沪教版相似三角形教案及练习
- 格式:doc
- 大小:86.00 KB
- 文档页数:4
沪教版数学九年级上册24.4《相似三角形的判定》(第1课时)教学设计一. 教材分析《相似三角形的判定》是沪教版数学九年级上册第24章第4节的内容,本节内容是在学生已经掌握了三角形的基本概念、三角形的性质、三角形的判定等知识的基础上进行授课的。
本节课的主要内容是引导学生探究相似三角形的判定方法,让学生通过观察、操作、猜想、证明等过程,体会数学的转化思想,培养学生的逻辑思维能力和空间想象能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对三角形的相关知识有一定的了解。
但是,学生对相似三角形的判定方法还没有接触过,对于如何证明两个三角形相似还有一定的困难。
因此,在教学过程中,教师需要引导学生观察、操作、猜想、证明,帮助学生理解和掌握相似三角形的判定方法。
三. 教学目标1.知识与技能目标:使学生掌握相似三角形的判定方法,能够运用相似三角形的性质解决一些简单的问题。
2.过程与方法目标:通过观察、操作、猜想、证明等过程,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观目标:让学生在探究过程中体验数学的转化思想,培养学生的团队合作意识和克服困难的勇气。
四. 教学重难点教学重点:相似三角形的判定方法。
教学难点:如何证明两个三角形相似。
五. 教学方法采用问题驱动法、合作学习法、探究学习法、讲授法等教学方法,引导学生观察、操作、猜想、证明,从而掌握相似三角形的判定方法。
六. 教学准备准备一些三角形模型、多媒体教学设备等。
七. 教学过程1.导入(5分钟)教师通过展示一些三角形模型,让学生观察并思考:这些三角形有什么特点?你能找出它们之间的联系吗?从而引导学生进入本节课的主题——相似三角形的判定。
2.呈现(10分钟)教师通过多媒体展示一些相似三角形的图片,让学生观察并回答问题:这些三角形为什么相似?你是如何判断的?引导学生总结出相似三角形的判定方法。
3.操练(10分钟)教师提出一些判断相似三角形的问题,让学生分组进行讨论、操作、证明。
沪科版数学九年级上册第22章《相似三角形》复习教学设计一. 教材分析《相似三角形》是沪科版数学九年级上册第22章的内容,本章主要让学生掌握相似三角形的性质和判定方法,以及相似三角形在实际问题中的应用。
本章内容是学生以前学过三角形知识的进一步拓展,也是为后续学习相似多边形、相似圆等知识打下基础。
二. 学情分析九年级的学生已经掌握了三角形的基本知识,如三角形的性质、分类等。
同时,他们具备一定的逻辑思维能力和问题解决能力。
但是,对于相似三角形的性质和判定方法,学生可能存在理解上的困难,因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,深入理解相似三角形的性质和判定方法。
三. 教学目标1.知识与技能目标:使学生掌握相似三角形的性质和判定方法,能够运用相似三角形的知识解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的问题解决能力和合作能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自信心和自主学习能力。
四. 教学重难点1.教学重点:相似三角形的性质和判定方法。
2.教学难点:相似三角形的性质和判定方法在实际问题中的应用。
五. 教学方法1.引导发现法:教师引导学生通过观察、操作、思考等活动,自己发现相似三角形的性质和判定方法。
2.合作学习法:学生分组讨论,共同解决问题,培养学生的合作能力和沟通能力。
3.案例教学法:教师通过列举实际问题,引导学生运用相似三角形的知识解决问题。
六. 教学准备1.教学课件:制作课件,展示相似三角形的性质和判定方法。
2.实际问题:准备一些实际问题,用于引导学生运用相似三角形的知识解决问题。
3.学具:准备一些三角形模型,供学生观察和操作。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本知识,如三角形的性质、分类等。
然后,教师提出本节课的主题——相似三角形,激发学生的学习兴趣。
2.呈现(10分钟)教师利用课件展示相似三角形的性质和判定方法,引导学生观察、思考,自己发现相似三角形的性质和判定方法。
24.4 相似三角形的判定教案【学习目标】1、了解相似三角形的概念,掌握相似三角形的表示方法及判定方法;2、进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形在和中,如果我们就说与相似,记作∽.k就是它们的相似比,“∽”读作“相似于”.要点诠释:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等.要点二、相似三角形的判定定理1.判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.2.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似. 3.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.4.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.要点三、相似三角形的常见图形及其变换:【典型例题】类型一、相似三角形例题1. 下列能够相似的一组三角形为( ).A.所有的直角三角形B.所有的等腰三角形C.所有的等腰直角三角形D.所有的一边和这边上的高相等的三角形【答案】C【解析】A中只有一组直角相等,其他的角是否对应相等不可知;B中什么条件都不满足;D中只有一条对应边的比相等;C中所有三角形都是由90°、45°、45°角组成的三角形,且对应边的比也相等.答案选C.【总结升华】根据相似三角形的概念,判定三角形是否相似,一定要满足三个角对应相等,三条对应边的比相等.举一反三:【变式】给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有(填序号).【答案】①②④⑤.类型二、相似三角形的判定例题2. 如图所示,已知中,E为AB延长线上的一点,AB=3BE,DE与BC相交于F,请找出图中各对相似三角形,并求出相应的相似比.【答案与解析】∵四边形ABCD是平行四边形,∴ AB∥CD,AD∥BC,∴△BEF∽△CDF,△BEF∽△AED.∴△BEF∽△CDF∽△AED.∴当△BEF∽△CDF时,相似比;当△BEF∽△AED时,相似比;举一反三:【变式】如图,AD、CE是△ABC的高,AD和CE相交于点F,求证:AF·FD=CF·FE.【答案】∵ AD、CE是△ABC的高,∴∠AEF=∠CDF=90°,又∵∠AFE=∠CFE,∴△AEF∽△CDF.∴AF EFCF FD, 即AF·FD=CF·FE.例题3.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【答案与解析】解:(1)∵AD=BC=1,BC=,∴AD=,DC=1﹣=.∴AD2==,AC•CD=1×=.∴AD2=AC•CD.(2)∵AD=BC,AD2=AC•CD,∴BC2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ACB.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠BDC.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.例题4. 已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF.【答案与解析】连接,,,是的中垂线,,,,.,.又,∽,,.举一反三:【变式】如图,F 是△ABC 的AC 边上一点,D 为CB 延长线一点,且AF=BD,连接DF, 交AB 于E. 求证:DE AC EF BC =.【答案】过点F 作FG ∥BC,交AB 于G.则△DBE ∽△FGE△AGF ∽△ABC∵DEDBEF GF =,又∵AF=BD,∴.DE AFEF GF =∵△AGF ∽△ABC∴AF ACGF BC =,即DEACEF BC =.。
沪科版九年级数学上册教案《相似三角形的判定》《相似三角形的判定》教科书分析本节是上海科技版义务教育教科书《数学》九年级上册第二十二章《相似形》的第2节《相似三角形的判定》的教学内容,主要研究相似三角形的判定方法.本节内容是在学生学习了相似形和相关的线段比例性质之后在三角形相似中的判定.首先由生活中的图像讨论引出相似三角形的证明的,在此基础上进一步探究其他证明方法;接着证明直角三角形的相似的判定;最后解答,解决一些生活中的问题.本部分研究了三角形相似性的判定,体现了从特殊到一般的证明思想教学目标【知识和能力目标】理解相似三角形的判断方法【过程和方法】以问题的形式,创设一个有利于学生动手和探究的情境,达到学会本节课所学的相似三角形的判定方法.。
【情感态度与价值观】培养学生积极思考、动手和观察的能力,使学生意识到几何知识在生活中的价值教学重难点[教学要点]会应用相似三角形的两个判定方法。
怎样选择合格的判定方法来判定两个三角形相似。
【教学难点】掌握判断方法的条件,通过对已知条件的分析掌握图形的结构特征。
课前准备多媒体课件、教具等教学过程问题(1)相似形的定义与性质?(2)相似比的定义,如何判断相似性?【设计意图】:回忆相似形的相关概念和性质,为后面学习判定知识做铺垫。
1B1,那么,如果已知ab‖A1B1,这两只风筝的形状相似。
观察和思考:敢于猜测,a 能得到吗△ 基础知识≓? a1b1c1【设计意图】:具体生活中实际图片,为后面做铺垫,引出证明相似思考:已知,de//bc,且d是边ab的中点,de交ac于e,猜想:△ade与△abc有什么关系?并证明。
相似证据:≓德//公元前∠ 1 = ∠ B∠ 2 = ∠ C和∠ a=∠ A.∴△ade与△abc的对应角相等过e作ef//ab交bc于f,又∵de//bc四边形dbfe是平行四边形,∴de=bf,db=ef又∵ad=db,∴ad=ef∵∠a=∠3,∠2=∠c△ade≌△efc∴de=fc=bf,ae=ecae1de1adaede1?,,acbc2ac2bc2ab∴△a de与△abc的对应边成比例∴△ade∽△abc由三角形中线切割的三角形与原始三角形相似【设计意图】:特殊案例,体会从特殊到一般的证明思路,由易到难,当D点位于AB上的任意点时,上述结论仍然有效吗?已知:De//BC,两者之间的关系是什么△ 艾德和△ ABC?猜想:两者之间的关系是什么△ 艾德和△ ABC?aBdec平行于三角形一侧的定理是相似的。
沪科版数学九年级上册22.3《相似三角形的性质》(第1课时)教学设计一. 教材分析《相似三角形的性质》是沪科版数学九年级上册第22.3节的内容。
本节主要让学生掌握相似三角形的性质,并能够运用这些性质解决一些实际问题。
教材通过实例引入相似三角形的性质,引导学生探究并证明这些性质,最后通过练习巩固所学知识。
二. 学情分析九年级的学生已经学习了三角形的性质、相似三角形的定义和性质等知识,具备了一定的数学基础。
但学生在运用相似三角形的性质解决实际问题时,往往会出现理解不深、运用不灵活的情况。
因此,在教学过程中,教师需要帮助学生深入理解相似三角形的性质,并能够灵活运用。
三. 教学目标1.了解相似三角形的性质,并能够运用这些性质解决实际问题。
2.培养学生的逻辑思维能力和数学素养。
3.提高学生的数学应用能力和解决问题的能力。
四. 教学重难点1.相似三角形的性质及其运用。
2.学生能够灵活运用相似三角形的性质解决实际问题。
五. 教学方法1.实例引入:通过生活中的实例引入相似三角形的性质,让学生感受数学与生活的联系。
2.探究学习:引导学生通过小组合作、讨论交流的方式,探究相似三角形的性质,培养学生的合作意识和团队精神。
3.练习巩固:通过大量的练习题,让学生巩固所学知识,提高解题能力。
4.启发引导:教师在教学过程中,引导学生思考,激发学生的学习兴趣和求知欲。
六. 教学准备1.准备相关的教学PPT,展示生活中的实例和练习题。
2.准备相关的学习材料和辅导书,为学生提供更多的学习资源。
3.准备黑板和粉笔,用于板书和讲解。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如相似的图形、建筑物的比例等,引导学生思考相似三角形的性质。
2.呈现(10分钟)教师通过PPT展示相似三角形的性质,让学生初步了解并感知这些性质。
同时,引导学生进行思考和讨论,培养学生的逻辑思维能力。
3.操练(10分钟)教师给出一些练习题,让学生运用相似三角形的性质进行解答。
姓王瑜上课时间2016年 9 月 3 日上午 10:10-12 :10名辅导科数学年级九年级课时3目课题名比例线段、相似三角形称1、理解放缩与相似形的概念,掌握相似形基本特征。
2、理解比与比例及比例中项等概念,掌握比例的基本性质、合比定理和教学目更比定理,会用它们进行简单的比例变形;标3、理解比例线段及黄金分割的概念,理解平行线分线段成比例定理,会作第四比例项教学重相似三角形的判定与性质点教学难比例的基本性质、相似三角形的判定与性及其应用点教学及辅导过程◆考点聚焦1.了解线段的比、成比例线段、黄金分割、相似图形有关概念及性质.2.探索并掌握三角形相似的性质及条件,?并能利用相似三角形的性质解决简单的实际问题.3.掌握图形位似的概念,能用位似的性质将一个图形放大或缩小.4.掌握用坐标表示图形的位置与变换,在给定的坐标系中,?会根据坐标描出点的位置或由点的位置写出它的坐标,灵活运用不同方式确定物体的位置.◆备考兵法1.证明三角形相似的方法常用的有三个,到底用哪个要根据具体情况而定,要注意基本图形的应用,如“A型”“X 型”“母子型”等.2.用相似三角形的知识解决现实生活中实际问题,关键是要先把实际问题转化为数学问题,识别或作出相似三角形,再利用相似三角形的性质求解,并回答实际问题,注意题目的解一定要符合题意.3.用直角坐标系中的点描述物体的位置,用坐标的方法来研究图形的运动变换,是较为常见的考法,要注意训练.◆考点链接一、相似三角形的定义三边对应成 _________,三个角对应 ________的两个三角形叫做相似三角形.二、相似三角形的判定方法1.若 DE∥BC(A 型和 X 型)则 ______________.2.射影定理:若 CD为 Rt△ABC斜边上的高(双直角图形)2,2,2.则 Rt△ABC∽Rt△ACD∽Rt△CBD 且 AC=________CD=_______BC=__ ____A E D CD E AB C B C A D B3.两个角对应相等的两个三角形 __________.4.两边对应成 _________且夹角相等的两个三角形相似.5.三边对应成比例的两个三角形___________.三、相似三角形的性质1.相似三角形的对应边 _________,对应角 ________.2.相似三角形的对应边的比叫做 ________,一般用 k 表示.3.相似三角形的对应角平分线,对应边的 ________线,对应边上的 _______?线的比等于 _______比,周长之比也等于 ________比,面积比等于 _________.【历年考点例析】考点一、比例及有关概念 , 比例的基本性质例 1①在比例尺是 1:38000 的南京交通游览图上,玄武湖隧道长约7cm,则它的实际长度约为 ______Km。
相似三角形的判定【教学目标】1.理解相似三角形的概念,能正确地找出相似三角形的对应边和对应边角:2.掌握相似三角形判定定理的“预备定理”;3.能灵活运用三角形相似的判定定理证明和解决有关问题。
【教学重点】灵活运用三角形相似的判定定理证明和解决有关问题。
【教学难点】三角形相似的判定定理的探索与证明。
【课时安排】5课时。
【教学过程】【第一课时】三角形相似判定定理的“预备定理”。
一、复习旧知:前面我们学习了相似多边形及相似比的有关概念,下面请同学们思考以下几个问题:(一)辨析:1.四个角分别相等的两个四边形一定相似吗?2.四组对应边的比分别相等的两个四边形一定相似吗?3.什么样的两个多边形是相似多边形?4.什么是相似比(相似系数)?(二)简答:1.正方形和长方形或长宽之比不相等的两个矩形。
2.正方形和不是正方形的菱形或两组内角均不相等的菱形。
3.两个边数相同的多边形,如果它们的对应角相等,对应边长度的比相等,那么这两个多边形叫做相似多边形。
4.相似多边形对应边长度的比叫做相似比或相似系数。
二、概念讲解:概念:如图1,AAB(2与八AB。
相似。
记作“△ABCs/XABt,”,读作“Z\ABC相似于左ABC,”。
注意:两个三角形相似,用字母表示时,与全等一样,应把表示对应顶点的字母写在对应位置上,这样便于找出相似三角形的对应边和对应边角。
, 、ZA=ZA\ZB=ZB;ZC=ZC;△ABCs/XABC,V〉AB BC CA明确:对于,根据相似三角形的定义,应有……(引导学生明白定义的双重性。
)问题:将左ABC与左ABC,相似比记为ki,△ABC与8ABC相似比记为k?,那么幻与灯有什么关系?ki=k2能成立吗?说明:三角形全等是三角形相似的特例。
(一)类比猜想:1.两个三角形全等的判定有哪几种方法?2.全等是不是需要所有的对应边和对应角都相等?3.猜想:两个三角形相似是不是也需要所有的对应边?和对应角都相等?有没有简便的方法?(二)简析:1.两个三角形全等的判定方法有:SAS,ASA、SSS,AAS,直角三角形还有HL。
沪教版初中数学图形的相似与应用教案2023教案目标:通过学习相似的概念,使学生能够正确应用相似关系解决实际问题。
一、相似的概念及性质相似的定义:若两个图形的对应角相等,并且对应边成比例,则它们是相似的。
两个三角形相似的性质:(1)相似三角形的对应边比例相等;(2)相似三角形的对应角相等;(3)相似三角形的形状相似;(4)相似三角形的面积比等于对应边平方比。
二、相似的判定方法方法一:SAS判定法若两个三角形的两对对应边成比例,并且夹角相等,则这两个三角形是相似的。
方法二:AA判定法若两个三角形的两对对应角相等,则这两个三角形是相似的。
方法三:SSS判定法若两个三角形的三对对应边成比例,则这两个三角形是相似的。
三、相似的应用1. 三角形的相似比例计算当将大三角形分成若干个相似的小三角形时,我们可以利用相似三角形的对应边比例相等的性质来求解未知边长。
例题:已知两个相似三角形的相似比例为1:2,其中较小三角形的高为3cm,求较大三角形的高。
解:根据相似三角形的对应边比例相等的性质,设较大三角形的高为h,则有3/h=1/2,解得h=6cm。
因此,较大三角形的高为6cm。
2. 应用相似解决实际问题例题:一根高塔上的旗杆和一根路旁立起的杆子在同一平面上,两个杆子的影子之间的角度为30度,旗杆的高度为15米,杆子的高度为2.5米。
求杆子的影子的长度。
解:根据相似三角形的对应角相等的性质,可以设杆子的影子长度为x,则有15/2.5=x/sin30度,解得x=7.5米。
因此,杆子的影子长度为7.5米。
3. 图形的放缩与尺寸计算当我们需要放缩图形的尺寸时,可以利用相似三角形的对应边比例相等的性质来计算新图形的尺寸。
例题:一张正方形纸片的边长为10cm,现需要将该纸片等比例地放大,放大比例为1:2,求放大后正方形纸片的边长。
解:根据相似三角形的对应边比例相等的性质,放大后正方形纸片的边长为10cm×2=20cm。
第二十四章相似三角形教案(全章)【学习目标】(1)了解比例的基本性质,了解线段的比、成比例线段的概念;(2)通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,周长的比等于对应边的比,面积的比等于对应边比的平方;(3)了解两个三角形相似的概念,探索两个三角形相似的条件;(4)通过典型实例观察和认识现实生活中物体的相似,利用图形的相似解决一些实际问题( 如利用相似测量旗杆的高度);(5)理解实数与向量相乘的定义及向量数乘的运算律.【知识网络】【要点梳理】要点一、比例线段及比例的性质1.比例线段:(1)线段的比:如果选用同一长度单位量得两条线段a,b的长度分别是m,n,那么就说这两条线段的比是a:b=m:n,或写成,其中a叫做比的前项;b叫做比的后项.(2)成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.(3)比例的项:已知四条线段a,b,c,d,如果,那么a,b,c,d,叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段d还叫做a,b,c的第四比例项.(4)比例中项:如果作为比例线段的内项是两条相同的线段,即a:b=b:c或,那么线段b叫做线段a和c的比例中项.要点诠释:通常四条线段a,b,c,d的单位应该一致,但有时为了计算方便,a,b的单位一致,c,d的单位一致也可以.2.比例的性质(1)比例的基本性质:(2)反比性质:(3)更比性质: 或(4)合比性质:(5)等比性质: 且3.平行线分线段成比例定理(1)三角形一边的平行线性质定理: 平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.(2)三角形一边的平行线性质定理推论:平行于三角形一边并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边的对应成比例.(3)三角形一边的平行线判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.(4)三角形一边的平行线判定定理推论:如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(5)平行线分线段成比例定理:两条直线被三条平行的直线所截,截得的对应线段成比例.(6)平行线等分线段定理:两条直线被三条平行的直线所截,如果在一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等.这几个定理主要提出由平行线可得到比例式;反之,有比例可得到平行线.首先要弄清三个基本图形:这三个基本图形的用途是:1.由平行线产生比例式基本图形(1): 若l1//l2//l3,则或或或基本图形(2): 若DE//BC,则或或或基本图形(3): 若AC//BD,则或或或在这里必须注意正确找出对应线段,不要弄错位置.2.由比例式产生平行线段基本图形(2):若, , , ,, 之一成立,则DE//BC.基本图形(3):若, , , , , 之一成立,则AC//DB. 要点诠释:(1)平行线等分线段定理是平行线分线段成比例定理的特例; (2)平行线分线段成比例没有逆定理;(3)由于平行线分线段成比例定理中,平行线本身没有参与作比例,因此,有关平行线段的计算问题通常转化到“A”、“X”型中.A 型 X 型 常用的比例式:,,AD AE AD AE DB ECDB EC AB AC AB AC===.(4)判断平行线的条件中,只能是被截的两条直线的对应线段成比例(被判断的平行线本身不能参与作比例).4.三角形的重心三角形三条中线的交点叫做三角形的重心. 要点诠释:(1)重心的性质:三角形的重心到一个顶点的距离,等于它到这个顶点对边中点的距离的二倍; (2)重心的画法:两条中线的交点.要点二、黄金分割 1.黄金分割是指把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB)与较小线段(BC)的比例中项(AC 2=AB·BC),C 点为黄金分割点. 2.黄金分割的求法 ①代数求法:已知:线段AB ,求作:线段AB 的黄金分割点C.分析:设C 点为所求作的黄金分割点,则AC 2=AB·CB,设AB =,AC =x ,那么 CB =-x , 由AC 2=AB·CB,得:x 2=·(-x) =0, 根据求根公式,得:x =整理后,得:x 2+x - ∴(不合题意,舍去)即AC=5-12AB≈0.618AB,则C点可作.②黄金分割的几何求法(尺规法):已知:线段AB,求作:线段AB的黄金分割点C.作法:如图:(1)过B点作BD⊥AB,使BD=AB.(2)连结AD,在AD上截取DE=DB.(3)在AB上截取AC=AE.则点C就是所求的黄金分割点.证明:∵AC=AE=AD-AB而AD=∴AC=∴C点是线段AB的黄金分割点.要点诠释:①一条线段有两个黄金分割点.②这种分割之所以被人们称为黄金分割,是因为黄金分割存在美学规律和具有实用价值.德国著名天文学家开普勒 (Kepler,1571—1630)把这种分割称为“神圣的比例”,说它是几何中的瑰宝,大家也可以看一下课外的阅读材料,体会一下黄金分割中所蕴含的美学.要点三、相似三角形1.相似多边形(1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等.(2)相似多边形的识别:如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似.(3)相似比:我们把相似多边形对应边的比称为相似比.(4)相似多边形的性质①相似多边形的对应角相等,对应边的比相等.②相似多边形的周长比等于相似比.③相似多边形的面积比等于相似比的平方.2.相似三角形(1)相似三角形的定义:形状相同的三角形是相似三角形.(2)相似三角形的表示方法:用“∽”表示,读作相似于.如:△ABC和△DEF相似,可以写成△ABC∽△DEF,也可以写成△DEF ∽△ABC,读作△ABC相似于△DEF.(3)相似三角形的性质:①相似三角形的对应角相等,对应边的比相等.②相似三角形对应边上的高的比相等,对应边上的中线的比相等,对应角的角平分线的比相等,都等于相似比.③相似三角形的周长的比等于相似比,面积的比等于相似比的平方. 要点诠释:相似三角形的性质是通过比例线段的性质推证出来的.(4)相似三角形的判定:①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; ②如果两个三角形的三组对应边的比相等,那么这两个三角形相似;③如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似; ④如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.⑤如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边的比对应相等,那么这两个直角三角形相似. (5)相似三角形应用举例相似三角形的知识在实际生产和生活中有着广泛的应用,可以解决一些不能直接测量的物体的长度问题,加深学生对相似三角形的理解和认识. 要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.要点四、实数与向量相乘 1.实数与向量相乘的意义一般的,设n 为正整数,a 为向量,我们用a n 表示n 个a 相加;用a n -表示n 个a -相加.又当m 为正整数时,a m n 表示与a 同向且长度为a mn 的向量. 要点诠释:设P 为一个正数,P a 就是将a 的长度进行放缩,而方向保持不变;—P a 也就是将a 的长度进行放缩,但方向相反.2.向量数乘的定义一般地,实数k 与向量a 的相乘所得的积是一个向量,记作ka ,它的长度与方向规定如下:(1)如果k 0,a 0且≠≠时,则:①ka 的长度:||||||ka k a =;②ka 的方向:当0k >时,ka 与a 同方向;当0k <时,ka 与a 反方向;(2)如果k 0,a=0=或时,则:0ka =,ka 的方向任意.实数k 与向量a 相乘,叫做向量的数乘. 要点诠释:(1)向量数乘结果是一个与已知向量平行(或共线)的向量; (2)实数与向量不能进行加减运算;(3)ka 表示向量的数乘运算,书写时应把实数写在向量前面且省略乘号,注意不要将表示向量的箭头写在数字上面;(4)向量的数乘体现几何图形中的位置关系和数量关系.3.实数与向量相乘的运算律 设m n 、为实数,则:(1)()()m na mn a =(结合律);(2)()m n a ma na +=+(向量的数乘对于实数加法的分配律);(3)m (+b)=m a a mb + (向量的数乘对于向量加法的分配律) 4.平行向量定理(1)单位向量:长度为1的向量叫做单位向量. 要点诠释:任意非零向量a 与它同方向的单位向量0a 的关系:0a a a =,01a a a=.(2)平行向量定理:如果向量b 与非零向量a 平行,那么存在唯一的实数m ,使b ma =. 要点诠释: (1)定理中,b m a=,m 的符号由b 与a 同向还是反向来确定.(2)定理中的“a 0≠”不能去掉,因为若a 0=,必有b 0=,此时m 可以取任意实数,使得b ma =成立.(3)向量平行的判定定理:a 是一个非零向量,若存在一个实数m ,使b ma =,则向量b 与非零向量a 平行.(4)向量平行的性质定理:若向量b 与非零向量a 平行,则存在一个实数m ,使b ma =. (5)A 、B 、C 三点的共线⇔AB //BC ⇔若存在实数λ,使 AB BC λ=.要点五、向量的线性运算 1.向量的线性运算定义向量的加法、减法、实数与向量相乘以及它们的混合运算叫做向量的线性运算. 要点诠释:(1)如果没有括号,那么运算的顺序是先将实数与向量相乘,再进行向量的加减. (2)如果有括号,则先做括号内的运算,按小括号、中括号、大括号依次进行. 2.向量的分解平面向量基本定理:如果12,e e 是同一平面内两个不共线(或不平行)的向量,那么对于这一平面内的任一向量a ,有且只有一对实数12,λλ,使得1122a e e λλ=+. 要点诠释:(1)同一平面内两个不共线(或不平行)向量12,e e 叫做这一平面内所有向量的一组基底.一组基底中,必不含有零向量.(2) 一个平面向量用一组基底12,e e 表示为1122a e e λλ=+形式,叫做向量的分解,当12,e e 相互垂直时,就称为向量的正分解.(3) 以平面内任意两个不共线的向量为一组基底,该平面内的任意一个向量都可表示成这组基底的线性组合,基底不同,表示也不同. 3.用向量方法解决平面几何问题 (1)利用已知向量表示未知向量用已知向量来表示另外一些向量,除利用向量的加、减、数乘运算外,还应充分利用平面几何的一些定理,因此在求向量时要尽可能转化到平行四边形或三角形中,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解. (2)用向量方法研究平面几何的问题的“三步曲”:①建立平面几何与向量的联系,将平面几何问题转化为向量问题. ②通过向量运算,研究几何元素的关系. ③把运算结果“翻译”成几何关系. 【典型例题】 类型一、比例线段例题1.已知线段a 、b 、c 满足a :b :c=3:2:6,且a+2b+c=26. (1)求a 、b 、c 的值;(2)若线段x 是线段a 、b 的比例中项,求x 的值. 【答案与解析】 解:(1)∵a :b :c=3:2:6, ∴设a=3k ,b=2k ,c=6k , 又∵a+2b+c=26,∴3k+2×2k+6k=26,解得k=2, ∴a=6,b=4,c=12;(2)∵x 是a 、b 的比例中项, ∴x 2=ab , ∴x 2=4×6,∴x=2或x=﹣2(舍去), 即x 的值为.举一反三: 【变式】已知:,求的值.【答案】根据等比性质:由 得.例题2.如图,在□ABCD中,E为AB中点,,EF,AC相交于G,求.【答案与解析】分别延长FE,CB相交于H,(构造出了基本图形)在□ABCD中,AD BC,∵E为AB中点,∴AE=BE,∵AD//BC,∴∠AFE=∠H.在△AEF和△BEH中:∴△AEF≌△BEH(AAS)∴AF=BH,∵,设AF=k, 则FD=3k,AD=4k,BH=AF=k,BC=AD=4K,CH=5K,∵AD//BC,即AF//HC.∴∴【总结】欲求GCAG,就需要有平行线,并使已知条件得以利用,虽然题目中有平行线,但无基本图形,不能使已知条件发挥作用,需通过添加辅助线来寻找解题途径,构造基本图形.此题还有其他辅助线的作法,例如分别延长EF,CD相交于M.或取AC中点N,连结EN.请同学们思考,这两种方法构造了哪些基本图形,如何求出.举一反三:【变式】如图,在BE AD ABC ,中,∆是两条中线,则=∆∆ABC EDC S S :( )A .1∶2B .2∶3C .1∶3D .1∶4【答案】由题意可知,ED 为ABC ∆的中位线,则△CED ∽△CAB ,∴=∆∆ABC EDC S S :4:1)21()(22==AB ED ,故选D .类型二、相似三角形例题3.如图,Rt △ABC 中,∠C=90°,AB=14,AC=7,D 是BC 上一点,BD=8,DE ⊥AB ,垂足为E ,求线段DE 的长.【思路点拨】根据相似三角形的判定与性质,可得答案. 【答案与解析】解:∵DE ⊥AB , ∴∠BED=90°, 又∠C=90°, ∴∠BED=∠C . 又∠B=∠B ,∴△BED ∽△BCA , ∴=,∴DE===4举一反三:【变式】如图,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 的中点重合,若AB=2,BC=3,则△FC B '与△B 'DG 的面积之比为( )A.9:4B.3:2C.4:3D.16:9【答案】D.设CF=x,则BF=3-x,由折叠得B'F=BF=3-x,在Rt△FC B'中,由由勾股定理得CF2+C B'2=F B'2,x2+12=(3-x)2,解得x=43,由已知可证Rt△FC B'∽Rt△B'DG,所以S△FC B'与S△B'DG的面积比为(43:1)2=169.类型三、实数与向量相乘例题4.已知下列命题:①;②;③;④其中正确命题序号是___________.【答案】②、④.【解析】掌握平面向量数量积的含义,平面数量积的运算律不同于实数的运算律.【总结升华】应用向量的运算性质.类型四、向量的线性运算例题5.如图,D、E是△ABC边AB上的点,F、G分别是边AC、BC上的点,且满足AD=DE=EB,DF∥BC,EG∥AC.(1)求证:FG∥AB;(2)设=,=,请用向量、表示.【答案与解析】(1)证明:∵AD=DE=EB,∴==,∵DF ∥BC ,EG ∥AC , ∴==,, ∴, ∴FG ∥AB ;(2)解:∵DF ∥BC ,FG ∥AB , ∴,,∴FG=AB , ∵与同向, ∴=, ∵=,=, ∴=﹣, ∴=.类型五、相似与其它知识综合问题例题6.如图1,在△ABC 中,D 、E 、F 分别为三边的中点,G 点在边AB 上,△BDG 与四边形ACDG 的周长相等,设BC=a 、AC=b 、AB=c.(1)求线段BG 的长;(2)求证:DG 平分∠EDF ; (3)连接CG ,如图2,若△BDG 与△DFG 相似,求证:BG ⊥CG.【答案与解析】(1)∵D 、C 、F 分别是△ABC 三边中点,∴DE ∥21AB,DF ∥21AC , 又∵△BDG 与四边形ACDG 周长相等,即BD+DG+BG=AC+CD+DG+AG.∴BG=AC+AG ,∵BG=AB -AG ,∴BG=2AC AB +=2c b +, (2)证明:BG=2c b +,FG=BG -BF=2c b +-22b c =, ∴FG=DF,∴∠FDG=∠FGD ,又∵DE ∥AB ,∴∠EDG=∠FGD ,∠FDG=∠EDG ,∴DG 平分∠EDF ,(3)在△DFG 中,∠FDG=∠FGD, △DFG 是等腰三角形,∵△BDG 与△DFG 相似,∴△BDG 是等腰三角形,∴∠B=∠BGD,∴BD=DG,则CD= BD=DG,∴B 、CG 、三点共圆,∴∠BGC=90°,∴BG ⊥CG.【总结】这是一道几何综合题,在计算证明时,根据题中已知条件,结合图形性质来完成.后面的问题可以结合前面问题来做.已知三角形三边中点连线,利用三角形中位线性质计算证明.(1)已知△ABC 的边长,由三角形中位线性质知c DE b DF 21,21==,根据△BDG 与四边形ACDG 周长相等,可得2c b BG +=.(2)由(1)的结论,利用等腰三角形性质和平行线性质可证. (3)利用两个三角形相似,对应角相等,从而等角对等边,BD=DG=CD ,即可证明.举一反三:【变式】如图,在口ABCD 中,ABC ∠的平分线BF 分别与AC 、AD 交于点E 、F .(1)求证:AB AF =;(2)当35AB BC ==,时,求AE AC的值.【答案】(1)如图,在口ABCD 中,//AD BC ,∴23∠=∠.∵BF 是ABC ∠的平分线, ∴12∠=∠.∴13∠=∠. ∴AB AF =.(2)23AEF CEB ∠=∠∠=∠,, ∴△AEF ∽△CEB , ∴35AE AF EC BC ==, ∴38AE AC =.。
24.4 (2)相似三角形的判定教学目标1. 掌握相似三角形的判定定理2;2、 会运用所学的两个定理判定三角形相似,计算相似三角形的边长 等• 教学重点及难点了解判定定理2的证题方法与思路,应用判定定理2.教学用具准备三角板、课件教学过程一、复习引入1 .问题1:什么叫做相似三角形?它们在形状上、 大小上有何特征? 什么叫做相似比?结合图形复述相似三角形的预备定理和判定定理 1.2.两个全等三角形的对应边和对应角有什么关系?3•类比全等三角形的“边角边”,我们来看问题2.本节学习相似三角形判定定理 2.问题2:如上图,在也ABC和AA i B1C1中,如果N人=",空=竺那么A[ B i AC iABC和SB i C i相似吗?分析:心ADE幻心ABiG ( SAS ,再利用三角形一边的平行线判定定理,得到DE/ BC可以转化为相似三角形预备定理中的平行线.二、学习新课新授i:相似三角形的判定定理2的推导及文字和符号表述.通过问题2,又得到:相似三角形的判定定理2:如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两个三角形相似.AB ACA ABC s :AB IC IA iB i A^C i新授2:相似三角形的判定定理2的应用例题i已知如图,四边形ABC啲对角线AC与BD相交于点Q OA=i, 0B=i.5, OC=3,OD=.求证:QAD与QBC是相似三角形.DBA分析:判断是否有成比例的线段,再利用判定定理2.议一议:图中是否还有相似三角形?答: OAB S ODC问题:(1)两条直角边对应成比例的两个直角三角形是否相似 ?为什 么?(2) 等腰三角形AB (与等腰三角形DEF 有一角相等,这两个三角形是否 相似?为什么?例题2已知如图,点D 是ABC 的边AB 上的一点,且AC 2二AD • AB .求证:MCD s 心ABC.分析:已知条件AL二AD・AB是一个乘积式,将它改写成比例式,得到AD ACAC「AB ,观察这个比例式中的四条线段结合图形,可以依据相似三角形的判定定理2推出结论.这是比较困难的技巧问题,也是证题的关键步骤.三、巩固练习练习1:书后练习24.4(2)/1 练习2:( 1)书后练习24.4(2)/2(2)D在的△ ABC边AB上,且AC2=AD?AB 则厶AB3A ACD理由是________________ .(3)—个直角三角形的两边长分别为3和6,另一个直角三角形的两边长分别为2和4,那么这两个直角三角形 ____________________ 相似.(填“一定”、“不一定”或“一定不”)(4)如图,在ABC中,若-AED = B,则下列比例式正确的是:(B)也二也AE AB练习3:补充(C)DEBCAEBD(D)些亠AB ED(A)型二圧BD EC(1)在心ABC 禾口 ADEF 中,N A = 36°,AB =12,AC =15,ND = 36°,DE =16贝y 当 Qp= ------ 时, ABC s QEF .⑵ 如图,P 为AB 上一点(ABAC ,要使AACP s ;ABC ,可添加一个条件(3)如图,D 是厶ABC 一边BC 上的一点,△ AB(S^ DBA 勺条件是(4)如图,在MBC 中,ABAC D 点是CB 的延长线上一点,E 是BC延长线上的一点,且满足 AB 2=DB- CE. 求证:(AD S △ EAC (2)若/ BAC 4O 0,求/ DAE 的度数.四、课堂小结 1、三角形相似与全等的判定方法的类比2、三角形相似的判定定理 2,并强调判定相似需且只需两个独立条 件 ., 强调对应边成比例 .(A)也妙BC BD (B)些少 BC AD(C) AB 2 =CD ・BC(D) AB 2=BD ・BC五、作业布置书后练习1-3 ,练习册24.4 (2)五、教学反思1 、相似三角形的判定定理2 是本节的重点也是本节的难点,证明的导出过程引导学生多多参与,重点理解“角”是“两条对应边的夹角” . 2、例题及练习的教学是相似三角形的判定定理 2 的应用,建议由浅入深,图形由简单到复杂.。
(3) 如图,∠B=∠(4) 如图,四边形ABCD,AC、BD交于点O,AO=3,BO=4.5,CO=6,DO=4.教学过程二.新课探索问题:如图在ABC∆和111A B C∆中,如果111111AB AC BCA B AC B C==,那么ABC∆和111A B C∆相似吗?C1B1A1CBA分析:同样可以利用相似三角形预备定理来证明相似三角形的判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两个三角形相似.111111AB BC CAA B B C C A==ABC∆∴∽111CBA∆例题3已知如图,D、E、F分别是ABC∆的边BC、CA、AB的中点.求证:DEF∆∽ABC∆.分析:利用中位线的性质,可得两个三角形三边对应成比例,根据相似三角形的判定定理3,可得两个三角形相似例题4(补充)如图,在正方形网格上有两个三角形111CBA和222CBA求证:△111CBA∽△222CBA .分析由条件可考虑三边是否对应成比例.可设小正方形边长为1,由勾股定理可求出各自边长,F ED CBA。
沪教版数学九年级上册24.4《相似三角形的判定》(第4课时)教学设计一. 教材分析《相似三角形的判定》是沪教版数学九年级上册第24章第4节的内容,本节内容是在学生已经掌握了相似三角形的概念和性质的基础上进行学习的。
本节课的主要内容有:相似三角形的判定方法,即AA相似定理、SAS相似定理、RHS相似定理,以及相似三角形的性质。
这些内容对于学生来说是比较抽象和难以理解的,需要通过大量的练习和实例来加深理解和掌握。
二. 学情分析九年级的学生已经有了一定的数学基础,对于相似三角形的概念和性质已经有了一定的了解。
但是,对于相似三角形的判定方法,学生可能还比较陌生,需要通过具体的实例和练习来理解和掌握。
此外,学生的学习习惯和思维方式可能存在差异,需要教师进行个别指导和辅导。
三. 教学目标1.让学生掌握相似三角形的判定方法,即AA相似定理、SAS相似定理、RHS相似定理。
2.让学生能够运用相似三角形的判定方法解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:相似三角形的判定方法。
2.教学难点:相似三角形的判定方法的运用。
五. 教学方法1.采用问题驱动的教学方法,通过提问和引导学生思考,激发学生的学习兴趣和主动性。
2.使用多媒体教学辅助工具,如PPT等,通过生动的图片和动画,帮助学生形象地理解相似三角形的判定方法。
3.通过具体的实例和练习,让学生动手操作和思考,加深对相似三角形判定方法的理解和掌握。
4.采用小组合作学习的方式,让学生互相讨论和交流,培养学生的合作意识和团队精神。
六. 教学准备1.准备相关的教学PPT和多媒体教学辅助材料。
2.准备相关的练习题和实例,以便进行课堂练习和讲解。
3.准备黑板和粉笔,以便进行板书和标注。
七. 教学过程1.导入(5分钟)通过提问和引导学生思考,让学生回顾相似三角形的概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT等多媒体教学辅助工具,呈现相似三角形的判定方法,即AA相似定理、SAS相似定理、RHS相似定理。
CBAO Pxy例1 △ABC 是一块直角三角形余料,∠C=90°,AC=6cm ,BC=8cm ,现要把它加工成一个正方形形状,请你说明用下图中的哪种剪裁方法的利用率高。
例2如图,△ABC 中,∠C=90°,BC=8cm ,5AC-3AB =0,点P 从B 点出发,沿BC 方向以2m/s 的速度移动,点Q 从C 出发,沿CA 方向以1m/s 的速度移动。
若P 、Q 同时分别从B 、C 出发,经过多少时间△CPQ 与△CBA 相似?提示:分两种.考点七 相似与函数 例1如图18-16,直线y= 21x+2分别交x 、y 轴于点A 、C ,P 是该直线上在第一象限内的一点,PB ⊥x 轴,B 为垂足,S △ABP =9 ① 求点P 的坐标;② 设点R 与点P 在同一个反比例函数的图象上,且点R 在直线PB 的右侧。
作RT ⊥x 轴,T 为垂足,当△BRT 与△AOC 相似时,求点R 的坐标。
课后作业ACQP 例2AD AB.ACD的个数为(DE=1:2,则△ABC :48、如图,已知矩形OABC 的面积为1003,它的对角线OB 与双曲线ky x=相交于点D ,且:5:3OB OD =,则k =( ).A .6B .12C .24D .36二、填空题1、已知:x :(x+1)=(1—x):3,求x= 。
2、已知5x+y 3x-2y =12 ,则x y = , x+yx-y = ;3、若x 2-3xy+2y 2=0,求yx=4、若25a c eb d f ===,求ac bd --= ,234234a ce b df +-+-=5、在平面直角坐标系中,ABC △顶点A 的坐标为(23),,若以原点O 为位似中心,画ABC △的位似图形A B C '''△,使ABC △与A B C '''△的相似比等于12,则点A '的坐标为 . 6、如图,Rt ABC △中,90ACB ∠=°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S =△四边形,则CFAD= .7、如图,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC 的面积是 .8、将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .AEF DGC B第6题xyD CBOA9、如图,A B 、两处被池塘隔开,为了测量A B 、两处的距离,在AB 外选一适当的点C ,连接AC BC 、,并分别取线段AC BC 、的中点E F 、,测得EF =20m ,则AB =__________m . 10、如图,直线3y x =-交双曲线ky x=(0x <)于点D ,点A 在直线上,且2OD AD =,过A 作AC y ∥轴交双曲线ky x=(0x <)于C ,且10ACD S =△,则k =_______________. xyOD C A三、简答题1、已知线段x 、y ,如果(x+y)∶(x-y)=a ∶b ,求x ∶y.2、已知:b a =d c =f e =3(且有b+d+f =0),求证:d b ca ++=f d e c ++=3.3、如图,在ABC 中,已知DE ∥BC ,AD =4,DB =8,DE =3,(1)求ADAB的值,(2)求BC 的长AE CF B 第9题图E(第8题图)AB ′CFBACBD E。
沪教版九年级数学上册《相似三角形的判定定理》教案沪教版九年级数学上册《相似三角形的判定定理》教案一、教材内容分析:《相似三角形的判定定理》选自课程标准实验教科书沪科版数学九年级上册第22章相似图形。
本节课是相似三角形判定定理(1),它是在学生学习了全等三角形的性质与判定,相似三角形的定义以及两个三角形相似对应角相等,对应边成比例这些知识的基础上进行的。
在直观认识形状相同的图形基础上,探索与理解相似三角形的判定条件,为后续学习通过相似三角形有关知识测量物体的高度、距离做好准备。
因此这部分内容也是今后进一步学习不可缺少的基础。
二、教学目标设置:1、通过运用三角形全等条件的探索方法,探索得出两角对应相等的两个三角形相似,并会用这一结论解决一些简单的问题。
2、经历“类比―猜想―探索―总结-应用”的活动过程,探索两角对应相等的两个三角形相似,进一步领悟类比的思想方法。
3、在活动中,开发、培养学生的发散性思维,进一步发展学生的探究合作、交流意识,以及动手动脑和谐一致的习惯。
重点:灵活运用三角形相似判定定理证明及解决简单的有关问题。
难点:三角形相似判定定理的探索和证明。
三、学生学情分析学生在本章前几节,已学过相似三角形的基本概念和基本性质等知识,在之前已经接触过对三角形全等条件的探索,初步体会了类比方法在数学学习中的作用,已具备一定的合作与自主探索能力,本节课是在此基础上的延伸和提高。
因此在教学中采取开放式的教学形式,让学生动手感知,合作交流,养成积极探索与实践的良好习惯。
教学过程中,创设直观形象,利于操作的问题情境,引起学生的极大关注,有利于学生对内容的较深层次的理解。
多为学生创设自主学习、合作交流的机会,促使他们主动参与、勤于动手,从而乐于探究。
但需承认学生之间的个体差异,对学有余力的学生要有提高、拓展的机会。
对学困生要有一定的展示平台,在难点的突破上,要让他们最大程度的参与其中。
四、教学过程:活动一:创设情境,类比猜想同学们:前面我们用全等三角形的学习方法探究学习了相似三角形的定义与性质,请同学们口述一下?我们探究相似三角形依然离不开组成三角形的元素---边和角。
_4
_3 _ A
_ B _ C
_ B 1
_ C 1
教案
__ _数学__
教材题目 相似三角形的判定方法探究
课时
2课时
教材分析
教学目标
知识与技能:掌握相似三角形的判定方法
过程与方法:从定义出发,与学生共同探究三角形相似的判定方法
情感态度与价值观: 培养学生的合作交流意识
重点 探究三角形形似的判定方法 难点 探究方法 教具运用 ppt
教学设计说
明
附页
教学过程:
一、 复习提问:
三角形相似的定义:对于任意两个相似三角形,它们的各对应角相等,对应边成
比例。
反之:对于任意两个边数相同的多边形,如果它们的对应边成比例,
各对应角相等,那么它们就相似。
二、 新授
思考探究一:
“A 型”图 “X 型”图
_ B
_ C
_ A
_ D
例题4 已知:在四边形中,∠BAC=∠ADC=90°, .,,ab AC b BC a AD ===
求证:DC ⊥BC
.
.909090.~,,,,.902BC DC DCA ACB DCA ACB B B DCA ABC DCA BC
AC
AC AD ABC Rt ACD Rt BC
AC AC AD BC AD AC ab AC b BC a AD ACD ABC ADC BAC ⊥∴=∠=∠+∠∴=∠+∠∠=∠∴∆∆∴=∆∆=∴⋅=∴===∆∆∴=∠=∠ ,即,
中,与在都是直角三角形和,证明:
四、 小结:
这节课你学会了什么……
作业布置
基础题
练习册习题24.4
拓展题 《精炼与博览》24.4部分题目 课后反思。
相似三角形
一、相似三角形的定义:
对应角相等 、对应边成比例的三角形叫做相似三角形。
二、相似三角形的判定方法(一)
判定方法(1):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
判定方法(2):如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
判定方法(3):如果一个三角形的三条边分别与另一个三角形的三条边对应成比例那么这两个三角形相似。
除了上述三种判定方法外,还有以下三种判定方法:
(1)定义法:对应角相等、对应边成比例的两个三角形相似(这种方法一般不常用)
(2)平行于于三角形一边的直线和其它两边(或两边的延长线)相交所构成的三角形与原三角形相似。
(3)直角三角形被斜边上的高分成的两个直角三角形原三角形相似。
(此知识常用,但用时需要证明)
三、判定相似三角形的思路
1、有一对等角,找 :①、另一对等角 ②、 等角的两边对应成比例
2、有两边对应成比例,找:①、夹角相等 ②、第三边也成比例
3、直角三角形,找一对锐角相等
4、等腰三角 形,找:①、顶角相等 ②、一对底角相等 ③、底和腰成比例
四、在做题过程中,某些图像出现的频率会比较高,所以我们要熟知这些常见的图形,并学会从习题中基本图形很快的寻找和发现相似:
1、平行线型:
A
( 1 ) ( 2 )
(a )如图1,“A ” 型:即公共角的对边平行
(b) 如图2,“X ”型:对顶角的对边平行
2、斜交型:指公共角的对边不平行,即相交或延长线相交或对顶角所对的边延长线相交,其中再有一角相等,或其公共角(或对顶角)的两边对应成比例,就可以判定这两个三角形相似,基本图形常见如下:
E D
A
B C C
D E B A E C B D
A B D
C E B
D C A
( 3 ) ( 4 ) ( 5 )
a 、如图3,若 ∠D=∠B 或 ∠ACB=∠AED ,或AB:AD=AC:AE , 则△ABC ∽△ADE ;
b 、如图4,若∠ACD=∠B 或 ∠ADC=∠ACB ,或AC:AB=AD:AC, 则△ACD ∽ △ABC ;
C 、如图5,若∠AED=∠C 或 ∠ADE=∠B ,或 AD:AB=AE:AC, 则△ADE ∽ △ABC ;
( 6 )
d 、如图6,若∠A=∠D , 或 ∠B=∠C ,或OA:OB=OD:OC,则△AOB ∽ △DOC;
五、相似三角形面积之比等于相似比的平方
例题、习题
1、P 是ΔABC 中AB 边上一点,过点P 作直线(不与直线AB 重合)截ΔABC ,使截得的三角形与原三角形相似,满足这样的条件的直线最多有( )条
A 2条
B 3条
C 4条
D 5条 2、如图,已知D 为△ABC 内一点,
E 为△ABC 外一点,且∠1=∠2, ∠3 =∠4。
求证 : △ABC ∽ △DBE
3、如图,菱形ABCD 的边长为3,延长AB 到E ,使EB =2AB ,连接EC 并延长交AD 延长线于F ,如果△EBC ∽△EAF ,试求AF 的长
D A B C O
A
B C E
D 1 2 3 F 4 A D E
C
B
4、如图,在△ABC 中,DE ∥BC ,且DE=
32BC=2cm ,△ADE 的周长为10cm ,求梯形BCDE 的周长。
5、如图,△ABC 被DE 、FG 分成面积相等的三部分,且DE ∥FG ∥BC 。
求DE :FG :BC 。
三、训练题:
1、如图,梯形ABCD 中,AD ∥BC ,对角线BD 分成两部分面积的比是1:2,EF 是中位线,则被EF 分成的两部分面积之比为S AEFD :S BCFE =( )
A 、3:4
B 、4:5
C :5:7
D 、7:9
2、如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,若S △AOD :S △ACD =1:3,则S △AOD :S △BOC 等于( )
A 、1:6
B 、1:3
C 、1:4
D 、1:6
3、如图,DE ∥BC ,DE 把△ABC 的面积分成相等的两部分,那么DE :BC 等于( )
A 、1:2
B 、1:4
C 、2:2
D 、2:2
4、如图,将△ABC 的高AD 三等分,过每一个分点作底边的平行线,这样把三角形分成三部分,设这三部分的面积为S 1,S 2,S 3,则S 1:S 2:S 3=( )
A B C D E
S 3S 1S 2A B C D E F G
A 、1:2:3
B 、2:3:4
C 、1:3:5
D 、3:5:7
5、如图,在△ABC 中,∠CBA=90°,BD ⊥AC 于D ,则下面关系式中错误的是( )
A 、A
B 2=AD×A
C B 、B
D 2=AD×DC C 、AB 2=AC 2-BC 2 D 、AB 2=AC×DC
6、如图,在△ABC 中,AD ⊥BC ,PQMN 为正方形,且顶点在△ABC 各边上,BC=60cm ,AD=40cm ,则正方形边长为( )
A 、12cm
B 、16cm
C 、20cm
D 、24cm
7、如果两个相似三角形的对应边的比是4:5,周长的和为18cm ,那么这两个三角形的周长分别为_______________。
8、△ABC 中,BC=54cm ,CA=45cm ,AB=63cm ,另一个与它相似的三角形的最短边为15cm ,则周长为_______________。
9、在△ABC 中,点D 、E 分别为AB 、AC 上的点,DE ∥AC ,AB :DB=2:1,F 为AC 上任一点,△DEF 面积为22,则S △ABC =_________________。
10、如图,D 、E 分别是AB 、AC 上的点,5
3==AB AE AC AD ,△ABC 的角平分线AH 交DE 于点F ,过点F 作BC 的平行线,分别交AB 、AC 于点G 、K 。
已知BC=20cm ,求GK 。
11、点M 是Rt △ABC 的斜边AB 的中点,过M 作MD ⊥AB 交AC 于D ,交BC 的延长线于E 。
求证:MC 是MD 、ME 的比例中项。
B C D H F G K B C M E D。