第6章 模糊神经网络-2015
- 格式:ppt
- 大小:1.40 MB
- 文档页数:74
自适应滤波第1章绪论 (1)1.1自适应滤波理论发展过程 (1)1. 2自适应滤波发展前景 (2)1. 2. 1小波变换与自适应滤波 (2)1. 2. 2模糊神经网络与自适应滤波 (3)第2章线性自适应滤波理论 (4)2. 1最小均方自适应滤波器 (4)2. 1. 1最速下降算法 (4)2.1.2最小均方算法 (6)2. 2递归最小二乘自适应滤波器 (7)第3章仿真 (12)3.1基于LMS算法的MATLAB仿真 (12)3.2基于RLS算法的MATLAB仿真 (15)组别: 第二小组组员: 黄亚明李存龙杨振第1章绪论从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波。
相应的装置称为滤波器。
实际上, 一个滤波器可以看成是一个系统, 这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、或者希望得到的有用信号, 即期望信号。
滤波器可分为线性滤波器和非线性滤波器两种。
当滤波器的输出为输入的线性函数时, 该滤波器称为线性滤波器, 当滤波器的输出为输入的非线性函数时, 该滤波器就称为非线性滤波器。
自适应滤波器是在不知道输入过程的统计特性时, 或是输入过程的统计特性发生变化时, 能够自动调整自己的参数, 以满足某种最佳准则要求的滤波器。
1. 1自适应滤波理论发展过程自适应技术与最优化理论有着密切的系。
自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。
1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。
并利用Wiener. Hopf方程给出了对连续信号情况的最佳解。
基于这~准则的最佳滤波器称为维纳滤波器。
20世纪60年代初, 卡尔曼(Kalman)突破和发展了经典滤波理论, 在时间域上提出了状态空间方法, 提出了一套便于在计算机上实现的递推滤波算法, 并且适用于非平稳过程的滤波和多变量系统的滤波, 克服了维纳(Wiener)滤波理论的局限性, 并获得了广泛的应用。
模糊神经网络的基本原理与应用概述摘要:模糊神经网络(FNN)是将人工神经网络与模糊逻辑系统相结合的一种具有强大的自学习和自整定功能的网络,是智能控制理论研究领域中一个十分活跃的分支,因此模糊神经网络控制的研究具有重要的意义。
本文旨在分析模糊神经网络的基本原理及相关应用。
关键字:模糊神经网络,模糊控制,神经网络控制,BP算法。
Abstract:A fuzzy neural network is a neural network and fuzzy logic system with the combination of a powerful. The self-learning and self-tuning function of the network, is a very intelligent control theory research in the field of active branches. So the fuzzy neural network control research has the vital significance. The purpose of this paper is to analysis the basic principle of fuzzy neural networks and related applications.Key Words: Fuzzy Neural Network, Fuzzy Control, Neural Network Control, BP Algorithm.1人工神经网络的基本原理与应用概述1.1人工神经网络的概念人工神经网络(Artificial Neural Network,简称ANN)是由大量神经元通过极其丰富和完善的联接而构成的自适应非线性动态系统,它使用大量简单的相连的人工神经元来模仿生物神经网络的能力,从外界环境或其它神经元获得信息,同时加以简单的运算,将结果输出到外界或其它人工神经元。
模糊神经网络算法研究一、引言模糊神经网络算法是一种结合了模糊逻辑和神经网络的计算模型,用于处理模糊不确定性和非线性问题。
本文将通过研究模糊神经网络的原理、应用和优化方法,探索其在解决实际问题中的潜力和局限性。
二、模糊神经网络算法原理1. 模糊逻辑的基本概念模糊逻辑是处理模糊信息的数学工具,其中包括模糊集合、隶属函数、模糊关系等概念。
模糊集合用来描述不确定或模糊的概念,而隶属函数表示一个元素属于某个模糊集合的程度。
模糊关系则用于表达模糊集合之间的关系。
2. 神经网络的基本原理神经网络是一种由人工神经元构成的计算系统,以模仿生物神经系统的运作方式。
其中的神经元接收输入信号、进行加权处理,并通过激活函数输出计算结果。
神经网络通过训练和学习来调整连接权值,以实现对输入输出之间的映射关系建模。
3. 模糊神经网络的结构和运算模糊神经网络结合了模糊逻辑的不确定性处理和神经网络的学习能力,并采用模糊化和去模糊化的过程来实现输入输出之间的映射。
常见的模糊神经网络结构包括前馈神经网络、递归神经网络和模糊关联记忆。
三、模糊神经网络算法应用1. 模糊神经网络在模式识别中的应用模糊神经网络在模式识别领域有广泛应用,例如人脸识别、手写识别和语音识别等。
由于模糊神经网络对于模糊和不完整信息的处理能力,能够更好地应对现实场景中的噪声和不确定性。
2. 模糊神经网络在控制系统中的应用模糊神经网络在控制系统中的应用主要体现在模糊控制器的设计和优化。
通过模糊控制器的设计,可以实现对复杂系统的自适应控制和非线性控制。
同时,模糊神经网络还可以与PID控制器相结合,提高系统的控制性能。
3. 模糊神经网络在预测和优化中的应用模糊神经网络在时间序列预测和多目标优化等问题中也有广泛应用。
例如,使用模糊神经网络来预测股票市场的趋势和交通流量的变化,以及应用模糊神经网络来优化生产调度和资源分配等问题。
四、模糊神经网络算法优化1. 模糊神经网络参数优化模糊神经网络的性能很大程度上依赖于其参数的设置。
模糊神经网络简介模糊神经网络(FNN)是一种结合模糊逻辑和神经网络的方法,旨在处理模糊信息与不确定性。
该网络模拟人类大脑处理模糊信息的机制,能够有效地应对现实世界中的模糊问题。
模糊逻辑模糊逻辑是一种处理模糊性的数学工具,它引入了模糊集合和模糊运算,能够描述事物之间的模糊关系。
与传统的逻辑相比,模糊逻辑更符合人类认知过程,能够更好地处理模糊信息。
神经网络神经网络是一种由神经元和连接权重构成的计算模型,它能够通过学习不断优化权重,从而实现对输入数据的自适应建模。
神经网络在模式识别、预测和优化等方面表现出色。
模糊神经网络模糊神经网络将模糊逻辑和神经网络相结合,利用神经网络的自适应学习能力和模糊逻辑的模糊描述能力,有效地处理模糊信息。
FNN将模糊集合映射到神经网络,通过训练调整连接权重,实现对模糊规则的建模与推理。
FNN的特点•模糊描述能力:FNN能够处理模糊和不确定性信息,更适合于现实世界中的复杂问题。
•自适应学习:FNN可以根据输入数据进行权重调整,不断优化网络性能。
•非线性映射:FNN具有非线性映射能力,能够建模复杂的非线性关系。
•规则推理:FNN能够根据事先定义的模糊规则进行推理和决策。
应用领域模糊神经网络在诸多领域得到广泛应用: - 模糊控制:用于处理模糊和不确定性信息的系统控制。
- 模糊识别:用于模糊模式识别和特征提取。
- 模糊优化:用于解决模糊目标函数的优化问题。
- 模糊决策:用于模糊环境中的决策问题。
结语模糊神经网络作为模糊信息处理的有效工具,将模糊逻辑和神经网络的优势相结合,为处理现实世界中的复杂问题提供了一种全新的视角和方法。
随着人工智能技术的不断发展,模糊神经网络有望在更广泛的领域发挥重要作用。
利用改进T-S模糊神经网络恢复MMW图像尚丽;周燕【摘要】为有效消除毫米波(MMW)图像中的非线性噪声,利用T-S模糊神经网络(T-S-FNN)对不确定信息进行有效区分的特性,实现MMW图像中非线性信息噪声的逼近,达到消噪的目的.为克服T-S-FNN规则冗余的缺点,考虑前件网络基于自适应模糊聚类的隶属度函数约束及后件网络的权值优化学习,对其前件及后件的结构和学习算法进行改进,使T-S-FNN的计算简化、鲁棒性更强.利用改进的T-S-FNN 对MMW图像进行处理,实验结果表明,该模型具有较好的非线性噪声抑制能力.【期刊名称】《计算机工程与设计》【年(卷),期】2018(039)005【总页数】5页(P1463-1466,1489)【关键词】非线性信息;模糊神经网络;TS模糊模型;毫米波图像;图像消噪【作者】尚丽;周燕【作者单位】苏州市职业大学电子信息工程学院,江苏苏州215104;苏州市职业大学电子信息工程学院,江苏苏州215104【正文语种】中文【中图分类】TN911.730 引言毫米波(milli-meter wave,MMW)图像在系统成像过程中会渗入很多未知的噪声[1,2],且图像的非线性信息缺失非常严重,图像视觉效果较差,研究有效的MMW图像恢复方法一直是备受关注的课题[2]。
而模糊神经网络(fuzzy neural network,FNN)模型兼有模糊系统和神经网络模型的优点[3-5],能够解决很多传统技术无能为力的、不确定的、且非常复杂的非线性问题[6-8]。
因此,本文引入FNN技术来实现MMW图像的非线性滤波,从而获得图像细节和轮廓边缘较清晰的MMW图像。
目前,T-S模糊系统已被实践证实是一种典型的、有效的非线性处理手段[2,8,9]。
然而,常用的T-S模糊系统中的规则数目和规则层的神经元数目都没有合理的确定方法,常常出现规则冗余的情况;另外,T-S模糊模型中的结构和优化算法也比较复杂,计算速度较慢。
神经⽹络与模糊控制考试题及答案汇总⼀、填空题1、模糊控制器由模糊化接⼝、解模糊接⼝、知识库和模糊推理机组成2、⼀个单神经元的输⼊是 1.0 ,其权值是 1.5,阀值是-2,则其激活函数的净输⼊是-0.5 ,当激活函数是阶跃函数,则神经元的输出是 13、神经⽹络的学习⽅式有导师监督学习、⽆导师监督学习和灌输式学习4、清晰化化的⽅法有三种:平均最⼤⾪属度法、最⼤⾪属度取最⼩/最⼤值法和中位数法,加权平均法5、模糊控制规则的建⽴有多种⽅法,是:基于专家经验和控制知识、基于操作⼈员的实际控制过程和基于过程的模糊模型,基于学习6、神经⽹络控制的结构归结为神经⽹络监督控制、神经⽹络直接逆动态控制、神⽹⾃适应控制、神⽹⾃适应评判控制、神⽹内模控制、神⽹预测控制六类7.傅京逊⾸次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和。
7、⼈作为控制器的控制系统、⼈机结合作为控制器的控制系统、⽆⼈参与的⾃主控制系统8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。
8、不确定性、⾼度的⾮线性、复杂的任务要求9.智能控制系统的主要类型有、、、、和。
9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统10.智能控制的不确定性的模型包括两类:(1) ;(2) 。
10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很⼤范围内变化。
11.控制论的三要素是:信息、反馈和控制。
12.建⽴⼀个实⽤的专家系统的步骤包括三个⽅⾯的设计,它们分别是、和。
知识库的设计推理机的设计⼈机接⼝的设计13.专家系统的核⼼组成部分为和。
知识库、推理机14.专家系统中的知识库包括了3类知识,它们分别为、、和。
判断性规则控制性规则数据15.专家系统的推理机可采⽤的3种推理⽅式为推理、和推理。
15、正向推理、反向推理和双向推理16.根据专家控制器在控制系统中的功能,其可分为和。
模糊神经网络的结构与实现方法概述:在数学、计算机科学、人工智能领域中,神经网络是一种模仿人类神经系统结构与功能的数学模型,被广泛用于模式识别、机器学习和人工智能等领域。
模糊神经网络就是基于模糊数学理论的神经网络。
本文将介绍模糊神经网络的基本结构和实现方法。
模糊神经网络的基本结构:模糊神经网络的结构与普通神经网络的结构类似,由输入层、隐藏层和输出层三个部分组成。
1.输入层:输入层用于接收外部输入的模糊信息。
一般来说,输入的信息经过模糊化处理,以便于神经网络进行处理。
这些信息可以是关于物体颜色、大小、形状和运动方向等方面的特征。
2.隐藏层:隐藏层通常用于进行信息加工、转化和计算。
在模糊神经网络中,隐藏层的作用是将输入的模糊信息转换成一组更加抽象和具有判断性质的特征。
这些特征可以用于后续的分类和识别。
3.输出层:输出层将隐藏层计算后的特征转换成分类结果。
在模糊神经网络中,输出层的结果通常为一组置信度或概率,表示某个输入向量属于每个不同类别的可能性大小。
模糊神经网络的实现方法:模糊神经网络的实现方法一般分为两种:基于规则的模糊神经网络和基于学习的模糊神经网络。
1.基于规则的模糊神经网络:基于规则的模糊神经网络是一种预设规则的模糊推理方法。
它使用if-then规则作为知识表示形式,通过模糊逻辑运算对规则进行推理,以得出输出结果。
这种方法的优点是不需要进行训练,但是缺点是规则需要手动预设,需要专家经验,并且容易出现规则矛盾的情况。
2.基于学习的模糊神经网络:基于学习的模糊神经网络是一种通过样本训练来确定模型参数的方法。
它使用输入和输出的训练样本集来训练网络的权重和阈值,以得出输出结果。
这种方法的优点是可以自动学习知识,并且可以处理复杂的非线性问题,但是需要大量的训练数据和时间。
总结:模糊神经网络作为一种非常有效的神经网络类型,已经被广泛应用于图像处理、模式识别、控制系统等领域。
本文简要介绍了模糊神经网络的基本结构和实现方法,并且指出了它的优点和缺点。
燃气轮机故障诊断舰用燃气轮机某关键部件故障诊断方法研究系别信息工程系专业测控技术与仪器班级B141401学号B14140129姓名袁斌指导教师崔建国负责教师崔建国沈阳航空航天大学北方科技学院2015年6月摘要燃气轮机的关键部件之一滚动轴承是机械设备运行过程中产生最易产生故障的零件,它运行的正常与否直接影响到整台机器的性能。
防止故障升级,发生灾难性事故。
所以对滚动轴承故障诊断技术进行探讨和学习就具有十分重要的意义。
本文主要以燃气轮机的滚动轴承为研究对象,利用测量的轴承振动信号参数来进行故障诊断,利用神经网络技术对某一动态的模拟原理,应用到对滚动轴承故障诊断的具体方面,设计并构建了基于BP神经网络和自适应模糊神经网络(Adaptive Network Fuzzy Inference System)的滚动轴承故障诊断系统,在MATLAB软件里对构造的训练样本进行训练,利用训练完成后的神经网络我们就可以对滚动状态故障进行诊断。
关键词:滚动轴承;BP神经网络;模糊神经网络AbstractRolling bearing is one of the most ordinary parts in mechanical machine, its running state can influence the performance of the whole machine directly, the aircraft stabilizer health status need to be monitored in real time to ensure the aircraft fly safety. so it is important to study the technology of fault diagnosis for rolling bearing.On the basis of analyzing the fault mechanism and vibration signal characteristics of rolling bearing systematically, and after analyzing and processing the vibration signals of right and fault state of rolling bearing, partial appropriate feature parameters are selected as the input of the neural network according to the time and frequency domain characteristics of parameters in this thesis. and the fault diagnosis system for rolling bearing based on BP neural network is built up. Finally,and fuzzy artificial neural network diagnosis technique the training set of right and fault states of rolling bearing is built up by using the measuring data of rolling bearing from former research, the neural network model is trained on the platform of Matlab software.the operating state of rolling bearing has been diagnosed by using the above network which has been trained well.Keywords: rolling bearing; BP neural network; fuzzy artificial neural network目录1 绪论 (1)1.1 课题背景和研究的意义 (1)1.1.1 研究背景 (1)1.1.2 研究意义 (2)1.2 国内外故障诊断技术研究现状 (3)1.2.1 国外现状 (3)1.2.2 国内现状 (4)1.3 研究内容 (5)2 燃气轮机关键部件故障诊断的总体方案设计 (7)2.1滚动轴承故障的总体方案设计 (7)2.2 滚动轴承机理及故障类型 (7)2.2.1 滚动轴承基本结构 (8)2.2.2 滚动轴承故障类型 (9)2.3 滚动轴承参数选取及处理 (10)3故障诊断方法 (13)3.1 BP神经网络 (13)3.1.1 BP神经网络原理 (13)3.1.2 BP神经网络诊断方法 (14)3.2 自适应模糊神经网络(ANFIS) (17)3.2.1 自适应模糊神经网络(ANFIS)结构 (18)3.2.2 自适应模糊神经网络(ANFIS)原理 (20)3.2.3 自适应模糊神经网络(ANFIS)诊断方法 (21)4 滚动轴承BP神经网络故障诊断试验研究 (25)4.1 故障诊断模型建立 (25)4.1.1 各层节点数确定 (25)4.1.2 初始权值的选择 (27)4.1.3 期望误差和学习率选取 (27)4.2轴承故障诊断的仿真试验研究 (27)4.2.1样本选取 (27)4.2.2 神经网络的训练 (29)4.2.3 神经网络的测试 (30)5 基于自适应模糊神经网络(ANFIS)的故障诊断试验研究 (32)5.1 诊断模型的建立 (32)5.1.1 样本的选取 (32)5.1.2 输入样本的模糊化处理 (33)5.1.3 输出结果的去模糊化处理 (34)5.2 轴承故障诊断仿真与结果 (34)6 不同神经网络故障诊断结果与分析 (38)7 结论 (39)结束语 (40)致谢 (41)参考文献 (42)附录ⅠBP神经网络故障诊断源程序清单 (43)附录Ⅱ自适应模糊神经网络(ANFIS)诊断源程序清单 (48)1 绪论1.1 课题背景和研究的意义1.1.1 研究背景作为新型的动力设备,燃气轮机具有结构紧凑、安全可靠、运行平稳,具有较高的热效率,可以快速启动并带动负载等优点,而日益受到人们的重视,应用范围也越来越广。