人教版七年级数学下册第六章实数实数教案
- 格式:doc
- 大小:157.01 KB
- 文档页数:4
6.1.1平方根(第一课时)】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。
情感态度与价值观:通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。
教学重点:算术平方根的概念和求法。
教学难点:算术平方根的求法。
一、情境引入:问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为225dm 的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?二、探索归纳:1.探索:学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm 5。
接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、254,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、52,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。
上面的问题,实际上是已知一个正数的平方,求这个正数的问题。
2.归纳:⑴算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a 那么这个正数x 叫做a 的算术平方根。
⑵算术平方根的表示方法:a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a 叫做被开方数。
三、应用:例1、 求下列各数的算术平方根:⑴100 ⑵6449 ⑶971 ⑷0001.0 ⑸0 注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算;②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;③0的算术平方根是0。
由此例题教师可以引导学生思考如下问题:你能求出-1,-36,-100的算术平方根吗?任意一个负数有算术平方根吗?归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。
本章复习整体设计第一课时教学目标1.结合实际理解算术平方根以及平方根、立方根的概念.2.掌握平方根及算术平方根的区别与联系.3.了解平方根及立方根的工具求法(用数学表、计算器等).教学重难点教学重点:1.平方根、算术平方根和立方根的概念及性质.2.理解实数的有关概念及实数的运算.教学难点:灵活运用算术平方根的非负性解题.教学过程一、平方根设计说明算术平方根、平方根是本章的重点和难点之一,这其中算术平方根、平方根与平方的互逆关系部分学生可能有不适应的地方,实际上逆向思维本身就有难度,再加上平方根与平方不是一对一的数字往来,无形中增加了思维的跨度.本环节的复习围绕着这一点展开,使基础知识更明确,计算更熟练.知识点一:平方根例1 144的算术平方根是________.解析:利用算术平方根的意义求解,得144=12.答案:12例2 169的平方根是________.解析:因为(±13)2=169,所以169的平方根为±13,即±169=±13.用计算器计算.例3 求下列各数的平方根及算术平方根:(1)0.64;(2)3625;(3)0;(4)⎝ ⎛⎭⎪⎫-322. 解:(1)∵(±0.8)2=0.64, ∴0.64的平方根为±0.8,即±0.64=±0.8.0.64的算术平方根是0.8,即0.64=0.8. (2)∵⎝ ⎛⎭⎪⎫±652=3625, ∴3625的平方根为±65,即±3625=±65. 3625的算术平方根为65,即3625=65. (3)∵02=0,∴0的平方根是0,0的算术平方根是0,即0=0.(4)∵⎝ ⎛⎭⎪⎫±322=⎝ ⎛⎭⎪⎫322=⎝ ⎛⎭⎪⎫-322,∴⎝ ⎛⎭⎪⎫-322的平方根是±32, 即±⎝ ⎛⎭⎪⎫-322=±32,⎝ ⎛⎭⎪⎫-322的算术平方根为32,即⎝ ⎛⎭⎪⎫-322=32. 例4 求(-7)的平方的平方根.分析:错解:(-7)的平方的平方根为-7.习惯地认为(-7)2的平方根为-7,没有进一步想到(-7)2=49,求(-7)2的平方根,就是求49的平方根. 解:(-7)的平方是49,而±7的平方等于49,则(-7)的平方的平方根是±7.例5 求81的平方根和算术平方根.分析:错解:81的平方根为±9,算术平方根为9.事实上,81表示的是81的算术平方根9.因此问题实质上是求9的平方根和算术平方根.解:81=9,所以81的平方根为±3,81的算术平方根为3.拓展探究1.25的算术平方根是( ).A .5 B. 5 C .-5 D .±5答案:A2.已知a +2+|b -1|=0,那么(a +b )2 007的值为( ).A .-1B .1C .32 007D .-32 007答案:A3.下列计算正确的是( ).A .(-2)0=0B .3-2=-9 C.9=3 D.2+3= 5答案:C4.计算:(3)2=__________.答案:3课堂练习1.如果一个数的算术平方根等于它本身,则这个数是( ).A .0B .1C .0或1D .除0和1外,还有其他数2.已知数a =3,b =1.732,c =1367500,则它们的大小关系是( ). A .a <b <c B .b <a <c C .b <c <a D .a <c <b3.利用计算器判断下列数,最接近5的数是( ).A.24B.245C.26D.2654.已知一个自然数的算术平方根等于a ,则下一个自然数的算术平方根等于( ).A .a +1 B.a 2+1 C.a +1 D .a 2+15.已知5=a ,则0.05等于( ).A .10aB .aC .0.1aD .非上述答案6.如果13是m 的一个平方根,那么m 的另一个平方根是__________.7.181的算术平方根为__________,(-5)2的平方根是__________. 8.( )2≈3,( )2≈10.(可借助于计算器,结果是近似数,保留4个有效数字)9.若a 的算术平方根等于a 的立方根,则3a 2+1=__________.10.若2≤x ≤3,化简(x -2)2+(x -3)2=__________.11.一个正方形的面积是24 cm 2,则这个正方形的周长大约是多少?(精确到0.01)12.已知x 2-9+y +3=0,求x +y 的值.答案:1.C 2.B 3.C 4.B 5.C 6.-13 7.13±5 8.±1.732 ±3.1629.1或4 10.111.设正方形的边长为x cm ,则x 2=24,所以x =24(负的平方根舍去).则正方形的周长为424≈19.60(cm).12.0或-6.教学说明在教学中无论是例题讲解,还是课堂练习,可以采取口答、小组互评、教师评价等方式来进行教学,出现问题时集中交流,讨论,明确症结所在,达到查缺补漏、共同提高的目的.二、立方根设计说明由平方根作为基础,学生接受起立方根来要轻松的多,但是平方根与立方根有明显的差别,首先被开方数的符号,再者结果的个数不同,复习要围绕着这两点来展开,对学生中存在的模糊认识,及时地讨论清楚.知识点一:立方根例1 下列说法正确的是( ). A.64的立方根是2 B.125216的立方根是±56C .(-1)2的立方根是-1D .-3是27的负立方根解析:因为正数的立方根只有一个且为正数,所以B ,C 是错误的,-3是27的立方根的相反数,所以D 错.求一个数立方根的运算,叫做开立方.开立方与立方是互逆运算,因此,可根据这种关系求一个数的立方根.注意:开平方时,被开方数是非负数,开立方时,可以是正数、负数,也可以是0. 两个重要的公式:①(3a )3=a ,②3-a =-3a . 根据3-a =-3a ,可将求负数的立方根问题转化为求正数的立方根问题,这种转化的数学思想,同学们在学习中要注意体会和运用.例2 求下列各式的值:(1)3-0.008;(2)(-30.5)3;(3)334327. 解:(1)3-0.008=-30.008=-0.2.(2)(-30.5)3=-0.5. (3)334327=3⎝ ⎛⎭⎪⎫733=73. 点评:(1)可利用3-a =-3a 进行计算.(2)(3)可利用公式(3a )3=a 计算.与立方根有关的计算问题,应根据题目的特点,灵活选择计算方法.同时,要注意符号的确定.例3 一个圆柱的体积是10 m 3,且底面圆的直径与圆柱的高相等,求这个圆柱底面的半径.(π取3.14,结果保留两个有效数字)解:设圆柱底面圆的半径是r m ,则圆柱的高为2r m ,根据题意,得πr 2·2r =10,3.14r 3=5,即r 3=1.592,所以r =31.592≈1.2(m).答:这个圆柱底面圆的半径约是1.2 m.点评:要求圆柱底面圆的半径,可设其底面圆的半径为r m ,根据体积列出关于r 的等式,进而通过开立方运算解决.在已知正方体的体积求边长、已知球的体积求半径时,常用到求立方根的知识.解决此1.求下列各式中x 的值.(1)4x 3+2716=0;(2)⎝⎛⎭⎪⎫18-12x 3=-0.125. 解:(1)∵4x 3+2716=0,∴x 3=-2764. ∴x =3-2764=-34. (2)∵⎝ ⎛⎭⎪⎫18-12x 3=-0.125, ∴18-12x =3-0.125. ∴18-12x =-0.5. ∴12x =18.5.∴x =37. 2.已知A =m -n m +n +10是m +n +10的算术平方根,B =m -2n +34m +6n -1是4m+6n -1的立方根,求B -A 的立方根.分析:因为A 是m +n +10的算术平方根,可知m -n =2,B 是4m +6n -1的立方根,可知m -2n +3=3,进而求得m ,n 的值,再求出A ,B ,问题得以解决.解:由题意,得m -n =2,即m =n +2,m -2n +3=3,有m =2n .∴n =2,m =4.∴A =16=4,B =327=3.∴B -A =3-4=-1.∴3B -A =3-1=-1.真题精析:1.-27的立方根是________.解析:∵(-3)3=27,∴-27的立方根为-3. 答案:-32.如果x 3=8,那么x =________.解析:∵x 3=8,∴x =38=2.答案:2课堂练习1.给出下面四个结论:①-0.064的立方根是0.4;②81的立方根是±3;③-27的立方根是-3;④116的平方根是14.其中正确的是( ). A .①②③④ B .②③④ C .③ D .④2.下面命题正确的是( ). A.9的平方根是±3 B .平方根等于它本身的数是1C .立方根等于它本身的数是0和±1D .平方根等于立方根的数是1 3.3-32和3-(-3)2( ).A .相等B .互为相反数C .互为倒数D .以上都不对4.使3-2|a |+9为最大的负整数,则a 的值为( ).A .5B .-5C .±5D .不存在5.已知315≈2.466,则3-0.000 015约等于( ).A .-0.246 6B .-0.024 66C .-0.002 466D .-0.000 246 66.已知x 3=125,那么x =__________;已知(x -1)3=8,则x =__________.7.一个正方体形状的木箱子里装满了2立方米的沙子,这个木箱的棱长是__________米(精确到0.01米). 8.64的立方根是__________.9.解方程125x 3-27=0,得x =__________.10.若x 的立方根是-12,则x =__________. 11.计算: (1)3-64;(2)30.000 125;(3)-3338. 12.若一个偶数的立方根比2大,平方根比4小,则这个数是多少?答案:1.C 2.C 3.A 4.C 5.B 6.5 3 7.1.26 8.2 9.35 10.-1811.(1)-4;(2)0.05;(3)-32. 12.10或12或14. 小结与作业复习了平方根与立方根的有关知识.作业整理易错题.评价与反思 本节设计有两个特点:1.平方根与立方根尽管知识点少,但是考点较多,变化较多,因此本节安排了大量的练习题目,便于学生开阔视野,全面地把握问题,同时学会从各个角度、各个侧面认识问题,解决问题,这对培养学生严谨的思维习惯大有好处.2.本节安排了一些最新的中考题,方便教师和学生选择使用,也利于掌握本章内容在中考中考察的深度和广度,同时能提高学生的学习兴趣,积极的应对考试.(设计者:孙长智)。
精品文档第六章实数6.1 平方根(3课时)课程目标一、知识与技能目标1.通过对平方值的计算等确立平方根的意义、开方的运算。
了解算术平方根与平方根的区别与联系。
2.对于任意有理数都能区分其“+”、“-”性,运用计算器已势在必行。
二、过程与方法目标采用类比平方值的求法,定义出平方根的概念,同时从这个过程可知一个什么样的数才具有平方根,这种数有几个平方根?并比较这两个平方根之间有什么关系?三、情感态度与价值观目标1.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神。
2.了解无理数的发现过程,鼓励学生大胆质疑,培养学生学习数学的热情。
教材解读本节内容首先给出一个简单的问题,根据正方形的面积求出其边长,由此引出求某数的平方根的问题,在涉及到不能直接用已有的知识开方时,则引进计算器的使用方法,通过计算器对任意正数进行开方。
这样将有理数与无理数沟通起来成为实数。
学情分析上学期已经学习了有理数,对任何数的形式主义都能够顺利得到,同时也感知了“互为相反数的平方相等”,故由平方值去探索平方根的问题实际上只是互逆过程,只要求出一个数的平方就可得知平方根的值。
第1课时一、创设情境,导入新课玲玲家最近喜事不断,家里新购了一套房子,全家欢欢喜喜地搬进新居,爸爸妈妈又增加了工资。
条件改善了,为了给玲玲一个好的学习环境,爸爸打算给玲玲买一张桌子供她在家做作业。
爸爸问玲玲:“你喜欢长方形桌子还是正方形桌子?”玲玲认为正方形桌子更大,可以多堆点书,又可以有足够的位置写字,所以她更喜欢正方形桌子。
于是爸爸根据她的喜爱为她购置了一张正方形桌子,玲玲量了量课桌的边长为100cm,你能算出这张桌子的周长和面积吗?当然可以了,?可是如果玲玲更直接地告诉爸爸“我想要一张面积约为125dm的正方形桌子”。
?请问她爸爸能为她购置到满意的桌子吗?当然可以,计算正方形的面积必须要知道正方形的边长,根据边长求面积是乘方运算,而根据面积求边长又是什么运算呢?这节课我们就来探讨这个问题。
《实数》复习课教案教学目标1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会进行实数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;4.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.教学重难点1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质、运算.教学过程一、知识疏理,形成体系(课前要求学生对本章知识进行总结)师:本章的主要内容是开方运算.从定义出发解题是解本章有关题目的基本方法,我们注意掌握用计算器进行数的计算的方法的同时,还必须注意区分清楚有理数与无理数的概念,掌握实数的四则运算.下面,我们以组为单位小结一下本章的知识点.生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系.开方包括开平方与开立方.通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根.依据这一思路,我们画出的知识结构图是:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ 师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗? 生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要.因此我们是这样总结的:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 师:当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数,所以实数的意义、分类以及相关的内容也需总结.生:我们是这样总结的:1.分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数0 2.每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点又都可以表示成一个实数,它们之间是一一对应的.师:有理数都可以表示成有限小数或无限循环小数.无理数是无限不循环小数,它不能表示成分数形式,任何一个无理数,都可以用给定精确度的有理数来近似地表示.二、易错警示误区一:不理解平方根、算术平方根的意义例1:求下列各式的值:误区二:无理数概念理解不清例2 下列说法正确的是( ) A 、 是分数。
第六章实数6.1 平方根(3课时)课程目标一、知识与技能目标1.通过对平方值的计算等确立平方根的意义、开方的运算。
了解算术平方根与平方根的区别与联系。
2.对于任意有理数都能区分其“+”、“-”性,运用计算器已势在必行。
二、过程与方法目标采用类比平方值的求法,定义出平方根的概念,同时从这个过程可知一个什么样的数才具有平方根,这种数有几个平方根?并比较这两个平方根之间有什么关系?三、情感态度与价值观目标1.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神。
2.了解无理数的发现过程,鼓励学生大胆质疑,培养学生学习数学的热情。
教材解读本节内容首先给出一个简单的问题,根据正方形的面积求出其边长,由此引出求某数的平方根的问题,在涉及到不能直接用已有的知识开方时,则引进计算器的使用方法,通过计算器对任意正数进行开方。
这样将有理数与无理数沟通起来成为实数。
学情分析上学期已经学习了有理数,对任何数的形式主义都能够顺利得到,同时也感知了“互为相反数的平方相等”,故由平方值去探索平方根的问题实际上只是互逆过程,只要求出一个数的平方就可得知平方根的值。
第1课时一、创设情境,导入新课玲玲家最近喜事不断,家里新购了一套房子,全家欢欢喜喜地搬进新居,爸爸妈妈又增加了工资。
条件改善了,为了给玲玲一个好的学习环境,爸爸打算给玲玲买一张桌子供她在家做作业。
爸爸问玲玲:“你喜欢长方形桌子还是正方形桌子?”玲玲认为正方形桌子更大,可以多堆点书,又可以有足够的位置写字,所以她更喜欢正方形桌子。
于是爸爸根据她的喜爱为她购置了一张正方形桌子,玲玲量了量课桌的边长为100cm,你能算出这张桌子的周长和面积吗?当然可以了,•可是如果玲玲更直接地告诉爸爸“我想要一张面积约为125dm的正方形桌子”。
•请问她爸爸能为她购置到满意的桌子吗?当然可以,计算正方形的面积必须要知道正方形的边长,根据边长求面积是乘方运算,而根据面积求边长又是什么运算呢?这节课我们就来探讨这个问题。
人教版七年级数学下册第六章《实数》教案执教七年级数学集体备课组2013。
3。
8第六章实数6.1平方根【第一课时】教学目标:【知识与技能】了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。
【过程与方法】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教学难点】会用平方根的概念求某些数的平方根,并能用根号加以表示.【教具准备】小黑板科学计算器【教学过程】一、导入1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的知识将会更加有趣.2、板书:实数 1.1 平方根二、新授(一)探求新知1、探讨:有面积为8平方厘米的正方形吗?如果有,那它的边长是多少?(少数学习超前的学生可能能答上来)这个边长是个怎样的数?你以前见过吗?2、引入“无理数”的概念:像(2.82842712……)这样无限不循环的小数就叫做无理数。
3、你还能举出哪些无理数?(,)、、1/3是无理数吗?4、有理数和无理数统称为实数。
(二)知识归纳:1、板书:1。
1平方根2、李老师家装修厨房,铺地砖10。
8平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少吗?(0.3米)3、怎么算?每块地砖的面积是:10。
8120=0。
09平方米。
由于0.32=0。
09,因此面积为0。
09平方米的正方形,它的边长为0.3米。
4、练习:由于()=400,因此面积为400平方厘米的正方形,它的边长为()厘米。
5、在实际问题中,我们常常遇到要找一个数,使它的平方等于给定的数,如已知一个数a,要求r,使r2=a,那么我们就把r叫做a的一个平方根。
第六章 6.3 实数知点 1: 无理数1.定 : 无穷不循小数叫做无理数 .2. 表形式 :(1) 开方开不尽获得的数如:、等;(2)含有π的式子 ;(3)有律但不循的无穷小数, 如 :0.101 001 000 1⋯ ;注意 : 于数的分 , 不可以只看形式 , 并不是全部根号的数都是无理数, 格依据有理数和无理数的定来判断 , 如有理数 .知点 2: 数的观点(1)定 : 有理数和无理数称数. 比如 :-6,,,0.4, π等都是数 .(2)数的分: (1) 数的相反数的意和有理数的相反数的意一, 假如 a 表示随意一个数, 那么 -a 就是 a 的相反数 , 即 a 与 -a 互相反数 , 比如 :的相反数是-,的相反数是-. 此外 , 定 0的相反数仍旧是0;(2) 数的的意与有理数的的意一, 一个正数的是它自己; 一个数的是它的相反数;0 的是0, 用字母表示 : 于随意数a, 有|a|=知点 3: 数与数1.关系 : 数与数上的点一一 .2.与有理数同样 , 数上右的点表示的数比左的点表示的数大.: (1) 利用数能够比数的大小, 在数上 , 右的点表示的数比左的点表示的数大 ;(2) 正数大于0, 数小于0, 正数大于全部数, 两个数比大小, 大的反而小 .知点 4: 数的性在数范内的相反数、倒数、的意和在有理数范内的相反数、倒数、的意完整一 .知点 5: 数的运算(1) 数有加、减、乘、除、乘方、开方运算, 混淆运算的序是先算乘方、开方, 再算乘、除 ,最后算加、减 , 同运算依据从左到右的序行,有括号的要先算括号里的;(2) 加法交律 :a+b=b+a; 加法合律 :(a+b)+c=a+(b+c) ; 乘法交律 :ab=ba; 乘法合律 :(ab)c=a(bc);乘法分派律 :a(b+c)=ab+ac.之有理数的全部运算法合用于数的运算.考点 1:数观点的用【例 1】以下各数 :-5,3.7,,,,- π ,,0.3,-,0.212 112 111 2⋯(每两个2之依次多一个 1)哪些是有理数 ?哪些是无理数?哪些是正数 ?哪些是数?解 : 有理数有 :-5,3.7,,,0.3,-;无理数有 :,- π ,,0.212 112 111 2⋯(每两个2之挨次多一个1);正数有 :3.7,,,0.3,,,0.212 112 111 2⋯(每两个2之挨次多一个1);数有 :-5,-,- π .考点 2: 数的大小比【例 2】比 2,,的大小,正确的选项是()A.2<<B.2<<C.<2<D.<<2答案 :C2∴ 2<3∴2> . 应选 C.点拨:∵ 2 =4<5,, ∵ 2 =8>7,考点 3:用数轴比较数的大小【例 3】在数轴上表示以下各数, 并把它们按从小到大的次序摆列起来, 用“ <”连接:-0.,-,.解 :-0.,-,在数轴上表示,如下图.由图获得 :-<-0. < .点拨:关于 -, 能够经过画边长为 1 的正方形的对角线获得.考点 4:实数的运算【例 4】计算 :(1)(+) ×;(2)--;(3)-( 精准到 0.01);(4)+(<a<π)( 精准到 0.01).解 :(1)原式 =(0.1+0.1)× 12=2.4;(2)原式= --=-;(3)原式 =(-)-(+)=---=-2 ≈ (-2) × 1.414=-2.828 ≈-2.83;(4)由<a<π , 得原式 =( π -a)+(a-)= π -≈ 3.142-1.414=1.728 ≈1.73.点拨:关于一些常用的无理数, 应记着其近似值, 如≈ 1.414,≈ 1.732.。
6.3 实数(第1课时) 教学目标 1.了解无理数和实数的概念. 2.知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应.
3.了解数的范围由有理数扩大到实数后,一些概念、运算等的一致性及其发展变化.
教学重点
实数的运算.
教学难点
实数的运算
教学内容
一、导入新课
使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
3,-53,847,119,9
11,95. 二、新课教学
我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即
3=3.0;-53=-0.6;847=5.875;119=0.81;9
11=1.2;95=0.5. 归纳:任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数.无限不循环小数又叫无理数,π=3.1415926…也是无理数;有理数和无理数统称为实数.
由于非0有理数和无理数都有正负之分,实数也有正负之分,所以实数还可以按大小分类如下:
探究:
如下图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′对应的数是多少?
从图中可以看出,OO′的长是这个圆的周长π,所以点O′的对应数是π.这样,无理数π可以用数轴上的点表示出来.
事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.
数a的相反数是-a,这里a表示任意一个实数.一个正实数的绝对值是本身;一个负实数的绝对值是它的相反数;0的绝对值是0.
三、课堂练习
四、课堂小结
1.什么叫做无理数?
2.什么叫做有理数?
3.有理数和数轴上的点一一对应吗?
4.无理数和数轴上的点一一对应吗?
5.实数和数轴上的点一一对应吗?
五、布置作业
教学反思:
6.3 实数(第2课时)
教学内容
实数的运算.
一、导入新课
1. 用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律.
2. 用字母表示有理数的加法交换律和结合律.
3. 平方差公式、完全平方公式.
4. 有理数的混合运算顺序.
复习以前知识,导入新课的教学.
二、实例探究
1. 思考:
(1)2的相反数是,-π的相反数是,0的相反数是 .
(2)2=,-π=,0= .
数A的相反数是-a,这里A表示任意一个实数.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即设A表示一个实数,则
2. 例题
例1 (1)分别写出-6,π-3.14的相反数;
(2)指出-5,1-33各是什么数的相反数;
-的绝对值;
(3)求364
(4)已知一个数的绝对值是3,求这个数.
当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算. 在进行实数的运算时,
有理数的运算法则及运算性质等同样适用.
例2 计算下列各式的值:
(1);
3
+(2)33+23.
(-
2
)
2
在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似的有限小数去代替无理数,再进行计算.
三、课堂小结
1. 实数的运算法则及运算律;
2. 实数的相反数和绝对值的意义.
四、布置作业
教学反思:。