第10章 酶的作用机制和酶的调节3
- 格式:ppt
- 大小:1.34 MB
- 文档页数:39
第十章酶的作用机制和酶的调节目的和要求:理解、掌握酶活性部位的相关概念和特点;掌握酶催化高效性的相关机理;了解几种酶的催化机制,理解结构和功能的适应性;了解酶活性的调节方式,掌握酶活性的别构调节、可逆共价调节和酶原激活调节方式及生物代谢中的作用。
一、酶的活性部位㈠酶的活性部位的特点1、概念:三维结构上比较接近的少数特异的氨基酸残基参与底物的结合与催化作用,这一与酶活力直接相关的区域称酶的活性部位。
结合部位:专一性催化部位:催化能力,对需要辅酶的酶分子,辅酶或其一部分就是活性中心的组成部分;组成酶活性部位的氨基酸数目对不同酶而言存在差异,占整个酶氨基酸残基小部分酶活性部位的基团:亲核性基团,丝氨酸的羟基,半胱氨酸的巯基和组氨酸的咪唑基。
酸碱性基团:天冬氨酸和谷氨酸的羧基,赖氨酸的氨基,酪氨酸的酚羟基,组氨酸的咪唑基和半胱氨酸的巯基等。
2、特点⑴活性部位在酶分子的总体中只占相当小的部分(1%~2%)⑵酶的活性部位是一个三维实体⑶酶的活性部位并不是和底物的形状互补的⑷酶的活性部位是位于酶分子表面的一个裂隙内⑸底物通过次级键结合到酶上⑹酶活性部位具有柔性㈡研究酶活性部位的方法1、酶分子基团的侧链化学修饰⑴非特异性共价修饰:活力丧失程度与修饰剂浓度有正比关系;底物或可逆的抑制剂可保护共价修饰剂的修饰作用。
⑵特异性共价修饰:分离标记肽段,可判断活性部位的氨基酸残基,如二异丙基氟磷酸(DFP)专一性与胰凝乳蛋白酶活性部位丝氨酸残基的羟基结合。
⑶亲和标记:利用底物类似物和酶活性部位的特殊亲和力将酶加以修饰标记来研究酶活性部位的方法。
修饰剂的特点:①结构与底物类似,能专一性引入到酶活性部位;②具活泼化学基团,能与活性部位某一氨基酸共价结合,相应的试剂称“活性部位指示剂”。
胰凝乳蛋白酶和胰蛋白酶,TPE是酶的底物,TPCK是酶的亲和试剂,当酶与TPCK温浴后,酶活性丧失,这种结合具有空间结构的需求,同时也阻止其他试剂如DFP结合。
酶的作用机制范文酶是一类能够催化生物化学反应的蛋白质分子。
酶能够加速化学反应速度,但本身不参与反应,也不会改变反应的热力学性质。
酶的作用机制可以通过以下几个方面来进行解释。
1.酶与底物结合:酶通过与底物分子相互作用,使其与酶发生结合,形成酶-底物复合物。
这种结合通常是通过酶的活性部位(也称为催化部位)来实现的。
酶的活性部位通常是一个立体特异性的凹槽或裂隙,可以与底物分子的特定结构进行键合。
2.底物转换:一旦酶和底物结合,酶会促使底物经历一系列转换,从而形成产物。
这些转换的过程包括底物的化学键的断裂和形成。
酶通过提供合适的环境,如稳定性氧化态、酸碱环境、金属离子等,来引导底物分子进行转换。
3.过渡态稳定:底物在转换过程中通常会形成过渡态,即反应物和产物之间的中间状态。
酶能够通过与底物结合来稳定过渡态,降低过渡态的自由能,从而降低了反应的活化能,加速反应速率。
4.反应解离:完成底物转换后,酶会与产物解离,恢复到其初始状态,以便与下一个底物分子发生反应。
这种解离可以是因为酶与底物结合力减弱,也可以是因为酶通过结构变化使产物从酶的活性部位释放出来。
酶的催化机制可以通过四种基本模型来解释:酶底物复合物模型、酶的诱导模型、酶的近距离模型和酶的呈合模型。
1.酶底物复合物模型:该模型认为酶与底物结合形成复合物后,复合物发生结构变化,使底物分子接近理想反应构型,从而促进反应进行。
这种模型强调酶的立体特异性和与底物的非共价相互作用。
2.酶的诱导模型:该模型认为酶通过与底物结合,诱导底物分子发生结构变化,从而使底物分子能够更容易地进行反应转化。
这种模型强调酶对底物的诱导和对底物结构的调整。
3.酶的近距离模型:该模型认为酶通过将底物分子靠近彼此的距离,使它们在反应发生时更容易相互作用。
这种模型强调酶对底物分子的位置安排和使反应发生的条件。
4.酶的呈合模型:该模型认为酶在催化反应过程中会经历多个构象变化,使底物分子能够适应不同的转换过程。
第十章酶的作用机制和酶的调节提要酶的活性部位对于不需要辅酶的酶来说,就是指酶分子中在三维结构上比较靠近的几个氨基酸残基负责与底物的结合与催化作用的部位,对于需要辅酶的酶来说,辅酶分子或辅酶分子上的某一部分结构,往往也是酶活性部位的组成部分。
酶活性部位有6个共同特点。
研究酶活性部位的方法有:酶分子侧链基团的化学修饰法,动力学参数测定法,X射线晶体结构分析法和定点诱变法,这些方法可互相配合以判断某个酶的活性部位。
酶是催化效率很高的生物催化剂,这是由酶分子的特殊结构所决定的。
经研究与酶催化效率的有关因素有7个,即底物和酶的邻近效应与定向效应,底物的形变与诱导契合,酸碱催化,共价催化,金属离子催化,多元催化和协同效应,活性部位微环境的影响。
但这些因素不是同时在一个酶中其作用,也不是一种因素在所有的酶中起作用,对于某一种酶来说,可能分别主要受一种或几种因素的影响。
研究酶催化的反应机制,始终是酶学研究的一个重点,通过大量的研究工作,已经对一些酶的作用机制有深入了解,该章对溶解酶、胰核糖核酸酶A、羧肽酶A、丝氨酸蛋白酶、天冬氨酸蛋白酶等的催化作用机制进行了详尽的讨论。
酶活性是受各种因素调节控制的,除了在第8章中已介绍的几种因素外,主要还有①别构调节,例如ATCase。
②酶原的激活,如消化系统蛋白酶原的激活及凝血系统酶原的激活。
③可逆共价修饰调控,如蛋白质的磷酸化,一系列蛋白激酶的作用。
通过以上作用,使酶能在准确的时间和正确的地点表现出它们的活性。
别构酶一般都是寡聚酶,有催化部位和调节部位,别构酶往往催化多酶体系的第一步反应,受反应序列的终产物抑制,终产物与别构酶的调节部位相结合,由此调节多酶体系的反应速率。
别构酶有协同效应,[S]对υ的动力学曲线呈S形曲线(正协同)或表现双曲线(负协同),两者均不符合米氏方程。
ATCase作为别构酶的典型代表,已经测定了其三维结构,详细研究了别构机制和催化作用机制。
为了解释别构酶协同效应的机制,有两种分子模型受到人们重视,即协同模型和序变模型。
生物化学各章复习题第 3 章氨基酸回答问题 :1. 什么是蛋白质的酸水解、碱水解和酶水解,各有何特点?2. 写出 20 种基本氨基酸的结构、三字母缩写和单字母缩写。
3. 甘氨酸、组氨酸和脯氨酸各有何特点?4. 什么是氨基酸的等电点?写出下了列氨基酸的结构、解离过程,并计算等电点:缬氨酸、谷氨酸和精氨酸。
5. 在多肽的人工合成中,氨基酸的氨基需要保护,有哪些反应可以保护氨基?6. Sanger 试剂、 Edman 试剂分别是什么?与氨基酸如何反应,此反应有何意义?7. 试写出半胱氨酸与乙撑亚胺的反应,此反应有何意义?8. 写出氧化剂和还原剂打开胱氨酸二硫键的反应。
9. 蛋白质有紫外吸收的原因是什么,最大吸收峰是多少?10. 什么是分配定律、分配系数?分配层析的原理是什么?11. 什么是 HPLC?12. 课本 P156,15 题。
第 4 、 5 章蛋白质的共价结构,三维结构一.名词解释:单纯蛋白(举例),缀合蛋白(举例),辅基,配体,蛋白质的一、二、三、四级结构,超二级结构,结构域,肽平面(酰胺平面),谷胱甘肽(结构式),对角线电泳,完全水解,部分水解,同源蛋白质,不变残基,可变残基,α - 螺旋β - 折叠,膜内在蛋白,脂锚定膜蛋白,蛋白质的变性与复性,单体,同聚体,杂多聚蛋白二.回答问题:1. 试举例说明蛋白质功能的多样性?2. 那些实验能说明肽键是蛋白质的连接方式?3. 试述肽键的性质。
4. 试述蛋白质一级结构测定的策略。
5. 如何测定 N- 端氨基酸?6. 图示胰蛋白酶、胰凝乳蛋白酶、嗜热菌蛋白酶及胃蛋白酶的作用专一性。
7. 书 p194 —第 2 题8. 研究蛋白质构象的方法都有哪些?9. 稳定蛋白质的三微结构的作用力有哪些?10. 影响α - 螺旋形成的因素有哪些?11. 胶原蛋白的氨基酸组成有何特点?12. 蛋白质变性后有哪些现象?13. 举例说明蛋白质一级结构决定三级结构。
第 6 章蛋白质结构与功能的关系一.名词解释:珠蛋白,亚铁血红素,高铁血红素,亚铁肌红蛋白,高铁血红蛋白二.回答问题:1. 肌红蛋白和血红蛋白的氧合曲线有何不同,试从蛋白质结构与功能的关系上加以解释。
第10章酶的作用机制和酶的调节第10章酶的作用机制和酶的调节教学目的:掌握酶的活性部位结构与功能、酶活性的别构调节、酶原激活,了解酶高效性原因教学重点:酶活性部位的结构与功能及酶的活性的别构调节教学难点:酶活性的别构调节教学方法:多媒体教学内容:一、酶的活性部位及确定方法(一)酶活性部位概念及特点1、酶的活性中心(活性部位):指酶分子中的表面有一个必需基团比较集中、并构成一定空间结构的微小区域。
酶活性中心的基团,按其功能可分为结合基团和催化基团。
活性中心的基团都是维持酶活性的必需基团,2、酶活性部位的共同点:(1)酶活性部位仅占酶体积的很小一部分,通常只占整个酶分子体积的1~2%,酶分子是大分子物质,由很多氨基酸构成,而活性部位仅由几个氨基酸残基组成催化部位一般由2~3个氨基酸残基组成。
结合部位氨基酸残基数目,不同的酶有所不同。
可能是一个,也可能是多个。
(2)酶的活性部位具有三维结构,构成酶活性中心的基团,可位于同一条肽链上,也可位于不同的肽链上,在一级结构上可能相距甚远,但在空间结构上位置必须相互靠近;酶的空间结构受物理或化学因素影响时,酶的活性部位可能会遭破坏,酶会失活。
(3)活性中心的结合基团与底物专一性结合,这需要活性部位的基团精确排列。
活性部位具有一定的柔韧性,活性部位的结构并不是与底物的结构正好互补。
在酶与底物结合过程中,酶活性中心的构象在底物的诱导下可发生形变,然后嵌合互补形成中间产物,而底物在酶活性中心的诱导下也可发生形变,变的易与酶结合,有时是两者的构象同时发生变化后才互补契合(诱导契合学说)。
(4)酶活性部位位于酶分子表面的一个裂缝内,底物分子或底物分子的一部分结合到裂缝中,裂缝内的非极性基团较多,形成一个疏水环境,提高与底物的结合能力,也有极性的氨基酸残基,以便与底物结合并催化底物发生反应。
(5)底物通过较弱的次级键与酶结合。
组成酶活性中心的氨基酸残基,常见的有:组氨酸、赖氨酸、天冬氨酸、谷氨酸、丝氨酸、半胱氨酸和酪氨酸3、研究酶活性部位的方法(1)共价修饰(2)亲和标记法(3)切除法(4)X射线晶体结构分析法二、酶促反应机制(一)基元催化的分子机制:酶的催化作用包括若干基元催化。