常用的排序算法的时间复杂度和空间复杂度
- 格式:doc
- 大小:24.50 KB
- 文档页数:2
一、实验目的1. 理解排序算法的基本原理和常用算法。
2. 通过编程实现几种常见的排序算法。
3. 分析不同排序算法的性能,比较其优缺点。
4. 培养编程能力和算法思维能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm三、实验内容1. 算法选择:冒泡排序、选择排序、插入排序、快速排序、归并排序2. 实现排序算法3. 分析算法性能4. 比较不同排序算法的优缺点四、实验步骤1. 设计排序算法(1)冒泡排序冒泡排序是一种简单的排序算法,其基本思想是通过比较相邻元素的值,将较大的元素向后移动,较小的元素向前移动,直到整个序列有序。
(2)选择排序选择排序的基本思想是遍历整个序列,在未排序的序列中找到最小(大)元素,将其与序列的第一个元素交换,然后继续在剩余未排序的序列中找到最小(大)元素,重复此过程,直到整个序列有序。
(3)插入排序插入排序的基本思想是将未排序的序列中的元素插入到已排序的序列中,直到整个序列有序。
(4)快速排序快速排序是一种高效的排序算法,其基本思想是选取一个基准值,将序列分为两部分,一部分小于基准值,另一部分大于基准值,然后递归地对这两部分进行快速排序。
(5)归并排序归并排序是一种分治策略的排序算法,其基本思想是将序列划分为两个子序列,分别对这两个子序列进行排序,然后将排序好的子序列合并为一个有序序列。
2. 编写排序算法代码```pythondef bubble_sort(arr):n = len(arr)for i in range(n):for j in range(0, n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]def selection_sort(arr):n = len(arr)for i in range(n):min_idx = ifor j in range(i+1, n):if arr[min_idx] > arr[j]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i]def insertion_sort(arr):n = len(arr)for i in range(1, n):key = arr[i]j = i-1while j >= 0 and key < arr[j]:arr[j+1] = arr[j]j -= 1arr[j+1] = keydef quick_sort(arr):if len(arr) <= 1:return arrpivot = arr[len(arr) // 2]left = [x for x in arr if x < pivot]middle = [x for x in arr if x == pivot]right = [x for x in arr if x > pivot]return quick_sort(left) + middle + quick_sort(right) def merge_sort(arr):if len(arr) <= 1:return arrmid = len(arr) // 2left = merge_sort(arr[:mid])right = merge_sort(arr[mid:])return merge(left, right)def merge(left, right):result = []i = j = 0while i < len(left) and j < len(right):if left[i] < right[j]:result.append(left[i])i += 1else:result.append(right[j])j += 1result.extend(left[i:])result.extend(right[j:])return result```3. 分析算法性能(1)冒泡排序冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
算法分类,时间复杂度,空间复杂度,优化算法算法 今天给⼤家带来⼀篇关于算法排序的分类,算法的时间复杂度,空间复杂度,还有怎么去优化算法的⽂章,喜欢的话,可以关注,有什么问题,可以评论区提问,可以与我私信,有什么好的意见,欢迎提出.前⾔: 算法的复杂度分为时间复杂度与空间复杂度,时间复杂度指执⾏算法需要需要的计算⼯作量,空间复杂度值执⾏算法需要的内存量,可能在运⾏⼀些⼩数据的时候,⼤家体会不到算法的时间与空间带来的体验. 优化算法就是将算法的时间优化到最快,将空间优化到最⼩,假如你写的mod能够将百度游览器的搜索时间提升0.5秒,那都是特别厉害的成绩.本章内容: 1,算法有哪些 2,时间复杂度,空间复杂度 3,优化算法 4,算法实例⼀,算法有哪些 常见的算法有冒泡排序,快排,归并,希尔,插⼊,⼆分法,选择排序,⼴度优先搜索,贪婪算法,这些都是新⼿⼊门必须要了解的,你可以不会,但是你必须要知道他是怎么做到的,原理是什么,今天就给⼤家讲⼀讲我们常⽤的冒泡排序,选择排序,这两个排序算法,1,冒泡排序(Bubble Sort), 为什么叫他冒泡排序呢? 因为他就像是从海底往海⾯升起的⽓泡⼀样,从⼩到⼤,将要排序的数从⼩到⼤排序,冒泡的原理: 他会⼀次⽐较两个数字,如果他们的顺序错误,就将其调换位置,如果排序正确的话,就⽐较下⼀个,然后重复的进⾏,直到⽐较完毕,这个算法的名字也是这样由来的,越⼤的数字,就会慢慢的'浮'到最顶端. 好了该上代码了,下⾯就是冒泡排序的代码,冒泡相对于其他的排序算法来说,⽐较的简单,⽐较好理解,运算起来也是⽐较迅速的,⽐较稳定,在⼯作中也会经常⽤到,推荐使⽤# 冒泡排序def bubble_sort(alist):n = len(alist)# 循环遍历,找到当前列表中最⼤的数值for i in range(n-1):# 遍历⽆序序列for j in range(n-1-i):# 判断当前节点是否⼤于后续节点,如果⼤于后续节点则对调if alist[j] > alist[j+1]:alist[j], alist[j+1] = alist[j+1], alist[j]if__name__ == '__main__':alist = [12,34,21,56,78,90,87,65,43,21]bubble_sort(alist)print(alist)# 最坏时间复杂度: O(n^2)# 最优时间复杂度: O(n)# # 算法稳定性:稳定2,选择排序(selection sort) 选择排序(selection sort)是⼀种简单直观的排序⽅法, 他的原理是在要排序的数列中找到最⼤或者最⼩的元素,放在列表的起始位置,然后从其他⾥找到第⼆⼤,然后第三⼤,依次排序,依次类,直到排完, 选择排序的优点是数据移动, 在排序中,每个元素交换时,⾄少有⼀个元素移动,因此N个元素进⾏排序,就会移动 1--N 次,在所有依靠移动元素来排序的算法中,选择排序是⽐较优秀的⼀种选择排序时间复杂度与稳定性:最优时间复杂度: O(n2)最坏时间复杂度:O(n2)算法稳定性 :不稳定(考虑每次升序选择最⼤的时候)# if alist[j] < alist[min_index]:# min_index = j## # 判断min_index索引是否相同,不相同,做数值交换# if i != min_index:# alist[i],alist[min_index] = alist[min_index],alist[i]### if __name__ == '__main__':# alist = [12,34,56,78,90,87,65,43,21]# # alist = [1,2,3,4,5,6,7,8,9]# select_sort(alist)# print(alist)# O(n^2)# 不稳定def select_sort(alist):"""选择排序"""n = len(alist)for i in range(n - 1):min_index = i # 最⼩值位置索引、下标for j in range(i+1, n):if alist[j] < alist[min_index]:min_index = j# 判断min_index ,如果和初始值不相同,作数值交换if min_index != i:alist[i], alist[min_index] = alist[min_index],alist[i]if__name__ == '__main__':alist = [8,10,15,30,25,90,66,2,999]select_sort(alist)print(alist)这是⼀些算法的时间复杂度与稳定性时间复杂度,空间复杂度 接下来就要来说说时间复杂度与空间复杂度: 时间复杂度就是假如你泡茶,从开始泡,到你喝完茶,⼀共⽤了多长时间,你中间要执⾏很多步骤,取茶叶,烧⽔,上厕所,接电话,这些都是要花时间的,在算法中,时间复杂度分为 O(1)最快 , O(nn)最慢,O(1) < O(logn) <O(n)<O(n2)<O(n3)<O(2n) <O(nn) ⼀般游览器的速度都在O(n),做我们这⼀⾏,要注意客户体验,如果你程序的运⾏特别慢,估计别⼈来⼀次,以后再也不会来了下⾯给⼤家找了张如何计算时间复杂度的图⽚: 空间复杂度(space complexity) ,执⾏时所需要占的储存空间,记做 s(n)=O(f(n)),其中n是为算法的⼤⼩, 空间复杂度绝对是效率的杀⼿,曾经看过⼀遍⽤插⼊算法的代码,来解释空间复杂度的,觉得特别厉害,我就⽐较low了,只能给⼤家简单的总结⼀下我遇到的空间复杂度了, ⼀般来说,算法的空间复杂度值得是辅助空间,⽐如:⼀组数字,时间复杂度O(n),⼆维数组a[n][m] :那么他的空间复杂度就是O(n*m) ,因为变量的内存是⾃动分配的,第⼀个的定义是循环⾥⾯的,所以是n*O(1) ,如果第⼆个循环在外边,那么就是1*O(1) ,这⾥也只是⼀个了解性的东西,如果你的⼯作中很少⽤到,那么没有必要深究,因为⽤的真的很少优化算法这边带来了代码,你们在复制下来了python上运⾏⼀下,看⼀下⽤的时间与不同, ⾃然就懂了,这是未优化的算法''已知有a,b,c三个数,都是0-1000之内的数,且: a+b+c=1000 ⽽且 a**2+b**2=c**2 ,求a,b,c⼀共有多少种组合'''# 在这⾥加⼀个时间模块,待会好计算出结果import time# 记录开头时间start_time=time.time()# 把a,b,c循环出来for a in range(1001):for b in range(1001):for c in range(100):# 判断他主公式第⼀次,并未优化if a+b+c==1000 and a**2 + b**2 == c**2 :# 打印print("a=" ,a)print("b=" ,b)print("c=" ,c)else:passstop_time = time.time()print('⼀共耗时: %f'%(stop_time-start_time))# ⼀共耗时 156.875001秒这是第⼀次优化import time# 记录开头时间start_time=time.time()# 把a,b,c循环出来for a in range(1001):# 这⾥改成1001-a之后,他就不⽤再循环b了for b in range(1001-a):for c in range(100):# 判断他主公式第⼆次,优化了b,if a+b+c==1000 and a**2 + b**2 == c**2 :print("a=" ,a)print("b=" ,b)print("c=" ,c)else:passstop_time = time.time()print('⼀共耗时: %f'%(stop_time-start_time))# ⼀共耗时 50.557070秒最后⼀次优化import time# 记录开头时间start_time=time.time()# 把a,b,c循环出来for a in range(1001):for b in range(1001-a):c=1000 - a - b# 判断他主公式第三次,优化了b和cif a+b+c==1000 and a**2 + b**2 == c**2 :print("a=" ,a)print("b=" ,b)print("c=" ,c)else:passstop_time = time.time()print('⼀共耗时: %f'%(stop_time-start_time))# ⼀共耗时 2.551449秒从156秒优化到l2秒, 基本运算总数 * 基本运算耗时 = 运算时间这之间的耗时和你的机器有着很⼤的关系今天是12⽉30⽇,明天就要跨年了,祝⼤家2019年事业有成,⼯资直线上升,早⽇脱单,。
算法与程序设计知识点算法和程序设计是计算机科学中非常重要的概念和技术。
本文将介绍一些与算法和程序设计相关的知识点。
一、算法基础1. 什么是算法?算法是一系列解决问题的步骤和指令。
它描述了如何从输入数据中得出正确的输出结果。
2. 算法的特性良好的算法应具备以下特性:- 正确性:算法应能够产生正确的输出结果。
- 可读性:算法应易于理解和阅读。
- 高效性:算法应在合理时间内运行,并占用较少的计算资源。
3. 算法的复杂度算法的复杂度包括时间复杂度和空间复杂度。
时间复杂度描述了算法运行所需要的时间量,而空间复杂度则描述了算法所需的额外空间量。
二、数据结构1. 数组数组是一种线性数据结构,它由连续的内存空间组成,并存储相同类型的数据。
数组的访问、插入和删除操作能在O(1)时间内完成。
2. 链表链表是一种基础的数据结构,它由一系列节点组成,每个节点存储数据和指向下一个节点的引用。
链表的插入和删除操作能在O(1)时间内完成,但访问某个特定节点需要O(n)时间。
3. 栈栈是一种具有后进先出(LIFO)特性的数据结构。
栈的插入和删除操作都在栈顶进行,时间复杂度为O(1)。
4. 队列队列是一种具有先进先出(FIFO)特性的数据结构。
队列的插入操作在队尾进行,删除操作在队首进行,时间复杂度为O(1)。
三、常用算法1. 排序算法常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序和归并排序等。
这些排序算法在不同的数据规模下具有不同的时间复杂度。
2. 查找算法查找算法用于在给定的数据集合中寻找特定元素。
常见的查找算法有线性查找和二分查找,其中二分查找的时间复杂度为O(log n)。
3. 图算法图是一种非常重要的数据结构,图算法用于解决与图相关的问题,如最短路径问题、最小生成树问题和拓扑排序等。
四、编程语言1. C语言C语言是一种广泛使用的编程语言,它具有高效性和灵活性,尤其适合系统级编程。
2. Java语言Java语言是一种面向对象的编程语言,它具有跨平台性、安全性和可靠性,被广泛应用于企业级开发和移动开发。
算法调研报告算法调研报告一、引言算法是计算机科学中的核心概念,它是一种有序的操作序列,用来解决特定问题或完成特定任务。
不同的算法在解决同一个问题时,可能会有不同的时间和空间复杂度,因此正确选择合适的算法对于程序的性能至关重要。
本报告将对几种常用的算法进行调研。
二、排序算法1. 冒泡排序冒泡排序是一种简单直观的排序算法,它重复地遍历要排序的数组,比较相邻元素的大小并交换,直到整个数组按照要求有序。
冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
2. 快速排序快速排序是一种高效的排序算法,它采用分治的策略。
通过选择一个元素作为基准,将数组分成两部分,一部分小于基准,一部分大于基准,然后递归地对两部分进行排序。
快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。
三、查找算法1. 二分查找二分查找是一种在有序数组中查找特定元素的算法。
它通过比较中间元素和目标元素的大小关系,缩小查找范围,最终找到目标元素或确定目标元素不存在。
二分查找的时间复杂度为O(logn),空间复杂度为O(1)。
2. 哈希查找哈希查找是一种通过计算目标元素的哈希值,将其映射到数组中的位置进行查找的算法。
哈希查找的时间复杂度为O(1),但需要额外的空间来存储哈希表。
四、图算法1. 广度优先搜索广度优先搜索是一种用于图的遍历的算法。
它从图中的一个顶点开始,逐层遍历图中的顶点,直到所有顶点都被访问过。
广度优先搜索的时间复杂度为O(|V|+|E|),其中V为顶点数,E 为边数。
2. 最短路径算法最短路径算法用于寻找图中两个顶点之间的最短路径。
常见的最短路径算法有迪杰斯特拉算法和弗洛伊德算法。
迪杰斯特拉算法适用于求解单源最短路径,时间复杂度为O(|V|^2)。
弗洛伊德算法适用于求解多源最短路径,时间复杂度为O(|V|^3)。
五、总结本报告对常用的排序算法、查找算法和图算法进行了调研,分析了它们的时间复杂度和空间复杂度。
常用排序算法分析比较排序算法是计算机科学中的基本概念之一,它主要用于对一组元素进行排序,使得这些元素按照某种规则有序排列。
常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等等,这些算法都有自己的特点和适用场景,下面针对这些排序算法进行分析比较。
1.冒泡排序冒泡排序是一种简单的排序算法,它的主要思想是依次比较相邻的两个元素,如果它们的顺序不对就交换它们的位置,可以保证每次循环后最后一个元素是已经排序好的。
冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
2.插入排序插入排序是一种稳定的排序算法,它的基本思想是将待排序的数据分为两个区间,已排序区间和未排序区间,在未排序区间内遍历,将每个元素插入到已排序区间的合适位置。
插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。
3.选择排序选择排序是一种比较简单的排序算法,它的主要思想是通过不断选择未排序区间内的最小值,然后和未排序区间的第一个元素交换位置,以此类推,直到排序完毕。
选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。
4.快速排序快速排序是一种经典的排序算法,它的思想是采用分治的思想,将序列分为左右两个子序列,通过递归的方式对左右两个子序列进行快速排序,最后合并两个排好序的子序列。
快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。
5.归并排序归并排序是一种稳定的排序算法,它的基本思想是采用分治的思想,将序列分为左右两个子序列,通过递归的方式对左右两个子序列进行排序,最后将两个排好序的子序列合并成一个有序序列。
归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。
通过比较以上五种排序算法,可以发现每种算法都有自己的特点和适用场景,对于元素数量较少的情况下,可以选择冒泡排序、插入排序或选择排序,这些算法思路简单易懂,实现也比较容易;对于大规模数据排序,可以选择归并排序或快速排序,因为它们的时间复杂度比较优秀。
相关知识介绍(所有定义只为帮助读者理解相关概念,并非严格定义):1、稳定排序和非稳定排序简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就说这种排序方法是稳定的。
反之,就是非稳定的。
比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。
假如变成a1,a4, a2,a3,a5就不是稳定的了。
2、内排序和外排序在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。
3、算法的时间复杂度和空间复杂度所谓算法的时间复杂度,是指执行算法所需要的计算工作量。
一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。
功能:选择排序输入:数组名称(也就是数组首地址)、数组中元素个数算法思想简单描述:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
选择排序是不稳定的。
算法复杂度O(n2)--[n的平方void select_sort(int *x, int n){int i, j, min, t;for (i=0; i<n-1; i++) /*要选择的次数:0~n-2共n-1次*/{min = i; /*假设当前下标为i的数最小,比较后再调整*/for (j=i+1; j<n; j++)/*循环找出最小的数的下标是哪个*/{if (*(x+j) < *(x+min)){min = j; /*如果后面的数比前面的小,则记下它的下标*/}}if (min != i) /*如果min在循环中改变了,就需要交换数据*/{t = *(x+i);*(x+i) = *(x+min);*(x+min) = t;}}/*功能:直接插入排序输入:数组名称(也就是数组首地址)、数组中元素个数算法思想简单描述:在要排序的一组数中,假设前面(n-1) [n>=2] 个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。
1.算法一般都可以用哪几种控制结构组合而成?答案:顺序、选择、循环。
2. 在下列选项中,哪个不是一个算法一般应该具有的基本特征?说明:算法的四个基本特征是:可行性、确定性、有穷性和拥有足够的情报。
答案:无穷性。
3. 在计算机中,算法是指什么?答案:解题方案的准确而完整的描述。
4. 算法的时间复杂度是指?答案:算法执行过程中所需要的基本运算次数。
5. 算法的空间复杂度是指?答案:执行过程中所需要的存储空间。
6. 算法分析的目的是?答案:分析算法的效率以求改进。
7. 下列叙述正确的是(C)A.算法的执行效率与数据的存储结构无关B.算法的空间复杂度是指算法程序中指令(或语句)的条数C.算法的有穷性是指算法必须能在执行有限个步骤之后终止D.算法的时间复杂度是指执行算法程序所需要的时间8. 数据结构作为计算机的一门学科,主要研究什么?答案:主要研究数据的逻辑结构、对各种数据结构进行的运算,以及数据的存储结构。
9. 数据结构中与所使用的计算机无关的是数据的(C)A.存储结构B.物理结构C.逻辑结构D.物理和存储结构10. 下列叙述中,错误的是(B)A.数据的存储结构与数据处理的效率密切相关B.数据的存储结构与数据处理的效率无关C.数据的存储结构在计算机中所占的空间不一定是连续的D.一种数据的逻辑结构可以有多种存储结构11. 数据的存储结构是指什么?答案:数据的逻辑结构在计算机中的表示。
12. 数据的逻辑结构是指?答案:反映数据元素之间逻辑关系的数据结构。
13. 根据数据结构中各数据元素之间前后件关系的复杂程度,一般将数据结构分为?答案:线性结构和非线性结构。
14. 下列数据结构具有记忆功能的是(C)A.队列B.循环队列C.栈D.顺序表15. 下列数据结构中,按先进后出原则组织数据的是(B)A.线性链表B.栈C.循环链表D.顺序表16. 递归算法一般需要利用什么实现?答案:队列17. 下列关于栈的叙述中正确的是(D)A.在栈中只能插入数据B.在栈中只能删除数据C.栈是先进先出的线性表D.栈是先进后出的线性表18. 由两个栈共享一个存储空间的好处是?答案:节省存储空间,降低上溢发生的机率。
常⽤排序算法的时间复杂度和空间复杂度以上快速排序和归并排序的空间复杂度不正确没有的参考图1,以图2为准(对,就是懒得重新画图了)排序法最差时间分析平均时间复杂度稳定度空间复杂度冒泡排序O(n2)O(n2)稳定O(1)快速排序O(n2)O(n*log2n)不稳定O(log2n)~O(n)选择排序O(n2)O(n2)稳定O(1)⼆叉树排O(n2)O(n*log2n)不稳定O(n)序插⼊排序O(n2)O(n2)稳定O(1)堆排序O(n*log2n)O(n*log2n)不稳定O(1)希尔排序O O不稳定O(1)1.插⼊排序由N-1趟排序组成,对于p=1到p=N-1趟,插⼊排序保证从位置0到位置p上的元素为已排序状态。
时间复杂度:O(N^2)代码void InsertionSort(ElementType A[],int N){int j,p;ElementType Tmp;for(p=1;p<N;p++){Tmp=A[j];//把A[j]保存下来,因为它要被插⼊到前⾯的某个位置去for(j=p;j>0&&A[j-1]>Tmp;j--)//⼤于A[j]的元素逐个后移{A[j]=A[j-1];}A[j]=Tmp;}}2.希尔排序希尔排序使⽤⼀个序列h1,h2,h3,ht,叫做增量排序。
在使⽤增量hk的⼀趟排序之后,对于每个i我们有A[i]<A[i+hk],所有相隔hk的元素被排序。
时间复杂度:O(N^(1+a)),其中0<a<1。
//代码不太好理解,使⽤了3层循环void ShellSort(ElementType A[],int N){int j,p,Increment;ElementType Tmp;for(Increment=N/2;Increment>0;Increment/=2){for(p=Increment;p<N;p++){Tmp=A[p];for(j=p;j>=Increment;j-=Increment){if(A[j]<A[j-Increment])A[j]=A[j-Increment];elsebreak;}A[j]=Tmp;}}}3. 堆排序思想:建⽴⼩顶堆,然后执⾏N次deleteMin操作。
各种排序算法的时间复杂度和空间复杂度(阿⾥)⼆分查找法的时间复杂度:O(logn) redis,kafka,B+树的底层都采⽤了⼆分查找法参考:⼆分查找法 redis的索引底层的跳表原理实现参考:⼆分查找法参考:⼆分查找法:1.⼆分查找⼆分查找也称为折半查找,它是⼀种效率较⾼的查找⽅法。
⼆分查找的使⽤前提是线性表已经按照⼤⼩排好了序。
这种⽅法充分利⽤了元素间的次序关系,采⽤分治策略。
基本原理是:⾸先在有序的线性表中找到中值,将要查找的⽬标与中值进⾏⽐较,如果⽬标⼩于中值,则在前半部分找,如果⽬标⼩于中值,则在后半部分找;假设在前半部分找,则再与前半部分的中值相⽐较,如果⼩于中值,则在中值的前半部分找,如果⼤于中值,则在后半部分找。
以此类推,直到找到⽬标为⽌。
假设我们要在 2,6,11,13,16,17,22,30中查找22,上图所⽰,则查找步骤为:⾸先找到中值:中值为13(下标:int middle = (0+7)/2),将22与13进⾏⽐较,发现22⽐13⼤,则在13的后半部分找;在后半部分 16,17,22,30中查找22,⾸先找到中值,中值为17(下标:int middle=(0+3)/2),将22与17进⾏⽐较,发现22⽐17⼤,则继续在17的后半部分查找;在17的后半部分 22,30查找22,⾸先找到中值,中值为22(下标:int middle=(0+1)/2),将22与22进⾏⽐较,查找到结果。
⼆分查找⼤⼤降低了⽐较次数,⼆分查找的时间复杂度为:O(logn),即。
⽰例代码:public class BinarySearch {public static void main(String[] args) {int arr[] = {2, 6, 11, 13, 16, 17, 22, 30};System.out.println("⾮递归结果,22的位置为:" + binarySearch(arr, 22));System.out.println("递归结果,22的位置为:" + binarySearch(arr, 22, 0, 7));}//⾮递归static int binarySearch(int[] arr, int res) {int low = 0;int high = arr.length-1;while(low <= high) {int middle = (low + high)/2;if(res == arr[middle]) {return middle;}else if(res <arr[middle]) {high = middle - 1;}else {low = middle + 1;}}return -1;}//递归static int binarySearch(int[] arr,int res,int low,int high){if(res < arr[low] || res > arr[high] || low > high){return -1;}int middle = (low+high)/2;if(res < arr[middle]){return binarySearch(arr, res, low, middle-1);}else if(res > arr[middle]){return binarySearch(arr, res, middle+1, high);}else {return middle;}}}其中冒泡排序加个标志,所以最好情况下是o(n)直接选择排序:排序过程:1 、⾸先在所有数据中经过 n-1次⽐较选出最⼩的数,把它与第 1个数据交换,2、然后在其余的数据内选出排序码最⼩的数,与第 2个数据交换...... 依次类推,直到所有数据排完为⽌。
排序法最差时间分析平均时间复杂度稳定度空间复杂度
冒泡排序()() 稳定()
快速排序()(*) 不稳定()()
选择排序()() 稳定()
二叉树排序()(*) 不一顶()
插入排序()() 稳定()
堆排序(*) (*) 不稳定()
希尔排序不稳定()
、时间复杂度
()时间频度一个算法执行所耗费地时间,从理论上是不能算出来地,必须上机运行测试才能知道.但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费地时间多,哪个算法花费地时间少就可以了.并且一个算法花费地时间与算法中语句地执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多.一个算法中地语句执行次数称为语句频度或时间频度.记为().
()时间复杂度在刚才提到地时间频度中,称为问题地规模,当不断变化时,时间频度()也会不断变化.但有时我们想知道它变化时呈现什么规律.为此,我们引入时间复杂度概念. 一般情况下,算法中基本操作重复执行地次数是问题规模地某个函数,用()表示,若有某个辅助函数(),使得当趋近于无穷大时,()()地极限值为不等于零地常数,则称()是()地同数量级函数.记作()O(()),称O(()) 为算法地渐进时间复杂度,简称时间复杂度.
在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为(),另外,在时间频度不相同时,时间复杂度有可能相同,如()与()它们地频度不同,但时间复杂度相同,都为(). 按数量级递增排列,常见地时间复杂度有:常数阶(),对数阶(),线性阶(), 线性对数阶(),平方阶(),立方阶(),...,次方阶(),指数阶().随着问题规模地不断增大,上述时间复杂度不断增大,算法地执行效率越低. 、空间复杂度与时间复杂度类似,空间复杂度是指算法在计算机内执行时所需存储空间地度量.记作: ()(()) 我们一般所讨论地是除正常占用内存开销外地辅助存储单元规模.讨论方法与时间复杂度类似,不再赘述.
()渐进时间复杂度评价算法时间性能主要用算法时间复杂度地数量级(即算法地渐近时间复杂度)评价一个算法地时间性能.
、类似于时间复杂度地讨论,一个算法地空间复杂度( )()定义为该算法所耗费地存储空间,它也是问题规模地函数.渐近空间复杂度也常常简称为空间复杂度.
空间复杂度( )是对一个算法在运行过程中临时占用存储空间大小地量度.一个算法在计算机存储器上所占用地存储空间,包括存储算法本身所占用地存储空间,算法地输入输出数据所占用地存储空间和算法在运行过程中临时占用地存储空间这三个方面.算法地输入输出数据所占用地存储空间是由要解决地问题决定地,是通过参数表由调用函数传递而来地,它不随本算法地不同而改变.存储算法本身所占用地存储空间与算法书写地长短成正比,要压缩这方面地存储空间,就必须编写出较短地算法.算法在运行过程中临时占用地存储空间随算法地不同而异,有地算法只需要占用少量地临时工作单元,而且不随问题规模地大小而改变,我们称这种算法是“就地"进行地,是节省存储地算法,如这一节介绍过地几个算法都是如此;有地算法需要占用地临时工作单元数与解决问题地规模有关,它随着地增大而增大,当较大时,将占用较多地存储单元,例如将在第九章介绍地快速排序和归并排序算法就属于这种情况.文档收集自网络,仅用于个人学习
如当一个算法地空间复杂度为一个常量,即不随被处理数据量地大小而改变时,可表示为();当一个算法地空间复杂度与以为底地地对数成正比时,可表示为();当一个算法地空司复杂度与成线性比例关系时,可表示为().若形参为数组,则只需要为它分配一个存储由实参传送
来地一个地址指针地空间,即一个机器字长空间;若形参为引用方式,则也只需要为其分配存储一个地址地空间,用它来存储对应实参变量地地址,以便由系统自动引用实参变量.文档收集自网络,仅用于个人学习。