集合论是现代数学的基础,康托在研究函数论时产生了探 索无穷集和超穷数的兴趣。康托肯定了无穷数的存在,并对无 穷问题进行了哲学的讨论,最终建立了较完善的集合理论,为 现代数学的发展打下了坚实的基础。
1. 我们以前已经接触过的集合
自然数集合,正分数集合,有理数集合;
到角的两边的距离相等的所有点的集合; 是角平分线 到线段的两个端点距离相等的所有点的集合; 是线段垂直平分线
例2 试用列举法和描述法表示下列集合:
(1)方程x 2 2 0的所有实数根组成的集合;
(2) 由大于10小于20的所有整数组成的集合.
(2)设大于10小于20的整数为x, 它满足条件x Z 且10 x 20, 因此, 用描述法表示为 B {x Z | 10 x 20}. 大于10小于20的整数有11,12,13,14,15,16,17,18 , 19, 因此, 用列举法表示为 B {11,12,13,14,15,16,17,18,19}.
描述法有两种表述形式: 1.数式形式:在花括号内先写上表示这个集合元素 的一般符号及以取值(或变化)范围,再画一条竖线, 在竖线后写出这个集合中元素所具有的共同特征. 形式如:{xxxx|xxxxxxxxx} 如由不等式x-3>2的所有解组成的集合,可表示 为 {x|x-3>2}; 由直线y=x+1上所有的点的坐标组成的集合,可 表示为 {(x,y)| y=x+1 }。
(1)方程x 2 0的所有实数根组成的集合;
2
解 : (1)设方程x 2 0的实数根为x, 并且满足条
2
件x 2 2 0, 因此, 用描述法表示为 A {x R | x 2 2 0}. 方程 x 2 2 0有两个实数根 2 , 2 , 因此, 用列举法表示为A { 2 , 2}.