概率论第一节 数学期望
- 格式:ppt
- 大小:2.54 MB
- 文档页数:49
第四章 数字特征前面我们介绍了随机变量及其分布,对于一个随机变量,只要知道了它的分布(分布函数或分布律、分布密度),它取值的概率规律就全部掌握了。
但在实际问题中,一个随机变量的分布往往不易得到,且常常只需知道随机变量的某几个特征就够了。
例如检查棉花的质量时,我们关心的是棉花纤维的平均长度和纤维长度与平均长度的偏差大小,这些数字反映了随机变量的一些特性,我们称能够反映随机变量特征的数字为随机变量的数字特征。
本章将介绍几个最常用的数字特征:数学期望、方差、协方差和相关系数。
第一节 数学期望一、离散型随机变量的数学期望数学期望反映的是随机变量取值的集中位置的特征,能够满足这一要求的自然是随机变量的平均取值,那么这个平均取值如何得到呢?怎样定义,我们先看一个例题例1:全班40名同学,其年龄与人数统计如下:该班同学的平均年龄为:4092115201519118⨯+⨯+⨯+⨯=a8.194092140152040151940118=⨯+⨯+⨯+⨯=若令X 表示从该班同学中任选一同学的年龄,则X 的分布律为于是,X 取值的平均值,即该班同学年龄的平均值为4092140152040151940118)(⨯+⨯+⨯+⨯==a X E8.19==∑ii i p x定义1:设X 为离散型随机变量,其分布律为i i p x X P ==}{, ,2,1=i如果级数 绝对收敛,则此级数为X 的数学期望(或均值),记为 E(X),即 ∑=ii i p x X E )(意义:E(X)表示X 取值的(加权)平均值。
如果级数 不绝对收敛,则称数学期望不存在。
例2:甲、乙射手进行射击比赛,设甲中的环数为X1,乙中的环数为X2,已知 X1和X2的分布律分别为:问谁的平均击中环数高?解:甲的平均击中环数为 E(X1)=8 0.3+9 0.1+10 0.6=9.3 乙的平均击中环数为 E(X2)=8 0.2+9 0.5+10 0.3=9.1 可见E(X1)> E(X2),即甲的平均击中环数高于乙的平均击中环数。
概率论与数理统计知识点总结(超详细版)eik则有P(A)=k/n,其中n为样本空间中元素的个数。
在概率论中,样本空间和随机事件是基本概念。
如果事件A发生必然导致事件B发生,则称事件B包含事件A,记作A⊂B。
当A和B中至少有一个发生时,称A∪B为事件A和事件B的和事件。
当A和B同时发生时,称A∩B为事件A和事件B的积事件。
当A发生、B不发生时,称A-B为事件A和事件B的差事件。
如果A和B互不相容,即A∩B=∅,则称A和B是互不相容的,或互斥的,基本事件是两两互不相容的。
如果A∪B=S且A∩B=∅,则称事件A和事件B互为逆事件,又称事件A和事件B互为对立事件。
在概率论中,还有一些运算规则。
交换律指A∪B=B∪A,A∩B=B∩A;结合律指(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C);分配律指A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C);德摩根律指A∪B=A∩B,A∩B=A∪B。
频率与概率是概率论的重要概念。
在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数n A称为事件A发生的频数,比值nAn称为事件A发生的频率。
概率指对于随机试验E的每一事件A赋予一个实数P(A),称为事件的概率。
概率P(A)满足非负性,即对于每一个事件A,0≤P(A)≤1;规范性,即对于必然事件S,P(S)=1;可列可加性,即设A1,A2,…,An是两两互不相容的事件,则有P(∪Ai)=∑P(Ai)(n可以取∞)。
概率还有一些重要性质,包括P(∅)=0,P(∪Ai)=∑P(Ai)(n可以取∞),如果A⊂B,则P(B-A)=P(B)-P(A),P(A)≤1,P(A)=1-P(A'),以及P(A∪B)=P(A)+P(B)-P(A∩B)。
等可能概型又称为古典概型,是指试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同。
如果事件A 包含k个基本事件,即A={e1}∪{e2}∪…∪{ek},则有P(A)=k/n,其中n为样本空间中元素的个数。
概率论——数学期望
数学期望是概率论中一个重要的概念,用于描述随机变量的平均值。
在数学上,数学期望可以定义为随机变量的每个可能取值乘以其对应的概率,并将这些乘积相加。
设随机变量X的取值有n个,分别记为x1, x2, …, xn,对应的概率为p1, p2, …, pn。
则X的数学期望E(X)可以表示为:
E(X) = x1*p1 + x2*p2 + … + xn*pn
数学期望可以理解为随机变量所取得值的加权平均。
每个取值乘以其概率,再将所有乘积相加,就得到了数学期望。
数学期望在实际应用中有着广泛的应用,例如在赌博中,可以用数学期望来计算每次下注的预期收益;在保险业中,可以用数学期望来评估保险责任的大小;在金融学中,可以用数学期望来衡量金融产品的风险与回报等。
需要注意的是,数学期望不一定是随机变量取值的实际可能值,而是其平均值。
因此,即使随机变量的可能值与数学期望相差较大,在大量重复实验中,随机变量的平均取值仍然趋近于数学期望。
这正是数学期望的统计意义所在。
数学期望是概率论中用于描述随机变量的平均值的概念。
它可以通过将随机变量的可能取值与对应的概率相乘,再将所有乘积相加得到。
数学期望在实际应用中有着广泛的应用,可以用于预测和评估各种概率事件的平均效果。
第四章 随机变量的数字特征前面讨论了随机变量的分布函数, 从中知道随机变量的分布函数能完整地描述随机变量的统计规律性.但在许多实际问题中, 人们并不需要去全面考察随机变量的变化情况, 而只要知道它的某些数字特征即可.例如, 在评价某地区粮食产量的水平时, 通常只要知道该地区粮食的平均产量;又如, 在评价一批棉花的质量时, 既要注意纤维的平均长度, 又要注意纤维长度与平均长度之间的偏离程度, 平均长度较大, 偏离程度小, 则质量就较好. 等等实际上, 描述随机变量的平均值和偏离程度的某些数字特征在理论和实践上都具有重要的意义, 它们能更直接、更简洁更清晰和更实用地反映出随机变量的本质.本章将要讨论的随机变量的常用数字特征包括: 数学期望、方差、相关系数、矩.第一节 数学期望教学目标:掌握数学期望的概念,以及其性质与计算。
教学重点:数学期望的概念、性质及计算。
教学难点:数学期望的计算 教学内容:一、离散型随机变量的数学期望平均值是日常生活中最常用的一个数字特征, 它对评判事物、作出决策等具有重要作用. 定义 设X 是离散型随机变量的概率分布为,2,1,}{===i p x X P i i如果∑∞=1i ii p x 绝对收敛, 则定义X 的数学期望(又称均值)为 .)(1∑∞==i ii p x X E二、连续型随机变量的数学期望定义 设X 是连续型随机变量, 其密度函数为)(x f ,如果⎰∞∞-dx x xf )(绝对收敛, 定义X 的数学期望为 .)()(⎰∞∞-=dx x xf X E三、 随机变量函数的数学期望设X 是一随机变量, )(x g 为一实函数,则)(X g Y =也是一随机变量, 理论上, 虽然可通过X 的分布求出)(X g 的分布, 再按定义求出)(X g 的数学期望)]([X g E . 但这种求法一般比较复杂. 下面不加证明地引入有关计算随机变量函数的数学期望的定理.定理1 设X 是一个随机变量, )(X g Y =,且)(Y E 存在, 则(1) 若X 为离散型随机变量, 其概率分布为,2,1,}{===i p x X P i i则Y 的数学期望为.)()]([)(1∑∞===i i i p x g X g E Y E(2) 若X 为连续型随机变量, 其概率密度为)(x f , 则Y 的数学期望为.)()()]([)(⎰∞∞-==dx x f x g X g E Y E注: (i)定理的重要性在于:求)]([X g E 时, 不必知道)(X g 的分布, 只需知道X 的分布即可. 这给求随机变量函数的数学期望带来很大方便;(ii) 上述定理可推广到二维以上的情形, 即有定理2 设),(Y X 是二维随机向量, ),(Y X g Z =,且)(Z E 存在, 则 (1)若),(Y X 为离散型随机向量, 其概率分布为),2,1,(},{ ====j i p y Y x X P ij j i则Z 的数学期望为,),()],([)(11∑∑∞=∞===j i ij j i p y x g Y X g E Z E(2) 若),(Y X 为连续型随机向量, 其概率密度为),(y x f 则Z 的数学期望为.),(),()],([)(⎰⎰∞∞-∞∞-==dx y x f y x g Y X g E Z E四、数学期望的性质1. 设C 是常数, 则;)(C C E =2.若k 是常数,则);()(X kE kX E =3. );()()(2121X E X E X X E +=+4. 设Y X ,独立, 则)()()(Y E X E XY E =;注: (i) 由)()()(Y E X E XY E =不一定能推出Y X ,独立,例如,在例10中,已计算得 49)()()(==Y E X E XY E , 但 81}0{},431{,0}0,1{=======Y P X P Y X P ,显然}0{}1{}0,1{=⋅=≠==Y P X P Y X P 故X 与Y 不独立(ii) 这个性质可推广到有限个随机变量之和的情形.例题选讲:离散型随机变量的数学期望例1 (讲义例1) 甲, 乙两人进行打靶, 所得分数分别记为21,X X , 它们的分布律分别为,8.02.002101i p X1.03.06.02102ip X试评定他们的成绩的好坏.例2 (讲义例2) 某种产品的每件表面上的疵点数服从参数8.0=λ的泊松分布, 若规定疵点数不超过1个为一等品, 价值10元; 疵点数大于1个不多于4个为二等品, 价值8元; 疵点数超过4个为废品. 求:(1) 产品的废品率; (2) 产品价值的平均值.连续型随机变量的数学期望例3(讲义例3) 已知随机变量X 的分布函数 ⎪⎩⎪⎨⎧>≤<≤=4,140,4/0,0)(x x x x x F , 求).(X E例4 (讲义例4) 设随机变量,127)(),(~=X E x f X 且⎩⎨⎧≤≤+=其它,010,)(x b ax x f求a 与b 的值, 并求分布函数)(x F . 随机变量函数的数学期望例5 (讲义例5) 设),(Y X 的联合概率分布为:求).(),(),(XY E Y E X E例 6 (讲义例6) 设随机变量X 在],0[π上服从均匀分布, 求)(),(sin 2X E X E 及.)]([2X E X E -例7 设)(),(2X E X E 均存在,证明222)]([)()]([X E X E X E X E -=-. 例8 (二项分布的数学期望)若),,(~p n b X 求).(X E 数学期望的性质例9 (讲义例9) 一民航送各车载有20位旅客自机场开出, 旅客有10个车站可以下车. 如到达一个车站没有旅客下车就不停车. 以X 表示停车的次数, 求E (X ) (设每位旅客在各个车站下车是等可能的, 并设各旅客是否下车相互独立).课堂练习1. 设甲、乙两人玩必分胜负的赌博游戏, 假定游戏的规则不公正, 以致两人获胜的概率不等,甲为p , 乙为q ,,q p >1=+q p . 为了补偿乙的不利地位, 另行规定两人下的赌注不相等, 甲为a , 乙为b , b a >. 现在的问题是: a 究竟应比b 大多少, 才能做到公正?2. 某种新药在400名病人中进行临床试验有一半人服用,一班人未服,经过5天后,有210人痊愈,其中190人是服了新药的.试用概率统计方法说明新药的疗效.3. 把数字n ,,2,1 任意地排成一列, 如果数字k 恰好出现在第k 个位置上, 则称为一个巧合, 求巧合个数的数学期望.课后作业: P83 T 5、8、9。