光学第2章习题及答案
- 格式:doc
- 大小:369.50 KB
- 文档页数:9
第二章光的干涉作业1、在杨氏干涉实验中,两个小孔的距离为1mm,观察屏离小孔的垂直距离为1m,若所用光源发出波长为550nm和600nm的两种光波,试求:(1)两光波分别形成的条纹间距;(2)两组条纹的第8个亮条纹之间的距离。
2、在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为100cm,当用一片折射率为1.61的透明玻璃贴住其中一小孔时,发现屏上的条纹系移动了0.5cm,试决定该薄片的厚度。
3、在菲涅耳双棱镜干涉实验中,若双棱镜材料的折射率为1.52,采用垂直的激光束(632.8nm)垂直照射双棱镜,问选用顶角多大的双棱镜可得到间距为0.05mm 的条纹。
4、在洛埃镜干涉实验中,光源S1到观察屏的垂直距离为1.5m,光源到洛埃镜的垂直距离为2mm。
洛埃镜长为40cm,置于光源和屏的中央。
(1)确定屏上看见条纹的区域大小;(2)若波长为500nm,条纹间距是多少?在屏上可以看见几条条纹?5、在杨氏干涉实验中,准单色光的波长宽度为0.05nm,平均波长为500nm,问在小孔S1处贴上多厚的玻璃片可使P ’点附近的条纹消失?设玻璃的折射率为1.5。
6、在菲涅耳双面镜的夹角为1’,双面镜交线到光源和屏的距离分别为10cm 和1m 。
设光源发出的光波波长为550nm ,试决定光源的临界宽度和许可宽度。
7、太阳对地球表面的张角约为0.0093rad ,太阳光的平均波长为550nm ,试计算地球表面的相干面积。
8、在平行平板干涉装置中,平板置于空气中,其折射率为1.5,观察望远镜的轴与平板垂直。
试计算从反射光方向和透射光方向观察到的条纹的可见度。
9、在平行平板干涉装置中,若照明光波的波长为600nm ,平板的厚度为 2mm ,折射率为1.5,其下表面涂上高折射率(1.5)材料。
试问:(1)在反射光方向观察到的干涉圆环条纹的中心是亮斑还是暗斑?(2)由中心向外计算,第10个亮环的半径是多少?(f=P P ’20cm)(3)第10个亮环处的条纹间距是多少?10、检验平行平板厚度均匀性的装置中,D是用来限制平板受照面积的光阑。
第二章 理想光学系统1.针对位于空气中的正透镜组()0'>f 及负透镜组()0'<f ,试用作图法分别对以下物距 ∞---∞-,,2/,0,2/,,2,f f f f f ,求像平面的位置。
解:1.0'>f ()-∞=l a()'2f l b -=()f f l c =-=()/f l d -=()0=l e()/f l f =')(f f l g -=='22)(f f l h -==+∞=l i )(2.0'<f -∞=l a )(l b )(=l c =)(/)(f l d -=0 el(=)f=l2/ (f)()fg=l(=h)ll i)(+∞=2. 已知照相物镜的焦距f’=75mm,被摄景物位于(以F 点为坐标原点)=x ,2,4,6,8,10,m m m m m -----∝-处,试求照相底片应分别放在离物镜的像方焦面多远的地方。
解: (1)x= -∝ ,xx ′=ff ′ 得到:x ′=0 (2)x ′= (3)x ′= (4)x ′= (5)x ′=(6)x ′=3.设一系统位于空气中,垂轴放大率*-=10β,由物面到像面的距离(共轭距离)为7200mm , 物镜两焦点间距离为1140mm 。
求该物镜焦距,并绘出基点位置图。
解:∵ 系统位于空气中,f f -='10''-===ll y y β 由已知条件:1140)('=+-+x f f7200)('=+-+x l l解得:mm f 600'= mm x 60-=4.已知一个透镜把物体放大*-3投影到屏幕上,当透镜向物体移近18mm 时,物体将被放大*-4,试求透镜的焦距,并用图解法校核之。
解:方法一:31'11-==l l β ⇒ ()183321'1--=-=l l l ①42'22-==l l β ⇒ 2'24l l -= ② 1821+-=-l l ⇒ 1821-=l l ③ '/1/1/11'1f l l =-'/1/1/12'2f l l =-将①②③代入④中得 mm l 2702-= mm l 1080'2-= ∴ mm f 216'=方法二: 311-=-=x fβ 422-=-=x fβ ⇒ mm f 216-= 1812=-x x方法三: 12)4)(3(21''=--==∆∆=ββαnn x x2161812'-=⨯=∆x''fx -=β143''''2'121=+-=∆=+-=-∴fx fx x ββ mm x f 216''=∆=∴5.一个薄透镜对某一物体成实像,放大率为⨯-1,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动,放大率为原先的3/4倍,求两块透镜的焦距为多少 解:⇒ 2'21'1/1/1/1/1l l l l -=- ④6.有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向物体移近100mm , 则所得像与物同大小,求该正透镜组的焦距。
第二章习题一、选择题:2008.在菲涅耳圆屏衍射的几何阴影中心处( B )(A)永远是个亮点,其强度只与入射光强有关。
(B)永远是个亮点,其强度随着圆屏的大小而变。
(C)有时是亮点,有时是暗点。
2014.一波长为500nm的单色平行光,垂直射到0.02cm宽的狭缝上,在夫琅禾费衍射花样中心两旁第二条暗纹之间的距离为3mm,则所用透镜的焦距为( D )(A)60mm (B)60cm (C)30mm (D)30cm2026.一个衍射光栅宽为3cm,以波长为600nm的光照射,第二级主极大出现于衍射角为300处。
则光栅的总刻度线数为A(A)1.25*104 (B)2.5*104 (C)6.25*103 (D)9.48*1032028.X 射线投射在间距为d的平行点阵面的晶体中,试问发生布拉格晶体衍射的最大波长为多少?D(A)d/4 (B)d/2 (C)d (D)2d2128. 菲涅尔圆孔衍射实验表明,几何光学是波动光学在一定条件下的近似,如果从圆孔露出来的波面对所考察的点作出的的半波带的数目为K,这种条件下可表达成:( D )(A)衍射波级数K~0;(B)衍射波级数K=1;(C)衍射波级数K〉1;(D)衍射波级数K〉〉1。
2129. 用半波带法研究菲涅尔圆孔的衍射的结果说明,圆孔轴线上的P点的明暗决定于:(C )(A)圆孔的大小;(B)圆孔到P点的距离;(C)半波带数目的奇偶;(D)圆孔半径与波长的比值。
2130 用半波带法研究菲涅尔圆孔衍射时,圆孔线上P点的明暗决定于:(D )(A)圆孔的直径;(B)光源到圆孔的距离;(C)圆孔到P的距离;(D)圆孔中心和边缘光线到P点的光程差。
2131 一波带片主焦点的光强约为入射光强的400倍,则波带片的开带数为:( A )(A)10;(B)20;(C)40;(D)100。
2132 在夫琅和费单缝衍射中,当入射光的波长变大时,中央零级条纹:(B )(A)宽度变小;(B)宽度变大;(C)宽度不变;(D)颜色变红。
第二章习题2-1. 如图所示,两相干平行光夹角为α,在垂直于角平分线的方位上放置一观察屏,试证明屏上的干涉亮条纹间的宽度为: 2sin2αλ=l 。
2-2. 如图所示,两相干平面光波的传播方向与干涉场法线的 夹角分别为0θ和R θ,试求干涉场上的干涉条纹间距。
2-3. 在杨氏实验装置中,两小孔的间距为0.5mm ,光屏离小孔的距离为50cm 。
当以折射率为1.60的透明薄片贴住小孔S2时,发现屏上的条纹移动了1cm ,试确定该薄片的厚度。
2-4. 在双缝实验中,缝间距为0.45mm ,观察屏离缝115cm ,现用读数显微镜测得10个条纹(准确地说是11个亮纹或暗纹)之间的距离为15mm ,试求所用波长。
用白光实验时,干涉条纹有什么变化?2-5. 一波长为0.55m μ的绿光入射到间距为0.2mm 的双缝上,求离双缝2m 远处的观察屏上干涉条纹的间距。
若双缝距离增加到2mm ,条纹间距又是多少?2-6. 波长为0.40m μ~0.76m μ的可见光正入射在一块厚度为1.2×10-6 m 、折射率为1.5的薄玻璃片上,试问从玻璃片反射的光中哪些波长的光最强?2-7. 题图绘出了测量铝箔厚度D 的干涉装置结构。
两块薄玻璃板尺寸为75mm ×25mm 。
在钠黄光(λ=0.5893m μ)照明下,从劈尖开始数出60个条纹(准确地说是从劈尖开始数出61个明条纹或暗条纹),相应的距离是30mm ,试求铝箔的厚度D = ?若改用绿光照明,从劈尖开始数出100个条纹,其间距离为46.6 mm ,试求这绿光的波长。
2-8. 如图所示的尖劈形薄膜,右端厚度h 为0.005cm ,折射率n = 1.5,波长为0.707m μ的光以30°角入射到上表2-1题用图2-2题用图2-7题用图2-8题用图面,求在这个面上产生的条纹数。
若以两块玻璃片形成的空气尖劈代替,产生多少条条纹?2-9. 利用牛顿环干涉条纹可以测定凹曲面的曲率半径,结构如图所示。
第二章习题1、选择题:2008.在菲涅耳圆屏衍射的几何阴影中心处( )(A)永远是个亮点,其强度只与入射光强有关。
(B)永远是个亮点,其强度随着圆屏的大小而变。
(C)有时是亮点,有时是暗点。
2014.一波长为500nm的单色平行光,垂直射到0.02cm宽的狭缝上,在夫琅禾费衍射花样中心两旁第二条暗纹之间的距离为3mm,则所用透镜的焦距为()(A)60mm (B)60cm (C)30mm (D)30cm2026.一个衍射光栅宽为3cm,以波长为600nm的光照射,第二级主极大出现于衍射角为300处。
则光栅的总刻度线数为(A)1.25*104 (B)2.5*104 (C)6.25*103 (D)9.48*103 2028.X 射线投射在间距为d的平行点阵面的晶体中,试问发生布拉格晶体衍射的最大波长为多少?(A)d/4 (B)d/2 (C)d (D)2d2128. 菲涅尔圆孔衍射实验表明,几何光学是波动光学在一定条件下的近似,如果从圆孔露出来的波面对所考察的点作出的的半波带的数目为K,这种条件下可表达成:()(A)衍射波级数K~0;(B)衍射波级数K=1;(C)衍射波级数K〉1;(D)衍射波级数K〉〉1。
2129. 用半波带法研究菲涅尔圆孔的衍射的结果说明,圆孔轴线上的P点的明暗决定于:()(A)圆孔的大小;(B)圆孔到P点的距离;(C)半波带数目的奇偶;(D)圆孔半径与波长的比值。
2130 用半波带法研究菲涅尔圆孔衍射时,圆孔线上P点的明暗决定于:()(A)圆孔的直径;(B)光源到圆孔的距离;(C)圆孔到P的距离;(D)圆孔中心和边缘光线到P点的光程差。
2131 一波带片主焦点的光强约为入射光强的400倍,则波带片的开带数为:()(A)10;(B)20;(C)40;(D)100。
2132 在夫琅和费单缝衍射中,当入射光的波长变大时,中央零级条纹:()(A)宽度变小;(B)宽度变大;(C)宽度不变;(D)颜色变红。
细丝习题2.11图第2章题解2.8解:(沈惠君等大学物理指导题P177) (1)由 λk dD x k =则 λd D x 1010±=± 故m 11.0105.510222020741010=⨯⨯⨯⨯==-=∆---λd D x x x (2)原坐标原点处是干涉的零级条纹,此处光程差为 021=-r r 当将上面一条缝上覆盖一薄片后,坐标原点处的光程差变为 21)1(r r e n -+- 则原点处光程差改变量是 λk e n =-)1( 得7106.6105.5158.1)1(67=⨯⨯⨯-=-=--λen k 即原零级条纹移到原第7级条纹处。
整个条纹向上移动。
2.9 解:(沈惠君等大学物理指导题P177)光线垂直照射在膜表面,两支反射相干光的光程差为ne 2,当相消干涉时,满足2)12(2λ+=k ne在可见光范围内,满足相消干涉的波长是nm 0051=λ与nm 7002=λ, 则有 2)12(211λ+=k ne ① 2)12(222λ+=k ne ②由于在此期间无其他相消波长,所以 121=-k k ③ ①比上② 得112122121=++λλk k 再将③代入 得3400070005000)(212211=+=-+=λλλλk由①得 m e 7710731.6210530.12132--⨯=⨯⨯⨯+⨯=2.10 解:(张三慧编著的大学物理学 P410)由光程差改变 λN L =2 得 mm N L 410349.512043220.022-⨯=⨯==λ 2.11解:(钟锡华等光学习题解P133)由劈尖等厚干涉条纹的特点,知相邻亮(或暗)条纹对应的厚度差为2λ;细丝所在处和劈尖棱边的条纹性质相同,故细丝 和棱边处的厚度差,即m D μλλ357.23.5894428=⨯===习题2.12图2.12解:(钟锡华等光学习题解P133)(1)由条纹间距与劈尖楔角的关系 l∆=2λθ又由实验装置知2G 和1G 的高度之差 θl d =∆ 故有μm 47.29105.023.589521=⨯⨯⨯=∆==∆-l l l d λθ 轻点待测块规一侧的平晶,若条纹间距密集了,说明劈尖楔角增大,由实验装置知,待测块规比标准件高度低; 若条纹稀疏了,说明楔角变小,则待测块规高于标准件。
物理光学习题库——光的干涉部分一、选择题1. 下列哪一个干涉现象不属于分振幅干涉?A. 薄膜干涉B.迈克尔逊干涉C.杨氏双缝干涉D.马赫-曾德干涉2. 平行平板的等倾干涉图样定域在A. 无穷远B.平板上界面C.平板下界面D.自由空间3. 在双缝干涉试验中,两条缝的宽度原来是相等的,若其中一缝的宽度略变窄,则A.干涉条纹间距变宽B. 干涉条纹间距变窄C.不再发生干涉现象D. 干涉条纹间距不变,但原来极小处强度不再为04. 在杨氏双缝干涉实验中,相邻亮条纹和相邻暗条纹的间隔与下列的哪一种因素无关?A.光波波长B.屏幕到双缝的距离C. 干涉级次D. 双缝间隔5. 一束波长为λ的单色光从空气中垂直入射到折射率为n的透明薄膜上,要使反射光得到干涉加强,薄膜厚度应为A.λ/4B.λ/4nC. λ/2D. λ/2n6. 在白炽灯入射的牛顿环中,同级圆环中相应于颜色蓝到红的空间位置是A.由里向外B.由外向里C. 不变D. 随机变化7. 一个光学平板玻璃A与待测工件B之间形成空气劈尖,用波长为500nm的单色光垂直照明,看到的反射光干涉条纹弯曲部分的顶点恰好与其右边条纹的直线部分的切线相切,则工件的上表面缺陷是A.不平处为凸起,最大高度为250nmB.不平处为凸起,最大高度为500nmC.不平处为凹槽,最大高度为250nmD. 不平处为凹槽,最大高度为500nm8. 在单色光照明下,轴线对称的杨氏干涉双孔装置中,单孔屏与双孔屏的间距为1m,双孔屏与观察屏的间距为2m,装置满足远场、傍轴近似条件,屏上出现对比度K=0.1的等间隔干涉条纹,现将双孔屏沿横向向上平移1mm,则A. 干涉条纹向下平移2mmB. 干涉条纹向上平移2mmC. 干涉条纹向上平移3mmD. 干涉条纹不移动9. F-P腔内间距h增加时,其自由光谱范围ΔλA. 恒定不变B. 增加C. 下降D. =010. 把一平凸透镜放在平玻璃板上,构成牛顿环装置,当平凸透镜慢慢向上平移时,由反射光形成的牛顿环A. 向中心收缩,条纹间隔不变B. 向中心收缩,环心呈明暗交替变化C. 向外扩张,环心呈明暗交替变化D. 向外扩张,条纹间隔变大11. 在迈克尔逊干涉仪的一条光路中,垂直光线方向放入折射率为n、厚度为h的透明介质片,放入后,两路光束光程差的改变量为A. 2(n-1)hB. 2nhC. nhD. (n-1)h12. 在楔形平板的双光束干涉实验中,下列说法正确的是A. 楔角越小,条纹间隔越宽;B. 楔角一定时,照射波长越长,条纹间隔越宽C. 局部高度变化越大,条纹变形越严重D. 形成的干涉属于分波前干涉13. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹会A. 不变B. 变密集C.变稀疏D.不确定14. 若想观察到非定域干涉条纹,则应选择A. 单色扩展光源B.单色点光源C.15. 将一金属丝置于两块玻璃平板之间,构成如图所示的结构,当在A点施加一个均匀增加的力F时,下列说法正确的是A.条纹间隔逐渐增大B.条纹数量逐渐变多C.干涉条纹级次D.条纹向级次低的方向移动16. 由A、B两只结构相同的激光器发出的激光具有非常接近的强度、波长及偏振方向,这两束激光A. 相干B.不相干C.可能相干D.无法确定17. 下列干涉现象不属于分振幅干涉的是A. 薄膜干涉B.迈克尔逊干涉C. 马赫-增德尔干涉D.菲涅尔双棱镜干涉18. 有关平行平板的多光束干涉,下列说法正确的是A. 干涉形成的条件是在平板的内表面镀增透膜B.透射场的特点是在全亮的背景上得到极细锐的暗纹C.膜层的反射率越低,透射场的亮纹越细锐D. 透射场亮纹的光强等于入射光强19.镀于玻璃表面的单层增透膜,为了使增透效果好,膜层材料的折射率应该()A.大于玻璃折射率B.等于玻璃折射率C.介于玻璃折射率与空气折射率之间D. 等于空气折射率E. 小于空气折射率二、填空题1. 干涉条纹对比度表达式为,其取值范围是,两列相干简谐波叠加时,两列波的振幅比为1:3时,则干涉条纹对比度为。
1. 单色平面光照射到一小圆孔上,将其波面分成半波带。
求第к个带的半径。
若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。
解:2022rr k k +=ρ 而20λkr r k +=20λk r r k =-20202λρk r r k =-+将上式两边平方,得422020202λλρk kr r r k++=+ 略去22λk 项,则 λρ0kr k=将cm104500cm,100,1-80⨯===λr k 带入上式,得cm 067.0=ρ2. 平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。
问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此时的波长为500nm 。
解:(1)根据上题结论ρρ0kr k =将cm105cm,400-50⨯==λr 代入,得cm 1414.01054005k k k =⨯⨯=-ρ 当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。
(2)P 点最亮时,小孔的直径为 cm2828.02201==λρr3.波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强度I 0之比。
解:根据题意m 1=R 500nmmm 1R mm 5.0R m 121hk hk 0====λr有光阑时,由公式⎪⎪⎭⎫ ⎝⎛+=+=R r R R r r R R k h h 11)(02002λλ得11000110001105005.011620211=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ4100011000110500111620222=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ按圆孔里面套一个小圆屏幕()13221312121212121a a a a a a a a p =+=⎥⎦⎤⎢⎣⎡+-+=没有光阑时210a a =所以 42/211200=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=a a a a I I p4.波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏。
第二章 干涉理论基础和干涉仪2.1用迈克耳逊干涉仪进行精密测长,光源波长为633nm ,其谱线宽度为104-nm ,光电接收元件的灵敏度可达1/10个条纹,问这台仪器测长精度是多少?一次测长量程是多少? 解答:设测长精度为l δ,则l δ由探测器接受灵敏度10λδ=N 所决定,N l δδ=2∴ m 032.02μδδ≈=Nl (32nm )一次测长量程M l 由相干长度c l 所决定,c M l l =2∴ m l l c M221212≈∆==λλ2.2 雨过天晴,马路边上的积水上有油膜,太阳光照射过去,当油膜较薄时呈现出彩色,解释为什么油膜较厚时彩色消失。
解答:太阳光是一多色光,相干长度较小。
当油膜较厚时光经上下两界面反射时的光程差超过了入射光的相干长度,因而干涉条纹消失。
2.3计算下列光的相干长度(1)高压汞灯的绿线,546.15nm nm λλ=∆=(2)HeNe 激光器发出的光,6331nm MHz λν=∆=解答:计算相干长度(1) m 6.592μλλ≈∆=c L(2) 300m c cL ν=≈∆2.4在杨氏双缝实验中(1)若以一单色线光源照明,设线光源平行于狭缝,光在通过狭缝以后光强之比为1:2,求产生的干涉条纹可见度。
(2)若以直径为0.1mm 的一段钨丝作为杨氏干涉实验的光源,为使横向相干宽度大于1mm ,双缝必须与灯丝相距多远?设λ=550nm解答:(1) δcos 2220000I I I I I ⋅++= V ∴=(2)由(2-104)式 dbP λ=0 λdP b =∴ 182.0>b M2.5图p2-5所示的杨氏干涉实验中扩展光源宽度为p ,光源波长为5893A ,针孔P 1、P 2大小相同,相距为d ,Z 0=1m , Z 1=1m(1)当两孔P 1、P 2相距d=2mm 时,计算光源的宽度由p =0增大到0.1mm 时观察屏上可见度变化范围。
(2)设p=0.2mm ,Z 0、Z 1不变,改变P 1P 2之间的孔距d ,当可见度第一次为0时 d=? (3)仍设p=0.2mm ,若d=3mm , 01Z m =.求0∑面上z 轴附近的可见度函数。
第二章习题答案2—1 铯的逸出功为,试求: (1)铯的光电效应阈频率及阈值波长; (2)如果要得到能量为的光电子,必须使用多少波长的光照射 解:光电效应方程212m mv h =ν-Φ (1) 由题意知 0m v = 即 0h ν-Φ=14151.9 4.59104.13610ev Hz h ev s -Φν===⨯⨯⋅ 1.24652.61.9c hc nm Kev nm evλ⋅====νΦ(2) ∵ 21 1.52m mv ev =∴ 1.5cev h h λ=ν-Φ=-Φ 1.24364.71.5 1.5 1.9hc nm Kevnm ev ev evλ⋅===+Φ+2-2 对于氢原子、一次电离的氢离子He +和两次电离的锂离子Li ++,分别计算它们的:(1)第一、第二玻尔轨道半径及电子在这些轨道上的速度;(2)电子在基态的结合能; (3)由基态带第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长。
解:(1)由波尔理论及电子的轨道半径公式r 1为氢原子第一波尔半径22201122204()(197.3)0.0530.511e e c r a nm nm m e m c e 6πε====≈/4πε⨯10⨯1.44h h 氢原子第二波尔半径可知:He +(Z=2)Li + + (Z=3)电子在波尔轨道上的速率为 21n n r r z=221140.212r n r r nm===112210.0265220.1062ar nmr a nm====112210.0176320.07053ar nmr a nm====nzv cn=α于是有 H :61161212.19101371.1102v c m s m s cv m s 8--=α=⨯3⨯10/=⨯⋅α==⨯⋅He +:6116122 4.3810102v c m s cv m s --=α=⨯⋅2α==2.19⨯⋅ Li+ +:6116123 6.5710102v c m s c v m s--=α=⨯⋅3α==3.28⨯⋅ (2) 电子在基态的结合能E k 在数值上等于原子的基态能量 由波尔理论的能量公式 可得故有 H : 13.6k E ev =He +: 213.6254.4k E ev =⨯=Li ++: 213.63122.4k E ev =⨯=(3)以电压加速电子,使之于原子碰撞,把原子从基态激发到较高能态,用来加速电子的电势差称为激发电势,从基态激发到第一激发态得相应的电势差称为第一激发电势。
212122113.6(1)2E V z e ∆==- 对 H : 12113.6(1)10.24V v =⨯-=He + : 212113.62(1)40.84V v =⨯⨯-=Li ++ : 212113.63(1)91.84V v =⨯⨯-=共振线(即赖曼系第一条)的波长: 121212E E hcE hc -=∆=λ H : 12 1.24121.610.2nm kevnm ev λ⋅==He +: 12 1.2430.440.8nm kev nm ev λ⋅==Li ++: 12 1.2413.591.8nm kev nm evλ⋅==21()2n e z E m c n=-α221()13.62k e E m cz z ev 1=∣E∣=α=2—3 欲使电子与处于基态的锂离子Li ++发生非弹性散射,试问电子至少具有多大的动能解:Li + +基态能量为 211()122.42e E m cz ev α=-=- 从基态到第一激发态所需能量为ev Z E 8.91434.122)211(6.132212=⨯=-⨯⨯=∆,故电子必须具有的动能.2—4 运动质子与一个处于静止的基态氢原子作完全非弹性的对心碰撞,欲使锂原子发射出光子,质子至少应多大的速度运动解: 方法一:欲使基态氢原子发射光子,至少应使氢原子以基态激发到第一激发态122110.2E E E ev ∆=-=V根据第一章的推导,入射粒子m 与靶M 组成系统的实验室系能量E L 与E C 之间的关系为:c L ME E M m=+∴所求质子的动能为:212121(1)220.42k c M m mE mv E E E evM M+===+∆=∆=V 所求质子的速度为: )(1026.610673.1106.14.2022142719---⋅⨯=⨯⨯⨯⨯==s m m E v k 方法二: 质子与基态氢原子碰撞过程动量守恒,则()v m m v m H P P +=10 ⇒ 10v m m m v HP P+=1021022102121)(2121E m m m v m v m m v m E H P H P H P P =+⋅=+-=∆ eV E E E v m E P 4.20)(22211221010=-=∆==)/(1026.62421010s m c cm E v P ⨯=⋅=MeV c m P 9382=其中 (1)原子在热平衡条件下处于不同能量状态的数目是按波尔兹曼分布的,即处于能量为E n 的激发态的原子数为:1()11n E E kTn n g N N e g --/=式中N 1是能量为E 1状态的原子数,k 为玻尔兹曼常量,g n 和g 1为相应能量状态的统计权重。
试问:原子态的氢在一个大气压、20℃温度的条件下,容器必须多大才能有一个原子处在第 一激发态已知氢原子处于基态和第一激发态的统计权重分别为g 1=2和g 2=8。
(2)电子与室温下的氢原子气体相碰撞,要观察到H α线,试问电子的最小动能为多大2—6 在波长从95nm 到125nm 的光带范围内,氢原子的吸收光谱中包含哪些谱线 解:对于min 95nm λ=,有22min1111()1R n λ=-1 4.8n ===∵ min 95nm λ=的波长的光子不足以将氢原子激发到n=5的激发态,则在min 95nm λ=以内有一光子可将氢原子激发到n=4的激发态 ∴ n 1=4同理有:2 1.9n === ∵ 对应于n=1的辐射光子的波长应比125nm 更长,在波段以外 ∴ n 2=2又∵ 氢原子的吸收谱对应于赖曼系 ∴ 在(95∽125nm )波段内只能观察到3条 即(1,2)(1,3)(1,4)m n m n m n ν==ν==ν==%%%1232—7 试问哪种类氢离子的巴耳末系和赖曼系主线的波长差等于解:赖曼系主线:22213(1)24RZ RZ ν=-=%赖巴耳末主线:2222115()2336RZ RZ ν=-=%巴 二主线波长差:nm RZ RZ RZ RZ 7.1331588)20108(151345362222==-⨯=-=-=∆赖巴λλλ 278888415133.715109737.3110133.7Z R nm -===⨯⨯⨯⨯⨯ 2Z ∴=即He 原子的离子。
2—8 一次电离的氢原子He +从第一激发态向基态跃迁时所辐射的光子,能量处于基态的氢原子电离,从而放出电子,试求该电子的速度。
解:He +从E 2→E 1跃迁辐射的光子的能量为22121(1)32h E E RcZ Rhc ν=-=--= 氢原子的电离能为 10()E E E Rhc Rhc ∞=-=--= ∴ 电离的电子的能量为 32k E Rhc Rhc Rhc =-=该电子的速度为63.0910v m s ====⨯/ 2—9 电子偶素是由一个正电子和一个电子所组成的一种束缚系统,试求出:(1)基态时两电子之间的距离;(2)基态电子的电离能和由基态到第一激发态的激发能;(3)由第一激发态退激到基态所放光子的波长。
解:电子偶素可看作类氢体系,波尔理论同样适用,但有关公式中的电子质量必须采用体系的折合质量代替,对电子偶素,其折合质量为:2e e e m M mm M μ==+(1)22001122442220.0530.106e r a nm nm e m eπεπε====⨯=μh h (2)电离能为 1i A E E E R hc ∞=-=式中 1121A e R R R mM∞∞==+ 于是 7611 1.097373110 1.2410 6.8022i E R hc ev ev -∞==⨯⨯⨯⨯=则电离电势为 6.80i i EV v e==第一激发电势为 222121211()312 5.102A R hcZ E R hc V v e e e∞-∆∆==== (3)共振线波长为31212 1.2410243.15.10hc nm evnm E evλ⨯⋅===∆2—10 μ-子是一种基本粒子,除静止质量为电子质量为电子质量的207倍外,其余性质与电子都一样。
当它运动速度较慢时,被质子俘获形成μ子原子,试计算:(1)μ子原子的第一波尔轨道半径;(2)μ子原子的最低能量;(3)μ子原子赖曼线系中的最短波长。
解:(1)μ子原子可看作类氢体系,应用波尔理论,其轨道半径为22024n n r e Z πε=μh 式中 2072071836186.020********e e e e m M m m m M ⨯μ===++ 其第一波尔半径为24011240.053 2.8510186.0186.0186.0e a nm r nm m e πε-====⨯h (2)μ子原子的能量公式为 2211()186.0()22n e z z E c m c nnαα=-μ=-⨯ 最低能量 1n =,2311186.0()186.013.6 2.53102e E m c ev ev α=-⨯=-⨯=-⨯(3)由波长公式 hcEλ=∆3min3max 1 1.24100.490( 2.5310)hc hc nm ev nm E E E ev λ∞⨯⋅====∆---⨯ 2—11 已知氢和重氢的里德伯常量之比为 728,而它们的核质量之比为m H /m D = 20,试计算质子质量与电子质量之比。
解:由 1A e AR R m M ∞=+,可知 10.9997281eH D e D H m R M m R M +==+ 又∵ 0.50020HD M M =,∴0.5002010.9997281eHe Hm M m M +=+则30.4995281836.5 1.8100.000272H e M m ==≈⨯ 2—12 当静止的氢原子从第一激发态向基态跃迁放出一个光子时,(1)试求这个氢原子所获得的反冲速率为多大(2)试估计氢原子的反冲能量与所发光子的能量之比。
解:(1)所发光子的能量ev ev Rhc E E h 2.106.1343)2111(2212=⨯=-=-=ν光子的动量 cevc h h P 2.10===νλ 氢原子的反冲动量等于光子动量的大小,即ch P M v Hν==反 s m s mc m h H v 26.31031067.110602.12.1082719=⨯⨯⨯⨯⨯==--ν反(3) 氢原子的反冲能量为J J v m E H k 2722721087.8)26.3(1067.12121--⨯=⨯⨯⨯==反 91927104.510602.12.101087.8---⨯=⨯⨯⨯=νh E k2—13 钠原子的基态为3s ,试问钠原子从4P 激发态向低能级跃迁时,可产生几条谱线(不考虑精细结构)解:不考虑能级的精细结构,钠原子的能级图如下:根据辐射的选择定则1±=∆l ,可知,当钠原子从4P 态向低能级跃迁时可产生6条光谱。