机械控制工程基础4-3
- 格式:ppt
- 大小:274.50 KB
- 文档页数:14
目录第一章自动控制系统的基本原理第一节控制系统的工作原理和基本要求第二节控制系统的基本类型第三节典型控制信号第四节控制理论的内容和方法第二章控制系统的数学模型第一节机械系统的数学模型第二节液压系统的数学模型第三节电气系统的数学模型第四节线性控制系统的卷积关系式第三章拉氏变换第一节傅氏变换第二节拉普拉斯变换第三节拉普拉斯变换的基本定理第四节拉普拉斯逆变换第四章传递函数第一节传递函数的概念与性质第二节线性控制系统的典型环节第三节系统框图及其运算第四节多变量系统的传递函数第五章时间响应分析第一节概述第二节单位脉冲输入的时间响应第三节单位阶跃输入的时间响应第四节高阶系统时间响应第六章频率响应分析第一节谐和输入系统的定态响应第二节频率特性极坐标图第三节频率特性的对数坐标图第四节由频率特性的实验曲线求系统传递函数第七章控制系统的稳定性第一节稳定性概念第二节劳斯判据第三节乃奎斯特判据第四节对数坐标图的稳定性判据第八章控制系统的偏差第一节控制系统的偏差概念第二节输入引起的定态偏差第三节输入引起的动态偏差第九章控制系统的设计和校正第一节综述第二节希望对数幅频特性曲线的绘制第三节校正方法与校正环节第四节控制系统的增益调整第五节控制系统的串联校正第六节控制系统的局部反馈校正第七节控制系统的顺馈校正第一章 自动控制系统的基本原理定义:在没有人的直接参与下,利用控制器使控制对象的某一物理量准确地按照预期的规律运行。
第一节 控制系统的工作原理和基本要求 一、 控制系统举例与结构方框图例1. 一个人工控制的恒温箱,希望的炉水温度为100C °,利用表示函数功能的方块、信号线,画出结构方块图。
图1人通过眼睛观察温度计来获得炉内实际温度,通过大脑分析、比较,利用手和锹上煤炭助燃。
煤炭给定的温度100 C手和锹眼睛实际的炉水温度比较图2例2. 图示为液面高度控制系统原理图。
试画出控制系统方块图 和相应的人工操纵的液面控制系统方块图。
第二章习题答案2-1试求下列函数的拉氏变换,假设0<t 时,0)(=t f(1))3cos 1(5)(t t f -= 答案:⎪⎭⎫⎝⎛+-=22315)(s s s s F (2)t et f t10cos )(5.0-= 答案:2210)5.0(5.0)(+++=s s s F (3))35sin()(π+=t t f 答案:22225235521)(+⋅++⋅=s s s s F (4)atn e t t f =)( 答案:1)(!)(+-=n a s n s F 2-2求下列函数的拉氏变换(1)te t t tf 33232)(-++= 答案:32182)(42+++=s ss s F (2))0(4sin 2cos )(333≥++=---t te t e e t tf t t t答案:222244)3(42)1(1)3(6)(++++++++=s s s s s F(3)te t t tf 22)1()2(15)(-+-⋅= 答案:)2(32)2(25)(----+=s s e s e s s F (4)⎩⎨⎧><≤≤=ππt t t tt f ,000sin )(答案:提示)sin(sin )(π-+=t t t f ,se s s s F π-+++=1111)(22 2-3已知)1(10)(+=s s s F(1)利用终值定理,求∞→t 时)(t f 值 答案:10)1(10lim )(lim )(lim 0=+==→→∞→s s ss sF t f s s t(2)通过取)(s F 的拉氏反变换,求∞→t 时)(t f 值答案:[]()101)(10lim 11110lim )(lim )(lim 11=-⋅=⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛+-==-∞→-∞→-∞→∞→tt t t t e t s s L s F L t f 2-4已知2)2(1)(+=s s F (1)利用初值定理,求)0(f 和)0(f '的值。
《机械控制工程基础》课程教学大纲一、课程基本信息1.课程编号:MACH4008012.课程体系/类别:专业类/专业核心课3.学时/学分:56学时/ 3学分4.先修课程:高等数学、积分变换、理论力学、电工电子技术、机械设计基础、大学计算机基础、高级程序设计5.适用专业:机械大类专业(包括机械工程、车辆工程、测控技术与仪器、能源与动力工程和工业工程)二、课程目标及学生应达到的能力《机械控制工程基础》是西安交通大学机械类专业的一门专业核心课程,主要授课内容是运用现代数学知识、自动控制理论和信息技术来分析、设计典型机电控制系统。
旨在培养学生运用科学方法和工具来解决机械工程基本问题的系统分析设计能力、综合创新能力。
本课程的主要任务是通过课堂教学、计算机仿真实训、实验教学等教学方式,使学生掌握实现机械系统自动控制的基本理论;学会典型机电系统的数学建模、运行性能分析和系统设计、校正与补偿等基本知识和基本技能;具有基本的机电控制系统分析设计能力,以及对复杂机械系统的控制问题进行分析、求解和论证的能力,并了解机械控制领域的新理论和新技术,支撑毕业要求中的相应指标点。
课程目标及能力要求具体如下:课程目标1. 掌握机械控制系统的基本概念和组成原理,具备自动控制原理与系统的基础概念;掌握典型机电传动单元与系统的数学建模方法;掌握机电系统的时域和频域分析设计校正方法。
(毕业要求中的第1)课程目标2. 培养学生对机械控制工程中复杂问题的分析能力,能够对复杂机械控制系统进行分析、设计,并能够采用相关软件进行模拟仿真,能够构建实验控制系统进行分析研究,具有研究和解决机械控制工程问题的能力。
(毕业要求中的第2、4)课程目标3. 初步了解机械系统常用的控制方法,以及现代控制和智能控制的原理,了解机械控制理论的现状与发展趋势。
培养学生运用机械控制工程领域新技术新方法对复杂机械工程中的系统控制问题进行理论三、课程教学内容与学时分配)四、课程教学方法(一)课堂讲授(40学时)1.采用启发式教学,通过结合具体如机器人控制系统、机床运动控制系统、液压伺服控制系统等实例教学,激发学生主动学习的兴趣,培养学生独立思考、分析问题和解决问题的能力,引导学生主动通过实践和自学获得自己想学到的知识。
(完整版)《机械工程控制基础》课程教学大纲-2012版《机械工程控制基础》课程教学大纲课程名称:机械工程控制基础英文名称:Control Fundamental of Mechanical Engineering课程编码:51510502学时/学分:36/2课程性质:必修课适用专业:机械类各专业先修课程:高等数学,理论力学,电工与电子技术,复变函数与积分变换(可选)一、课程的目的与任务《机械工程控制基础》是机械设计制造及其自动化专业的机械电子工程及相近专业方向的一门技术基础课。
本课程是在高等数学和工程数学(复变函数与积分变换)的知识基础上,结合力学、电学等相关知识,介绍机械工程类专业的重要理论基础之一——工程控制论。
这门学科既是一门广义的系统动力学,又是一种合乎唯物辩证法的思想论和方法论,对启迪与发展人们的思维与智力有很大的作用。
本课程的基本任务是将自动控制理论应用于机械工程实际,基本要求是在阐明机械工程控制论的基本概念、基本知识与基本方法的基础上,使学生学会建立和变换系统的数学模型,掌握控制系统的时间响应分析和频率特性分析方法,并在此基础上具备讨论控制系统的稳定性,以及系统分析和校正、系统辨识等问题的能力。
使学生以辩证方法冲破形而上学的思想方法,推动这一领域的生产与学科向前发展。
在学习本课程之前,学生应当从先修课程中获得动力学分析、电路分析的能力,了解微分方程求解知识和复变函数的概念,初步掌握积分变换及其逆变换的基本方法.学习本课程之后,学生还应当注意结合其它机械工程学的知识,将控制理论应用到工程实践中去。
二、教学内容及基本要求第一章绪论教学目的和要求:本章首先阐述了机械工程控制基础这门课程的重要意义,然后介绍控制工程的基本思想、基本概念、控制系统的分类和基本要求,使学生了解机械工程控制论的研究对象与任务和系统、模型等知识,深刻理解反馈和反馈控制,接下来对控制理论的发展进行简单介绍.教学重点和难点:1.系统及其模型2.反馈和反馈控制3.系统的基本要求教学方法与手段:以课堂讲授为主,注意举例和采用启发式教学,配合适当的课堂练习和课外作业。
《控制工程基础》第四章习题解题过程和参考答案4-1 设单位反馈系统的开环传递函数为:10()1G s s =+。
当系统作用有下列输入信号时:()sin(30)r t t =+︒,试求系统的稳态输出。
解:系统的闭环传递函数为:10()()11()()1()111C s G s s s R s G s Φ===++这是一个一阶系统。
系统增益为:1011K =,时间常数为:111T =其幅频特性为:()A ω=其相频特性为:()arctan T ϕωω=- 当输入为()sin(30)r t t =+︒,即信号幅值为:1A =,信号频率为:1ω=,初始相角为:030ϕ=︒。
代入幅频特性和相频特性,有:1(1)A ====11(1)arctan arctan5.1911T ωϕω==-=-=-︒所以,系统的稳态输出为:[]()(1)sin 30(1)24.81)c t A A t t ϕ=⋅⋅+︒+=+︒4-2 已知系统的单位阶跃响应为:49()1 1.80.8(0)ttc t e e t --=-+≥。
试求系统的幅频特性和相频特性。
解:对输出表达式两边拉氏变换:1 1.80.8361()49(4)(9)(1)(1)49C s s s s s s s s s s =-+==++++++由于()()()C s s R s =Φ,且有1()R s s =(单位阶跃)。
所以系统的闭环传递函数为:1()(1)(1)49s s sΦ=++ 可知,这是由两个一阶环节构成的系统,时间常数分别为:1211,49T T == 系统的幅频特性为二个一阶环节幅频特性之积,相频特性为二个一阶环节相频特性之和:12()()()A A A ωωω===1212()()()arctan arctan arctanarctan49T T ωωϕωϕωϕωωω=+=--=--4-3 已知系统开环传递函数如下,试概略绘出奈氏图。
(1)1()10.01G s s =+ (2)1()(10.1)G s s s =+(3))1008()1(1000)(2+++=s s s s s G (4)250(0.61)()(41)s G s s s +=+ 解:手工绘制奈氏图,只能做到概略绘制,很难做到精确。