灰色预测模型1
- 格式:ppt
- 大小:819.50 KB
- 文档页数:60
灰色预测模型公式灰色预测模型是一种基于历史数据和现有数据的预测方法,它可以用来预测未来某个事件或指标的发展趋势。
灰色预测模型的核心思想是利用系统自身的信息和规律,通过建立灰色微分方程来进行预测。
灰色预测模型的公式可以表示为:$$\hat{X}_{0}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i+1}^{(1)} = aX_{i}^{(1)} + b$$$$\hat{X}_{i+1}^{(k+1)} = aX_{i}^{(k+1)} + b$$其中,$X_{0}^{(k)}$表示观测数据的累加生成序列,$\hat{X}_{i}^{(k)}$表示预测值,$a$和$b$为待确定的系数。
灰色预测模型的核心思想是将数据分为两个部分:系统的发展规律部分和随机波动部分。
系统的发展规律部分可以通过灰色微分方程进行建模和预测,而随机波动部分则通过随机项来表示。
灰色预测模型的建模步骤如下:1. 数据预处理:对原始数据进行平滑处理,消除随机波动的影响,得到累加生成序列。
2. 确定发展规律:根据累加生成序列,建立灰色微分方程,估计系统的发展规律。
3. 模型参数估计:通过最小二乘法估计模型的参数,确定$a$和$b$的值。
4. 模型检验和优化:对模型进行检验和优化,确保预测结果的准确性和可靠性。
5. 模型预测:利用建立好的灰色预测模型,对未来的数据进行预测。
灰色预测模型在实际应用中具有广泛的应用价值。
它可以用来预测各种经济指标、环境数据、自然灾害等,为决策提供科学依据。
同时,灰色预测模型还可以用于评估和分析系统的可持续发展能力,帮助企业和机构合理规划和管理资源。
灰色预测模型是一种基于历史数据和现有数据的预测方法,它通过利用系统自身的信息和规律,建立灰色微分方程来进行预测。
灰色系统预测模型GM(1,1)实现过程灰色系统预测模型GM(1,1) 1. GM(1,1)的一般形式设有变量X (0)={X (0)(i),i=1,2,...,n}为某一预测对象的非负单调原始数据列,为建立灰色预测模型:首先对X (0)进行一次累加(1—AGO, Acumulated Generating Operator)生成一次累加序列:X (1)={X (1)(k ),k =1,2,…,n}其中X (1)(k )=∑=ki 1X (0)(i)=X (1)(k -1)+ X (0)(k ) (1) 对X (1)可建立下述白化形式的微分方程:dtdX )1(十)1(aX =u (2)即GM(1,1)模型。
上述白化微分方程的解为(离散响应): ∧X (1)(k +1)=(X (0)(1)-a u )ak e -+au(3)或∧X (1)(k )=(X (0)(1)-a u ))1(--k a e +au (4) 式中:k 为时间序列,可取年、季或月。
2. 辩识算法记参数序列为∧a , ∧a=[a,u]T ,∧a 可用下式求解:∧a =(B T B)-1B T Y n (5)式中:B —数据阵;Y n —数据列B =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+++- 1 (n))X 1)-(n (X 21 ... 1 (3))X (2)X (211 (2))X (1)X (21(1)1(1)(1)(1)(1))(-- (6) Y n =(X (0)(2), X (0)(3),…, X (0)(n))T (7)3. 预测值的还原由于GM 模型得到的是一次累加量,k ∈{n+1,n+2,…}时刻的预测值,必须将GM 模型所得数据∧X(1)(k +1)(或∧X(1)(k ))经过逆生成即累减生成(I —AGO)还原为∧X (0)(k +1)(或∧X (0)(k )),即:∧X (1)(k )=∑=ki 1∧X (0)(i)=∑-=11k i ∧X(0)(i)+∧X (0)(k )∧X(0)(k )=∧X(1)(k )-∑-=11k i ∧X (0)(i)因为∧X(1)(k -1)=∑-=11k i ∧X(0)(i),所以∧X (0)(k )=∧X (1)(k )-∧X (1)(k -1)。
灰色系统模型(Grey Model,GM)一:解决的关键问题 (所谓灰色系统是指部分信息已知而部分信息未知的系统,灰色系统所要考察和研究的是对信息不完备的系统,通过已知信息来研究和预测未知领域从而达到了解整个系统的目的)灰色系统模型作为一种预测方法广泛应用于工程控制,经济管理,社会系统等众多领域。
二:GM(1,1)模型(一):对原始序列累加处理一次累加生产序列②(即1-AGO序列),表示为其中,一次累加序列(1)X 的第k 项由原序列的前k 项和产生,即: 由(1)X 的相邻项平均得到(1)X 的紧邻均值生成序列(1)z ,表示为:根据上述序列,有灰色系统模型GM(1,1)的基本形式:(二)构造GM(1,1)模型方程组的矩阵形式,并求解参数 GM(1,1)模型的微分方程基本形式:(三)求的时间响应序列,累减得到原序列的预测值(四)模型检验残差的均值、方差分别为:21S C S 称为均方差比值,对于给定的00C ,当0C C 时,称模型为均方差比合格模型;1(()0.6745)p p k S 称为小误差概率,对于给定的00P ,当0P P 时,称模型为小误差概率合格模型。
一般均方差比值C 越小越好(因为C 小说明S 小,1S 大,即残差方差小,原始数据方差大,说明残差比较集中,摆动幅度小,原始数据比较分散,摆动幅度大,所以模拟效果好,要求2S 与1S 相比尽可能小),以及小误差概率p 越大越好,给定000,,,C p 的一组取值,就确定了检验模型模拟精度的一个等级,常用的精度等级见表1。
软件DPS 的分析结果也提供了C 、p 的检验结果。
(五)残差修正模型(六)建立新陈代谢GM(1,1)进行动态预测在实际建模过程中,原始数据序列的数据不一定全部用来建模。
我们在原始数据序列中取出一部分数据,就可以建立一个模型。
一般说来,取不同的数据,建立的模型也不一样,即使都建立同类的GM(1,1)模型,选择不同的数据,参数a,b的值也不一样。
灰色预测模型GM(1,1)的应用一、问题背景:蠕变是材料在高温下的一个重要性能。
处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。
高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。
为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。
过去,人们都是通过蠕变试验测量断裂时间。
而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。
如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。
二、低合金钢铸件蠕变性能的灰色预测下面是对Cr-mo-0.25V 低合金钢铸件高温蠕变情况利用灰色系统理论进行研究。
在500℃的高温下,已测得此铸件在载荷分别为37,36,35,34,33(kg/mm 2)情况下的蠕变断裂时间见下表。
数 列 序 数 K1 2 3 4 5载荷应力(kg/mm 2) 37 36 35 34 33 断裂时间()(100)0(K X ⨯小时)2.38 2.80 4.25 6.85 11.30 一次累加数列)()1(K X 2.38 5.18 9.43 16.28 27.581、建立GM (1,1)模型(1)数据处理:将同一数据列的前k 项元素累加后生成新数据列的第k 项元素。
即根据断裂时间数列)()0(k X 由∑==kn n X k X 1)0()1()()(得到 )()1(k X 。
(2)建立矩阵B,y:根据⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B 得到 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=19.2118.12130.7178.3B根据 T N N X X X Y )](,),3(),2([)0()0()0( =,得到 T N Y ]3.11,85.6,25.4,80.2[=(3)求出逆矩阵1()T BB - (4)作最小二乘估计,求参数u a ,N T T Y B B B u a 1)(ˆ-=⎪⎪⎭⎫⎝⎛=α 可得,⎪⎪⎭⎫ ⎝⎛-=97.05.0ˆα a = -0.5, u=0.97(5)建立时间响应函数,计算拟合值把a 和u 分别代入au e a u X t X at +-=+-))1(()1(ˆ)0()1(可得到解为2.24.4)1(ˆ5.0)1(-=+t e t X, 取t 为应力序数k 时,即得到时间响应方程为:2.24.4)1(ˆ5.0)1(-=+k e k X即可得到生成累加数列),2,1()1(ˆ)1( =+k k X 。
SPSS分析SPSS教程SPSSAU 灰色预测模型GM11 灰色模型灰色预测GM(1,1)模型分析Contents1背景 (2)2理论 (2)3操作 (3)4 SPSSAU输出结果 (3)5文字分析 (4)6剖析 (5)灰色预测模型可针对数量非常少(比如仅4个),数据完整性和可靠性较低的数据序列进行有效预测,其利用微分方程来充分挖掘数据的本质,建模所需信息少,精度较高,运算简便,易于检验,也不用考虑分布规律或变化趋势等。
但灰色预测模型一般只适用于短期预测,只适合指数增长的预测,比如人口数量,航班数量,用水量预测,工业产值预测等。
灰色预测模型有很多,GM(1,1)模型使用最为广泛,第1个数字表示进行一阶微分,第2个数字1表示只包含1个数据序列。
特别提示:GM(1,1)模型仅适用于中短期预测,不建议进行长期预测;GM(1,1)模型适用于数量少(比如20个以内)时使用,大量数据时不适合。
灰色预测模型案例Contents1背景 (2)2理论 (2)3操作 (3)4 SPSSAU输出结果 (3)5文字分析 (4)6剖析 (5)1背景当前某城市1986~1992共7年的道路交通噪声平均声级数据,现希望预测出往后一期器械声平均声级数据。
数据如下:年份城市交通噪声/dB(A)198671.10198772.40198872.40198972.10199071.40199172.00199271.602理论灰色预测GM(1,1)模型一般针对数据量少,有一定指数增长趋势的数据。
在进行模型构建时,通常包括以下步骤:第一步:级比值检验;此步骤目的在于数据序列是否有着适合的规律性,是否可得到满意的模型等,该步骤仅为初步检验,意义相对较小。
级比值=当期值/上一期值。
一般情况下级比值介于[0.982,1.0098]之间则说明很可能会得到满意的模型,但并不绝对。
第二步:后验差比检验;在进行模型构建后,会得到后验差比C值,该值为残差方差/ 数据方差;其用于衡量模型的拟合精度情况,C值越小越好,一般小于0.65即可。
灰色预测模型原理灰色预测模型(Grey Prediction Model)是一种基于灰色系统理论和数学建模方法的预测模型。
灰色系统理论是我国学者黄金云教授于1982年提出的一种系统理论,它是研究非确定性和不完备信息系统的一种新方法,可用于研究多变量、小样本和非线性系统。
灰色预测模型主要基于灰色数学建模方法,通过对已知的部分序列数据进行建模和预测,来推测未知的序列数据趋势。
它适用于研究数据量小、信息不完备、非线性关系复杂的系统。
下面将简要介绍灰色预测模型的原理、模型建立过程以及一些应用案例。
1. 灰色预测模型的原理灰色预测模型的核心思想是通过对已知数据进行灰色关联度的度量,从而建立出合适的数学模型,进行未来数据的预测。
其基本原理可以概括为以下五个步骤:(1)建立灰色微分方程:根据原始数据的特点,确定合适的灰色微分方程,通常使用一阶或高阶灰色微分方程。
(2)求解灰色微分方程:根据所选择的灰色微分方程,求解其参数,得到模型的特征参数。
(3)模型检验:检验所建立的灰色预测模型的拟合程度和误差是否符合要求。
(4)进行灰色关联度分析:根据已知数据的变化规律,计算各个因素的灰色关联度,确定相关因素的重要性。
(5)进行预测:利用建立好的灰色预测模型,对未来的数据进行预测和分析,得出预测值。
2. 模型建立过程灰色预测模型的建立过程中,通常包括以下几个步骤:(1)数据的建立与处理:对原始数据进行筛选、预处理和归一化处理,以满足模型的要求。
(2)建立灰色微分方程:从已知数据中提取主要特征,并根据数据的特点选择合适的灰色微分方程。
(3)求解灰色微分方程:根据所选的灰色微分方程,通过累加生成序列、求解参数等方法,得到模型的特征参数。
(4)模型的检验:根据已知数据的拟合程度和误差范围,评估所建立的灰色预测模型的准确性和可靠性。
(5)模型的应用与预测:利用已建立的模型进行未来数据的预测和分析,得出预测结果。
3. 应用案例灰色预测模型在实际应用中具有广泛的应用范围,以下是一些常见的应用案例:(1)经济领域:用于对经济指标、市场需求、价格变动等进行预测,为经济决策提供参考。
灰色预测模型GM (1,1)§1 预备知识平面上有数据序列 nn y x y x y x ,,,,,,2211 ,大致分布在一条直线上。
设回归直线为:b ax y ,要使所有点到直线的距离之和最小(最小二乘),即使误差平方和ni iib ax y J 12最小。
J 是关于a, b 的二元函数。
由120211n i i i i n i i i i i b x a y b J x b x a y a J0112n i i i ni ii i i b a y bx ax y x 则得使J 取极小的必要条件为:ii ii ni i i y nb x a y x x b x a 12 (*)22222ii i i i i i ii i i i i x x n y x x x y b x x n y x y x n a (1)以上是我们熟悉的最小二乘计算过程。
下面提一种观点,上述算法,本质上是用实际观测数据ix 、iy 去表示a 与b,使得误差平方和J 取最小值,即从近似方程b b b x x x a y y y n n 2121 中形式上解出a 与b。
把上式写成矩阵方程。
令 n y y y Y21,b a x x x Y n11121 yix xiiy x , jjyx ,令11121nx x x B ,则b a B Y 左乘T B 得b a B B Y B T T 注意到B T B 是二阶方阵,且其行列式不为零,故其逆阵(B T B)-1存在,所以上式左乘1BB T得 Y BB B b a TT 1(2)可以具体验算按最小二乘法求得的结果(1)与(2)式完全相同,下面把两种算法统一一下:由最小二乘得结果:方程(*) ii i i ni i i y nb x a y x x b x a 12 方程组改写为:n n iii y y y x xx b a nxxx21212111 令:11121nx x x B ,n y y y Y 21, b a a ˆ (*)化为 Y B aB B TTˆ所以Y BB B a TT1ˆ以后,只要数据列n j yx jj,,2,1, 大致成直线,既有近似表达式 n i bax y ii,,2,1当令: n y y y Y21,11121nx x x B ,b a a ˆ 则有 a B Y ˆy BBB a TT1ˆ(2)(2)式就是最小二乘结果,即按最小二乘法求出的回归直线b ax y 的回归系数a 与b。
数学建模——灰色预测模型灰色预测模型(Grey Forecasting Model)是一种用于预测不确定性数据的数学模型。
它适用于那些缺乏充分历史数据、不具备明显的规律性趋势或周期性的情况。
灰色预测模型基于灰色系统理论,通过分析数据的变化趋势和规律,来进行预测。
该模型在处理少量数据、缺乏趋势规律的情况下,具有一定的优势。
灰色预测模型的基本思想:灰色预测模型基于“白化(Whitening)”和“黑化(Blackening)”的思想,将不确定性数据分为“白色”和“黑色”两部分。
其中,“白色”代表已知数据,具有规律性和趋势,可以进行预测;而“黑色”代表未知数据,缺乏规律,需要进行预测。
通过建立数学模型,将“白色”和“黑色”数据进行融合,得出预测结果。
灰色预测模型的基本步骤:1.建立灰色数列:将原始数据分成“白色”和“黑色”两部分,构建灰色数列。
2.建立灰色微分方程:对“白色”数列进行微分,得到一阶或高阶微分方程。
3.求解微分方程:求解微分方程,得到预测模型的参数。
4.进行预测:利用已知的模型参数,对“黑色”数据进行预测,得出未来的趋势。
示例:用灰色预测模型预测销售量假设你是一家新开设的小型餐厅的经营者,你希望预测未来三个月的月销售量。
然而,你的餐厅刚刚开业不久,历史销售数据有限,且不具备明显的趋势。
这种情况下,你可以考虑使用灰色预测模型来预测销售量。
步骤:1.建立灰色数列:将已知的销售数据分为“白色”(已知数据)和“黑色”(未知数据)两部分。
2.建立灰色微分方程:对“白色”销售数据进行一阶微分,得到灰色微分方程。
3.求解微分方程:根据灰色微分方程的形式,求解微分方程,得到模型的参数。
4.进行预测:利用求解得到的模型参数,对“黑色”销售数据进行预测,得到未来三个月的销售量趋势。
这个例子中,灰色预测模型可以帮助你基于有限的历史销售数据,预测未来的销售趋势。
虽然该模型的精确度可能不如其他更复杂的方法,但在缺乏充足数据时,它可以提供一种有用的预测工具。
python实现灰⾊预测GM(1,1)模型灰⾊系统预测灰⾊预测公式推导来源公式推导连接关键词:灰⾊预测 python 实现灰⾊预测 GM(1,1)模型灰⾊系统预测灰⾊预测公式推导⼀、前⾔ 本⽂的⽬的是⽤Python和类对灰⾊预测进⾏封装⼆、原理简述1.灰⾊预测概述 灰⾊预测是⽤灰⾊模型GM(1,1)来进⾏定量分析的,通常分为以下⼏类: (1) 灰⾊时间序列预测。
⽤等时距观测到的反映预测对象特征的⼀系列数量(如产量、销量、⼈⼝数量、存款数量、利率等)构造灰⾊预测模型,预测未来某⼀时刻的特征量,或者达到某特征量的时间。
(2) 畸变预测(灾变预测)。
通过模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。
(3) 波形预测,或称为拓扑预测,它是通过灰⾊模型预测事物未来变动的轨迹。
(4) 系统预测,对系统⾏为特征指标建⽴⼀族相互关联的灰⾊预测理论模型,在预测系统整体变化的同时,预测系统各个环节的变化。
上述灰⾊预测⽅法的共同特点是: (1)允许少数据预测; (2)允许对灰因果律事件进⾏预测,例如: 灰因⽩果律事件:在粮⾷⽣产预测中,影响粮⾷⽣产的因⼦很多,多到⽆法枚举,故为灰因,然⽽粮⾷产量却是具体的,故为⽩果。
粮⾷预测即为灰因⽩果律事件预测。
⽩因灰果律事件:在开发项⽬前景预测时,开发项⽬的投⼊是具体的,为⽩因,⽽项⽬的效益暂时不很清楚,为灰果。
项⽬前景预测即为灰因⽩果律事件预测。
(3)具有可检验性,包括:建模可⾏性的级⽐检验(事前检验),建模精度检验(模型检验),预测的滚动检验(预测检验)。
2.GM(1,1)模型理论 GM(1,1)模型适合具有较强的指数规律的数列,只能描述单调的变化过程。
已知元素序列数据:做⼀次累加⽣成(1-AGO)序列:其中,令为的紧邻均值⽣成序列:其中,建⽴GM(1,1)的灰微分⽅程模型为:其中,为发展系数,为灰⾊作⽤量。
设为待估参数向量,即,则灰微分⽅程的最⼩⼆乘估计参数列满⾜其中再建⽴灰⾊微分⽅程的⽩化⽅程(也叫影⼦⽅程):⽩化⽅程的解(也叫时间响应函数)为那么相应的GM(1,1)灰⾊微分⽅程的时间响应序列为:取,则再做累减还原可得即为预测⽅程。