行驶过程中油内杂质对油封造成损坏的风险。
2.油封唇口偏磨失效模式整改1)零部件精度管控。
使用气动量仪精准测量轴承孔与油封孔同轴度(≤0.03mm)以及孔径尺寸,并要求定期进行Cpk过程能力研究。
2)配置专用油封压装设备。
由于人工压装油封无法准确控制油封压入的速度、角度以及保压时间,所以配备专用油封压机对这些作业参数进行限定,以保证油封压装过程的一致性。
3)增加后驱动桥设计载荷储备系数:由单列轴承调整为双列轴承,加厚后驱动桥桥壳管壁厚度。
3.油封唇口过度磨损失效模式整改1)油封厂在进入合格供应商体系前,重点进行过度磨损图3 油封唇口过度磨损磨损宽度0.2mm 磨损宽度1.4mm表1 三叉节改进状态应力汇总状态L1/mmL2/mmR/mm最大等效应力值/MPa备注现状15.614.63836改进方案一16.415.44687应力降低17.8%质量增加1.1%改进方案二15.614.62874应力增加4.5%质量增加14.6%改进方案三16.415.43689应力降低17.5%质量增加15.8%图8 三叉节壁厚加厚1mm同时轴颈加强后的应力分布)耦合件表面粗糙度改善区域:主齿杆部与油封配合的区域,半轴杆部与油封配合的区域。