第七章光电二极管.
- 格式:ppt
- 大小:1.20 MB
- 文档页数:35
光电二极管工作原理光电二极管工作原理是现代电子学和光学领域中一个重要的概念,它被广泛应用于光电转换和光信号检测等方面。
本文将介绍光电二极管的基本原理、结构与工作方式,并探讨其在实际应用中的优势和局限性。
一、光电二极管的基本原理光电二极管是一种能够将光能转换为电能的器件。
它利用光照射在特定的半导体材料上时,产生光生载流子的现象,使得材料的导电性发生变化。
其工作原理可归结为光生载流子隔离和电场效应两个方面。
光生载流子隔离:当光照射到光电二极管的PN结区域时,光能被半导体吸收并产生电子-空穴对。
由于PN结区域的电场分布,电子会向N区移动,空穴则会向P区移动,从而产生电流。
这个过程可以看作是光生载流子隔离的结果,使得光电二极管能够将光信号转化为电信号。
电场效应:光生载流子的产生会引起PN结区域内的电场分布变化。
当光照强度较弱时,电场效应几乎不起作用,光电二极管只能检测到非常强的光信号。
但是当光照强度大到一定程度时,光生载流子的产生会显著改变PN结区域的电场分布,从而导致电流的变化。
这种电场效应使得光电二极管能够对光信号的强弱进行精确检测。
二、光电二极管的结构与工作方式光电二极管的基本结构由PN结、近电平和金属电极组成。
PN结是光电转换的关键部分,它采用不同材料的半导体层叠而成。
近电平则用于收集和传输光生载流子,以增强光电转换效率。
金属电极则提供外界电压和电流的连接接口。
光电二极管的工作方式可分为两种:正向工作和反向工作。
在正向工作时,PN结的P区连接到正电压,N区连接到负电压,形成正向偏置。
此时,光照射到光电二极管时,光生载流子会在电场力的作用下被隔离并引起电流变化。
而在反向工作时,PN结的P区连接到负电压,N区连接到正电压,形成反向偏置。
此时,光照射到光电二极管时,电流几乎不发生变化。
三、光电二极管的优势和局限性光电二极管具有以下几个优势:1. 高灵敏度:光电二极管能够对光信号进行高效率的转换,使得它在光通信和光传感等领域具有重要应用价值。
光电二极管的工作原理与特性光电二极管是一种能够将光能转化为电能的器件,广泛应用于电子和通信领域。
它的工作原理主要依赖于光电效应和半导体材料的特性。
本文将从两个方面探讨光电二极管的工作原理和特性。
一、光电效应和光电二极管的原理光电效应是指当光照射到物质表面时,光的能量被吸收,使得物质中的电子受到激发而被释放出来。
光电二极管利用光电效应将光转化为电流。
当光照射到光电二极管的PN结上时,光子的能量使得PN结区域的电子跃迁到导带能级,形成电子空穴对。
PN结是光电二极管的核心结构,是由P型半导体和N型半导体接触形成的。
P 型半导体中的杂质原子需要提供电子,而N型半导体中的杂质原子需要接受电子。
当两者结合时,形成一个电子富集区和一个电子亏损区。
当光照射到PN结上时,光子的能量使得PN结中的电子跃迁到导带能级,空穴留在价带能级上。
这样,导体区域就形成了电子流,产生了电压和电流。
二、光电二极管的特性1. 灵敏度:光电二极管的灵敏度指的是对光信号的响应能力。
灵敏度通常由两个因素决定:一是光电二极管的材料,二是光电二极管的面积。
在相同条件下,材料的光吸收能力越强、面积越大,光电二极管的灵敏度就越高。
2. 响应时间:光电二极管的响应时间指的是从光照射到电流形成的时间。
这个时间取决于载流子在半导体材料中的移动速度。
通常情况下,硅双向二极管的响应时间约为微秒级,而光电二极管的响应时间可以达到纳秒级。
3. 饱和电流和暗电流:在没有光照射时,光电二极管的导电能力是极低的,这时的电流被称为暗电流。
当光照射到光电二极管上时,电流会迅速增加,最终趋于稳定,这时的电流被称为饱和电流。
饱和电流和暗电流的大小与光强度和温度有关。
4. 光电二极管的频率特性:光电二极管对不同频率的光信号有不同的响应能力。
在较低的频率下,光电二极管的响应能力较高;而在较高的频率下,由于载流子的移动速度限制,光电二极管的响应能力会下降。
总结:光电二极管是一种利用光电效应将光能转化为电能的器件。
光电二极管(Photo-Diode)和普通二极管一样,也是由一个PN结组成的半导体器件,也具有单方向导电特性。
但在电路中它不是作整流元件,而是把光信号转换成电信号的光电传感器件。
原理普通二极管在反向电压作用时处于截止状态,只能流过微弱的反向电流,光电二极管在设计和制作时尽量使PN结的面积相对较大,以便接收入射光。
光电二极管是在反向电压作用下工作的,没有光照时,反向电流极其微弱,叫暗电流;有光照时,反向电流迅速增大到几十微安,称为光电流。
光的强度越大,反向电流也越大。
光的变化引起光电二极管电流变化,这就可以把光信号转换成电信号,成为光电传感器件检测方法①电阻测量法用万用表1k挡。
光电二极管正向电阻约10kΩ左右。
在无光照情况下,反向电阻为∞时,这管子是好的(反向电阻不是∞时说明漏电流大);有光照时,反向电阻随光照强度增加而减小,阻值可达到几kΩ或1kΩ以下,则管子是好的;若反向电阻都是∞或为零,则管子是坏的。
②电压测量法用万用表1V档。
用红表笔接光电二极管“+”极,黑表笔接“—”极,在光照下,其电压与光照强度成比例,一般可达0.2—0.4V。
[1]③短路电流测量法用万用表50μA档。
用红表笔接光电二极管“+”极,黑表笔接“—”极,在白炽灯下(不能用日光灯),随着光照增强,其电流增加是好的,短路电流可达数十至数百μA。
在实际工作中,有时需要区别是红外发光二极管,还是红外光电二极管(或者是光电三极管)。
其方法是:若管子都是透明树脂封装,则可以从管芯安装外来区别。
红外发光二极管管芯下有一个浅盘,而光电二极管和光电三极管则没有;若管子尺寸过小或黑色树脂封装的,则可用万用表(置1k挡) 来测量电阻。
用手捏住管子(不让管子受光照),正向电阻为20-40kΩ,而反向电阻大于200kΩ的是红外发光二极管;正反向电阻都接近∞的是光电三极管;正向电阻在10k左右,反向电阻接近∞的是光电二极管。
主要技术参数1.最高反向工作电压;2.暗电流;dark current 也称无照电流光电耦合器的输出特性是指在一定的发光电流IF下,光敏管所加偏置电压VCE与输出电流IC之间的关系,当IF=0时,发光二极管不发光,此时的光敏晶体管集电极输出电流称为暗电流,一般很小。
感谢百度文库让我们在这里与你相见,您的下载就是我们最大的动力。
光电二极管的定义
一、光电二极管的定义
光电二极管是一种超级有趣的电子元件呢。
它呀,就像是一个小小的电子眼睛,对光有着独特的感应能力。
你可以把它想象成一个特殊的二极管,普通二极管主要是对电流有单向导通等特性,而光电二极管在普通二极管的基础上,多了一个对光敏感的功能。
当光线照射到光电二极管上的时候,它内部就会发生一些奇妙的变化。
具体来说,光电二极管是利用半导体的光电效应制成的一种探测器。
光照射到半导体材料上时,光子的能量会被半导体中的电子吸收。
如果光子的能量足够大,就能把电子从价带激发到导带,这样就产生了电子 - 空穴对。
在光电二极管内部的电场作用下,这些电子和空穴就会向不同的方向移动,从而形成电流。
这个电流的大小和光的强度是有关系的哦。
光强越强,产生的电子 - 空穴对就越多,形成的电流也就越大。
而且光电二极管在很多地方都有应用呢。
在我们日常的生活中,比如自动感应的水龙头,它能够感应到我们手靠近时的光线变化,这背后就可能有光电二极管的功劳。
在一些光通信设备中,光电二极管也是不可或缺的一部分,它可以把接收到的光信号转化为电信号,这样我们就能接收到各种信息啦。
还有在一些光学测量仪器中,光电二极管也能准确地测量光的强度等参数。
光电二极管就像是一个小小的光能与电能的转换使者,默默地在很多设备和仪器中发挥着它独特而重要的作用呢。
第 1 页共 1 页。
•第七章光敏传感器•1.光电效应通常分为哪几类?简要叙述之。
与之对应的光电器件有哪些?•2.半导体内光电效应与入射光频率的关系是什么?3.光电倍增管产生暗电流的原因有哪些?如何降低暗电流?•4.试述光电倍增管的组成及工作原理?•5.简述光敏二极管和光敏三极管的结构特点、工作原理及两管的区别?•6.为什么在光照度增大到一定程度后,硅光电池的开路电压不再•随入射照度的增大而增大?硅光电池的最大开路电压为多少?•7.试举出几个实例说明光电传感器的实际应用,并进行工作原理的分析。
答案:一、光电效应分为两类:外光电效应和内光电效应外光电效应:入射光子被物质的表面所吸收,并从表面向外部释放电子的一种物理现象。
基于外光电效应的光电器件有光电管、光电倍增管。
内光电效应当光照在物体上,使物体的电导率发生变化,或产生光生电动势的现象。
分为光电导效应(如:光敏电阻)和光生伏特效应(如光电池、光电二极管、光电三极管)。
二、、对于不同的本征半导体材料,禁带宽度Eg不同,对入射光的波长或频率的要求也不同,一般都必须满足:7he1.24「hv=T^^-Eg式中v、A分别为入射光的频率和波长。
对于杂质半导体:Ei为杂质电离能三、1、欧姆漏电欧姆漏电主要指光电倍增管的电极之间玻璃漏电、管座漏电和灰尘漏电等。
欧姆漏电通常比较稳定,对噪声的贡献小。
在低电压工作时,欧姆漏电成为暗电流的主要部分。
在使用光电倍增管时,保证管壳和所有连接件的清洁干燥是十分必要的。
2、热发射由于光电阴极材料的光电发射阈值较低,容易产生热电子发射,即使在室温下也会有一定的热电子发射,并被电子倍增系统倍增。
要减小热电子发射,应选用热发射小的阴极材料,并在满足使用的前提下,尽量减小光电阴极的面积,降低光电倍增管温度。
3、残余气体放电光电倍增管中高速运动的电子会使管中的残余气体电离,产生正离子和光子,它们也将被倍增,形成暗电流。
这种效应在工作电压高时特别严重,使倍增管工作不稳定。
光电二极管的工作原理一、光电二极管的基本概念1.1 光电二极管的定义光电二极管(Photodiode)是一种能够将光信号转换为电信号的半导体器件。
它是一种光电转换器件,能够将光子的能量转变为电子的能量,并产生电流输出。
1.2 光电二极管的分类根据不同的工作原理和结构,光电二极管可以分为以下几类: 1. PN结光电二极管 2. 管式光电二极管 3. 稳压光电二极管 4. 反射式光电二极管 5. PIN结光电二极管二、PN结光电二极管的工作原理2.1 PN结光电二极管的结构PN结光电二极管是一种最常见且应用最广泛的光电二极管。
它由P型和N型半导体材料组成,中间形成PN结。
在PN结的两端设置正负电源,形成一个正向偏置的二极管。
2.2 PN结光电二极管的工作原理当光线照射到PN结上时,会产生光生电子及空穴对。
其中,光生电子会被PN结的电场分离,向N区移动;而空穴会被电场分离,向P区移动。
这样,就在PN结两侧建立了阳极和阴极之间的电压,从而产生电流。
但需要注意的是,PN结的工作原理并不是简单的光生电子和空穴对的分离。
在实际应用中,还需要考虑PN结的正向偏压、载流子的扩散和漂移过程、缺陷等因素。
三、光电二极管的特性参数3.1 光电流和光电压光电流(Photocurrent)是光照射到光电二极管时产生的电流。
当光强度增大时,光电流也会相应增大。
光电压(Photovoltage)是光电二极管在光照射下产生的电压。
其大小与光电二极管的尺寸和材料参数有关。
3.2 光电二极管的响应速度光电二极管的响应速度是指光电二极管对光信号变化的快慢程度。
它取决于光电载流子的寿命、扩散长度和漂移速度等因素。
3.3 光电二极管的谱响应范围光电二极管的谱响应范围是指在光照射下,光电二极管能够产生电流的波长范围。
不同材料的光电二极管具有不同的谱响应范围。
四、光电二极管的应用4.1 光电二极管在光通信中的应用光电二极管在光通信中广泛应用于光信号检测、光电转换和光检测等领域。