21随机抽样练习题
- 格式:docx
- 大小:18.93 KB
- 文档页数:7
第二,由于分层抽样充分利用了我们掌握的信息,使样本具有较好的代表性,而且在各层抽样时,可以根据
具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.
5.三种抽样方法的比较
(二)例题讲解
(1)你能举儿个系统抽样的例子吗?
(2)下列抽样中不是系统抽样的是()
A、从标有「15号的15号的15个小球中任选3个作为样本,按从小号到
大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样
B、工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验
C、搞某一市场调查,规定在商
(3)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每层抽取若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行
()
八、每层等可能抽样
B、每层不等可能抽样
C、所有层按同一抽样比等可能抽样
(4)如果采用分层抽样,从个体数为N的总体中抽取一个容量为n样本,那么每个个体被抽到的可能性为()
1 1_ _n_ _n_
A. N n c. N D. N
教学反思: 板书设计:。
高一数学随机抽样试题1.某校高三年级有男生500人,女生400人.为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是()A.系统抽样法B.抽签法C.随机数法D.分层抽样法【答案】D【解析】=,根据定义知为分层抽样,故选D.2.已知某单位有职工120人,男职工有90人,现采用分层抽样(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为()A.30B.36C.40D.没法确定【答案】B【解析】抽取比例为=,故样本容量为:×120=36.3.某校高一年级有x名学生,高二年级有y名学生,高三年级有z名学生,采用分层抽样抽取一个容量为45的样本,高一年级被抽取20人,高二年级被抽取10人,高三年级共有学生300人,则此学校共有学生________人.【答案】900【解析】高三年级被抽取了45-20-10=15(人),设此学校共有学生N人,则=,解得N=900.4.总体容量为203,若采用系统抽样法抽样,当抽样间距为多少时不需要剔除个体()A.4B.5C.6D.7【答案】D【解析】因为203=7×29,即203能被7整除,所以间隔为7时,不需要剔除个体.5.下列抽样问题中,最适合用系统抽样的是()A.从全班48名学生中随机抽取8人参加一项活动B.一个城市有210家百货商店,其中有大型商店20家,中型商店40家,小型商店150家,为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C.从参加考试的1200名考生中随机抽取100人分析试题作答情况D.从参加模拟考试的1200名高中生中随机抽取10人了解情况【答案】C【解析】A中总体、样本容量都较小,可用抽签法或随机数法;B中总体不均匀,不易用系统抽样;D中样本容量较小,可用随机数法;只有C中总体与样本容量都较大6.某学校有学生4022人.为调查学生对2010年上海世博会的了解情况,现用系统抽样的方法抽取一个容量为30的样本,则分段间隔是________.【答案】134【解析】由于不是整数,所以从4022名学生中随机剔除2名,则分段间隔是=134,故填134.7.下面给出某村委会调查本村各户收入情况所作的抽样,阅读并回答问题.本村人口:1200人,户数300,每户平均人口数4人.应抽户数:30户.抽样间隔=40.确定随机数字:取一张人民币,编码的后两位数为12.确定第一样本户:编码为12的户为第一样本户.确定第二样本户:12+40=52,52号为第二样本户.……(1)该村委会采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样?【答案】(1)系统抽样【解析】(1)系统抽样.(2) (3)见解析(2)本题是对某村各户收入情况进行抽样,而不是对某村人口抽样,抽样间隔为=10,其他步骤相应改为:确定随机数字:取一张人民币,编码的最后一位为2.确定第一样本户:编号为002的户为第一样本户.确定第二样本户:2+10=12,012号为第二样本户.……(3)确定随机数字用的是简单随机抽样.取一张人民币,编码的最后一位为2.8.下列调查的方式合适的是()A.为了了解炮弹的杀伤力,采用普查的方式B.为了了解全国中学生的睡眠状况,采用普查的方式C.为了了解人们保护水资源的意识,采用抽样调查的方式D.对载人航天飞船“神舟七号”零部件的检查,采取抽样调查的方式【答案】C【解析】普查工作量大,有时受客观条件限制,无法对所有个体进行普查,有时调查还具有破坏性,不允许普查;抽样调查范围小,节约时间、人力、物力、财力,但保证抽样具有代表性,广泛性.航天器不同于一般事情,必须普查.9.已知总体容量为106,若用随机数表法抽取一个容量为10的样本,下面对总体的编号正确的是()A.1,2,…,106B.01,…,105C.00,01,…,105D.000,001,…,105【答案】D【解析】因总数大于100,所以编号应为3位数10.某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中,样本容量是() A.40B.50C.120D.150【答案】C【解析】40×3=120。
简单随机抽样一、单选题1. 抽样比的计算公式为( B )。
A. f= (n-1)/ (N-1)B. f=n/NC. f= (n-1)/ND. f= (N-n)/N2. 不放回的简单随机抽样指的是哪种情形的随机抽样?(D ) A. 放回有序 B. 放回无序 C. 不放回有序 D. 不放回无序3. 放回的简答随机抽样指的是哪种情形的随机抽样?( A ) A. 放回有序 B. 放回无序 C. 不放回有序 D. 不放回无序4. 通常所讨论的简单随机抽样指的是( D )。
A. 放回的简单随机抽样 B. 放回无序随机抽样 C. 不放回有序随机抽样 D. 不放回的简单随机抽样5. 下面给出的四个式子中,错误的是(D )。
A. ()E y Y = B.()E Ny Y =C.()E p P =D. ˆ()E RR = 6. 关于简单随机抽样的核心定理,下面表达式正确的是( A )。
A. 21()f V y S n-=B. 21()1f V y s n -=-C. 21()V y s n =D. 21()f V y s n-=7. 下面关于各种抽样方法的设计效应,表述错误的是( B )。
A. 简单随机抽样的deff=1B. 分层随机抽样的deff>1C. 整群随机抽样的deff>1D. 机械随机抽样的deff ≈18. 假设考虑了有效回答率之外所有其他因素的初始样本量为400,而设计有效回答率为80%,那么样本量应定为( B )。
A. 320B. 500C. 400D. 480 9. 在要求的精度水平下,不考虑其他因素的影响,若简单随机抽样所需要的样本量为300,分层随机抽样的设计效应deff=0.8,那么若想达到相同的精度,分层随机抽样所需要的样本量为(C )。
A. 375B. 540C. 240D. 360二、多选题1. 随机抽样可以分为( ABCD)。
A. 放回有序B. 放回无序C. 不放回有序D.不放回无序2.随机抽样的抽取原则是(ABC )A.随机取样原则B.抽样单元的入样概率已知C. 抽样单元的入样概率相等D.先入为主原则E.后入居上原则3.辅助变量的特点( ABCD )A.必须与主要变量高度相关B.与主要变量之间的相关系数整体上相当稳定C.辅助变量的信息质量更好D.辅助变量的总体总值必须是已知的,或更容易获得E.辅助变量可以是任何一个已知的变量4.影响样本容量的因素包括(ABCDE)A.总体规模B.(目标)抽样误差C.总体方差D.置信度E.有效回答率5. 简单随机抽样的实施方法(ABD)A.抽签法B.利用统计软件直接抽取法C.随便抽取法D.随机数法E.主观判断法6. 产生随机数的方式有(ABCDE)A.使用计算器B.使用计算机C.使用随机表D.使用随机数色子E.使用电子随机数抽样器三、简答题1.简述样本容量的确定步骤。
高一数学《随机抽样》练习题一、选择题1。
对于简单随机抽样,个体被抽到的机会 A.相等B .不相等 C.不确定 D.与抽取的次数有关2. 抽签法中确保样本代表性的关键是A.制签 B 。
搅拌均匀 C .逐一抽取 D.抽取不放回3。
用随机数表法从100名学生(男生25人)中20人进行评教,某男学生被抽到的机率是A.1001 B .251C.51D.414。
某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是 A.40 B 。
50 C .120 D.1505。
从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该批产品的合格率为A。
36%B .72% C .90%D .25%6。
为了解1200名学生对学校教改试验,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为A 。
40B .30 C.20 D.127。
从N 个编号中要抽取n 个号码入样,若采用系统抽样方法抽取,则分段间隔应为 A。
n N C.[n N ] D.[nN]1 8.下列说法正确的个数是①总体的个体数不多时宜用简单随机抽样法②在总体均分后的每一部分进行抽样时,采用的是简单随机抽样 ③百货商场的抓奖活动是抽签法④整个抽样过程中,每个个体被抽取的机率相等(有剔除时例外) A.1 B.2 C .3 D 。
49。
某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员 A 。
3人 B。
4人 C 。
7人 D.12人 10. 问题:①有1000个乒乓球分别装在3个箱子内,其中箱子内有500个,蓝色箱子内有200个,箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ。
随机抽样法Ⅱ。
系统抽样法Ⅲ。
分层抽样法。
其中问题与方法能配对的是A.①Ⅰ,②ⅡB。
《随机抽样》高考题精选1.(2015北京文)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中, 青年教师有320人,则该样本的老年教师人数为( C ) A .90 B .100C .180D .3002.(2015福建文)某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______.253.(2015四川文)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( C )(A )抽签法 (B )系统抽样法 (C )分层抽样法 (D )随机数法4.(2015陕西理)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( B )A .167B .137C .123D .935. (2014四川文)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。
在这个问题中,5000名居民的阅读时间的全体是( A )A 、总体B 、个体C 、样本的容量D 、从总体中抽取的一个样本6. (2014广东文)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,类别 人数 老年教师 中年教师 青年教师合计则分段的间隔为(B)7. (2014上海文)某校高一、高二、高三分别有学生1600名、1200名、800名。
为了了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样。
若高三抽取20名学生,则高一、高二共需抽取的学生数为___________.708.(2007全国Ⅱ文)一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .120 9. (2013湖南理)某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显着差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是(D)A .抽签法B .随机数法C .系统抽样法D .分层抽样法10. (2014湖南理)对一个容量为N 的总体抽取容量为m 的样本,若选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1p ,2p ,3p ,则( D )A. 321p p p <=B. 132p p p <=C. 231p p p <=D. 321p p p ==11. (2014重庆文)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本。
随机抽样、用样本估计总体1.某棉纺厂为了解一批棉花的质量,从中随机抽测了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标).所得数据均在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中,有 根棉花纤维的长度小于20 mm.惠生活 观影指南爱尚嘟嘟园迅播影院请支持我们,有更多资源和动力【答案】 30【解析】 因为频率分布直方图的矩形的高为,频率概率故矩形的高⨯组距即为频率.从图中可知长 度小于20 mm 的频率为(0.01+0.01+0.04)50⨯=.3,又总体为100根,故纤维长度小于20 mm 的根 数为1000⨯.3=30根. 惠生活 观影指南 爱尚 嘟嘟园 迅播影院 请支持我们,有更多资源和动力 课后作业夯基基础巩固2.从2 008名学生中选取50名学生参加全国数学联赛,若采用下面的方法选取:先用简单随机抽 样从2 008人中剔除8人,剩下的2 000人再按系统抽样的方法抽取,则这2 008名学生中每人入选的概率( )A.不全相等B.均不相等C.都相等,且为502008D.都相等,且为140【答案】 C 【解析】 随机抽样过程中,保证每个个体被抽取的可能性是相等的,所以每人入选的概率都相等,且为502008. 3.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名,现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年 级的学生中应抽取的人数为… ( )A.6B.8C.10D.12【答案】 B【解析】 分层抽样的原理是按照各部分所占的比例抽取样本,设从高二年级抽取的学生数为n ,则30640n=,得n =8. 4.某工厂对一批产品进行了抽样检测.下图是根据抽样检测后的产品净重(单位:克)数据绘制的 频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A.90B.75C.60D.45【答案】A【解析】样本中产品净重小于100克的频率为(0.050+0.100)⨯2=0.3,频数为36.样本总数为36120 03= ..∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)20⨯=.75, ∴样本中净重大于或等于98克并且小于104克的产品的个数为1200⨯.75=90.5.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A.91.5和91.5B.91.5和92C.91和91.5D.92和92【答案】A【解析】按照从小到大的顺序排列为87,89,90,91,92,93,94,96.∵有8个数据,∴中位数是中间两个数的平均数:91922+=91.5,平均数为8789909192939496918+++++++=.5,故选A.6.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A.55.2,3.6B.55.2,56.4C.64.8,63.6D.64.8,3.6【答案】D【解析】每一个数据都加上60时,平均数也应加上60,而方差不变.7.为了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k为.【答案】40【解析】在系统抽样中,确定分段间隔k,对编号进行分段,(N k N n=为总体的容量,n 为样本的容量), ∴12004030N k n ===. 8.高三(1)班共有56人,学号依次为1,2,3,…,56,现用系统抽样的办法抽取一个容量为4的样本,已知 学号为6,34,48的同学在样本中,那么还有一个同学的学号应为 .【答案】 20【解析】 根据题意,56人应分为4组,每组14人,第一组为6号,第二组为6+14=20号,第三组为20+14=34号,第四组为34+14=48号,故还有一个同学的学号为20.9.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95],由此得到频率分布直方图如图,则由此估计该厂工人一天生产该产品数量在[55,70)的人数约占该厂工人总数的百分率是 .【答案】 52.5%【解析】 结合频率分布直方图可以看出:生产数量在[55,65)的人数频率为0.04100⨯=.4,生产数量在[65,75)的人数频率为0.025⨯10=0.25,而生产数量在[65,70)的人数频率约为0.25⨯102=.125,那么生产数量在[55,70)的人数频率约为0.4+0.125=0.525,即52.5%. 10.(2011江苏高考,6)某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差2s = .【答案】 165【解析】 ∵10685675x ++++==, ∴2s = 22222(107)(67)(87)(57)(67)1655-+-+-+-+-=. 11.为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图,则该组数据的方差为.【答案】 5 【解析】 该运动员6场的总得分为14+17+18+18+20+21=108,平均得分为10818(6=分),方差为 2222221[(1418)(1718)(1818)(1818)(2018)(2118)]56-+-+-+-+-+-=,故填5. 12.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如 下表:惠生活 观影指南 爱尚 嘟嘟园 迅播影院 请支持我们,有更多资源和动力(1)画出茎叶图,由茎叶图你能获得哪些信息?(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加比赛更合适【解】 (1)画茎叶图,如图所示,中间数为数据的十位数.从这个茎叶图上可以看出,甲、乙的得分情况都是分布均匀的,只是乙更好一些;乙的中位数是33.5,甲的中位数是33.因此乙总体得分情况比甲好(2)根据公式得3333x x =,=甲乙;s =甲 3.96s ,=乙 3.35;甲的中位数是33,乙的中位数是综合比较选乙参加比赛较为合适.。
心理统计学19春在线作业1-0004
试卷总分:100 得分:100
一、单选题 (共 10 道试题,共 30 分)
1.随机抽样的目的是
A.消除系统误差
B.消除测量误差
C.减少随机误差
D.减少样本的偏性
答案:C
2.对于以下哪种情况我们应该拒绝虚无假设
A.已有研究证明其是错误的
B.所得结果是由随机误差造成的可能性很小
C.所得结果是由随机误差造成的可能性很大
D.研究者确信该变量对于改变人们的行为是无效的
答案:B
3.最小平方法被用于
A.用统计的方法去除混淆变量的效应
B.确定受试者最适合的效标组
C.确定散点图中回归线的位置
D.用统计的方法去除多元共线性的影响
答案:C
4.对于单样本设计,可以采用以下哪种方法进行检验假设
A.独立样本T检验
B.相关样本假设检验
C.单样本Z检验
D.单样本F检验
答案:C
5.一个N=20的总体,离差平方和SS=400。
其离差的和Σ(X-u)=
A.14.14
B.200
C.数据不足,无法计算
D.0
答案:D
6.从一个总体中随机抽取的样本计算出某个统计量的所有可能值,所有这些可能值形成一个分布,叫做:
A.正态分布
B.样本分布
C.抽样分布
D.总体分布。
§2.1随机抽样1.简单随机抽样(1)抽取方式:逐个不放回抽取;(2)每个个体被抽到的概率相等;(3)常用方法:抽签法和随机数法.2.系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本.(1)先将总体的N个个体编号;(2)确定分段间隔k,对编号进行分段.当错误!(n是样本容量)是整数时,取k=错误!;(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号l+k,再加k得到第3个个体编号l+2k,依次进行下去,直到获取整个样本.3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.考点一简单随机抽样例1(1)下列抽取样本的方式是简单随机抽样的有()①从无限多个个体中抽取50个个体作为样本;②箱子里有100支铅笔,从中选取10支进行检验.在抽样操作时,从中任意拿出一支检测后放回箱子;③从50个个体中一次性抽取5个个体作为样本.A.0个ﻩB.1个C.2个ﻩD.3个(2).某公司在甲、乙、丙、丁四个地区分别有150,120,180,150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有20个大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是( )A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法(3)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( ) ArrayA.08 B.07C.02 D.01考点二系统抽样例2(1) 用系统抽样法(按等距离的规则)要从160名学生中抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按此抽签方法确定的号码是()A.7B.5C.4D.3(2)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A.11ﻩB.12C.13 ﻩD.14(3) 从2 007名学生中选取50名学生参加全国数学联赛,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下的2000人再按系统抽样的方法抽取,则每人入选的概率()A.不全相等ﻩB.均不相等C.都相等,且为\f(50,2 007)D.都相等,且为错误!(4)为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是() A.5,10,15,20,25 B.2,4,8,16,32C.1,2,3,4,5D.7,17,27,37,47考点三分层抽样例3(1)某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法ﻩB.随机数法C.系统抽样法ﻩD.分层抽样法(2)某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A.4 B.5C.6ﻩD.7(3)某报社做了一次关于“什么是新时代的雷锋精神”的调查,在A,B,C,D四个单位回收的问卷数依次成等差数列,且共回收1 000份,因报道需要,再从回收的问卷中按单位分层抽取容量为150的样本,若在B单位抽取30份,则在D单位抽取的问卷是________份.(4) 某市A,B,C,D四所中学报名参加某高校今年自主招生的学生人数如下表所示:中随机抽取50名参加问卷调查,则A,B,C,D四所中学,抽取学生数分别是多少名()A.10,20,15,5B.15,20,10,5C.10,15,20,5 D.3,4,2,1【巩固训练】1.(1)某学校为了了解2013年高考数学的考试成绩,在高考后对1 200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.Ⅰ.简单随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.问题与方法配对正确的是( )A.(1)Ⅲ,(1)ⅠﻩB.(1)Ⅰ,(2)ⅡC.(1)Ⅱ,(2)ⅢD.(1)Ⅲ,(2)Ⅱ2.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )A.简单随机抽样ﻩB.按性别分层抽样C.按学段分层抽样 D.系统抽样3.某地区高中分三类,A类学校共有学生2 000人,B类学校共有学生3 000人,C类学校共有学生4 000人,若采取分层抽样的方法抽取900人,则A类学校中的学生甲被抽到的概率为()A.\f(1,10) B.错误! C.错误! D.错误!4.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选的6枚导弹的编号可能是()A.5,10,15,20,25,30B.3,13,23,33,43,53C.1,2,3,4,5,6 D.2,4,8,16,32,485.一个班级有5个小组,每一个小组有10名学生,随机编号为1~10号,为了了解他们的学习情况,要求抽取每组的2号学生留下来进行问卷调查,这里运用的方法是( )A.分层抽样法ﻩB.抽签法C.随机数法 D.系统抽样法6.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为()A.5,10,15 B.3,9,18C.3,10,17 D.5,9,167.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是39,则在第1小组1~16中随机抽到的数是A.5 B.7C.11 D.138.某校共有学生2 000名,各年级男、女生人数如下表所示:( )A .24B .18 C.16 ﻩD .129.某班级有50名学生,其中有30名男生和20名女生.随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )A .这种抽样方法是一种分层抽样 B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差 D.该班男生成绩的平均数小于该班女生成绩的平均数10.2013年“神舟”十号载人飞船顺利发射升空,某校开展了“观‘神十’飞天燃爱国激情”系列主题教育活动.该学校高一年级有学生300人,高二年级有学生300人,高三年级有学生400人,通过分层抽样从中抽取40人调查“神舟”十号载人飞船的发射对自己学习态度的影响,则高三年级抽取的人数比高一年级抽取的人数多( )A.5人 B.4人 C.3人D.2人11.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003,这600名学生分住在三个营区.从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为( )A.26,16,8 B.25,17,8 C.25,16,9D.24,17,912.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________.13.某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人,为了检查普通话在该校教师中的推广普及情况,用分层抽样的方法,从全体教师中抽取一个容量为70的样本进行普通话水平测试,其中在不到40岁的教师中应抽取的人数是________.14.一次数学模拟考试,共12道选择题,每题5分,共计60分,每道题有四个可供选择的答案,仅有一个是正确的.学生小张只能确定其中10道题的正确答案,其余2道题完全靠猜测回答.小张所在班级共有40人,此次考试选择题得分情况统计表如下:(1)应抽取多少张选择题得60分的试卷?(2)若小张选择题得60分,求他的试卷被抽到的概率.。
随机抽样练习题抽样是统计学中常用的一种数据收集方法,在研究和调查中起到了重要的作用。
随机抽样是一种公平、客观的抽样方式,使得样本能够代表总体,从而提高研究结果的可靠性和推广性。
为了帮助读者更好地理解和掌握随机抽样的原理和方法,本文将提供一些随机抽样练习题,并提供相应的解答和解析,供读者参考。
1. 问题描述:某市有10个区,每个区有50个街道,每个街道有100个住户。
现从这个市中抽取一个随机样本,样本量为100。
请问,每个区应该抽取多少个街道,每个街道应该抽取多少个住户?解答:为了保证样本能够代表总体,我们需要按照分层抽样的原则进行抽样。
首先,计算每个区应该抽取的街道数量。
由于每个区都有50个街道,所以每个区应该抽取的街道数量为100/10=10个。
接下来,计算每个街道应该抽取的住户数量。
由于每个街道都有100个住户,所以每个街道应该抽取的住户数量为100/50=2个。
2. 问题描述:某班级有60个学生,现从班级中抽取一个随机样本,样本量为30。
请问,如何使用随机数表进行抽样?解答:使用随机数表进行抽样需要以下步骤:Step 1:编制随机数表。
将随机数表按照每个学生一行的方式编制,共有60行(代表60个学生),每行包括两列(代表是否被抽中和随机数)。
Step 2:进行随机抽样。
首先,在随机数表中随机选择一个起始位置(可以使用投掷硬币的方式确定)。
假设起始位置是第17行,将第17行标记为“已抽中”,并记录对应的随机数。
接下来,按照固定的间隔(如每隔2行)进行抽样,直到抽取到30个样本为止。
Step 3:进行抽样检查。
检查抽取得到的样本是否满足要求,如样本量是否为30,是否代表了班级的整体特征等。
3. 问题描述:某公司有1000名员工,现从公司中抽取一个随机样本,样本量为200。
请问,如何使用计算机软件进行随机抽样?解答:使用计算机软件进行随机抽样需要以下步骤:Step 1:准备员工名单。
将公司的员工名单整理成电子表格的形式,每个员工一行,包括员工的编号、姓名等信息。
2.1随机抽样练习题、选择题【共10道小题】1、要从其中有50个红球的1 000 个球中,采用按颜色分层抽样的方法抽得100个进行分析,则应抽得红球个数为( )A. 20 个B.10 个C.5 个D.45 个2、某学院有四个饲养房,分别养有18,54,24,48只白鼠.某项实验需抽取24只白鼠,你认为最合适的抽样方法为( )A. 在每个饲养房各取6只B. 把所有白鼠都加上编有不同号码的颈圈,用随机抽样法确定24只C. 在四个饲养房分别随机抽取3,9,4,8只D•先确定这四个饲养房应分别抽取3,9,4,8只样品,再由各饲养房自己加号码颈圈,用简单随机抽样法确定各自要抽取的对象3、分层抽样又称为类型抽样,即将相似的个体归入一类(层),然后每层抽若干构成样本,所以分层抽样为保证每个个体等可能入样,必须进行( )A. 每层等可能抽样B. 每层不等可能抽样C. 所有层用同一抽样比,每层等可能抽样D. 所有层抽同样多样本容量,等可能抽样4、某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270使用系统抽样时,将学生统一随机编号1,2,…,270并将整个编号依次分为10段•如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是( )A. ②③都不能为系统抽样B. ②④都不能为分层抽样C•①④都可能为系统抽样D. ①③都可能为分层抽样5、某初级中学有学生270人,其中一年级108人,二、三年级各81 人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年组依次统一编号为1、2、…、270,使用系统抽样时,将学生统一随机编号1、2、…、270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7, 34, 61, 88, 115, 142, 169, 196, 223, 250;②5, 9, 100, 107, 111, 121 , 180, 195, 200, 265;③11, 38, 65, 92, 119, 146, 173, 200, 227, 254;④30, 57, 84, 111, 138, 165, 192, 219, 246, 270.关于上述样本的下列结论中,正确的是( )6、下列抽样不是系统抽样的是( )A.从标有1— 15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点 i,以后为i+5, i+10(超过15则从1再数起)号入样B •工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽 一件产品检验C. 搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查 人数为止D. 电影院调查观众的某一指标,通知每排(每排人数相等)座位号为 14的观众留下来座谈7、 某学校有职工140人,其中教师91人,行政人员28人,总务后勤人员21人•为了解职工的某种 情况,要从中抽取一个容量为 20的样本•给出以下3种抽样方法:方法1:将140人从1 —140编号,然后制作出有编号1 —140的140个形状、大小相同的号签 拼将 号签放入同一箱子里进行均匀搅拌 ,然后从中抽取20个号签,编号与号签相同的20个人被选出•方法2:将140人分成20组,每组7人,并将每组7人按1 — 7编号,在第一组采用抽签法抽出 k 号(1 < k w 则其余各组k 号也被抽到,20个人被选出•方法3:按20 : 140=1 : 7的比例,从教师中抽取13人,从行政人员中抽取4人,从总务后勤人员中 抽取3人,从各类人员中抽取所需人员时 ,均采用随机数表法,可抽到20个人• 则依简单随机抽样、系统抽样、分层抽样顺序的是 ( )A.方法2,方法1,方法3B.方法2,方法3,方法1C.方法1,方法2,方法3D.方法3,方法1方法2&从某年级500名中抽取60名进行体重的统计分析,对于这个问题,下列说法正确的是 ( )A . 500名是总体B .每个被抽查的是个体C .抽取的60名体重是一个样本D .抽取的60名体重是样本容量9、 在抽样过程中,每次抽取的个体不再放回总体的为不放回抽样,那么分层抽样、系统抽样、简单随机抽样三种抽样中,为不放回抽样的有( )A . 0个B . 1个C . 2个D . 3个10、 为了考查5000发炮弹的杀伤半径,现从中抽取 10发进行考查,则每发炮弹被抽到的概 率为 ()D .厂二、填空题 【共5道小题】 1、 为了了解某地区癌症的发病情况,从该地区的5 000人中抽取200人进行统计分析,在这个问题中5 000是指 ______________________ .2、 某学校共有教师490人,其中不到40岁的有140人•为了解普通话在该校教师中的推广普及 情况,用分层抽样的方法,从全体教师中抽取一个样本容量为 70人的样本进行普通话水平测试,其中在不到40岁的教师中应抽取的人数是 __________ •A •②③都不能为系统抽样 C •①④都可能为系统抽样B •②④都不能为分层抽样 D .①③都可能为分层抽样3、某校有老师200人,男学生1200人,女学生1000人•现用分层抽样的方法从所有师生中抽取一个容量为n的样本•已知女学生中抽取的人数为80人,则n= 。
4、一工厂生产了某种产品16800件,它们来自甲、乙、丙3条生产线。
为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知从甲、乙、丙3条生产线抽取的个数组成一个等差数列,则乙生产线生产了件产品。
5、上海大众汽车厂生产了A、B、C三种不同型号的小轿车,产量分别 1 200辆、6 000辆、2 000辆,为检验这三种型号的轿车质量,现在从中抽取46辆进行检验,那么应采用____________抽样方法,其中B型号车应抽查______________ 辆•三、解答题【共3道小题】1、一批产品中,有一级品100个,二级品60个,三级品40个,请从这批产品中用分层抽样法抽取一个容量为20的样本.2、某校高中三年级的295名学生已经编号为1 , 2,…,295,为了了解学生的学习情况,要按1 : 5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.3、从40件产品中抽取10件进行检查,请分别用抽签法和随机数表法抽出产品,并写出抽样过程.参考答案:2.1 100 1、参考答案与解析:解析:50x1「:>: =5(个). 答案:C 2、参考答案与解析:解析:依据公平性原则,根据实际情况确定适当的取样方法是本题的主旨 .A 中对四个 饲养房平均摊派,但由于各饲养房所养数量不一 ,从而造成了各个体入选概率的不均衡 ,是错误的方法;B 中 保证了各个体入选概率的相等 ,但由于没有注意到处在四个不同环境中会产生不同差异 ,不如采用分层抽样 可靠性高,且统一编号、统一选择加大了工作量; C 中总体采用了分层抽样,但在每个层次中没有考虑到个 体的差异(如健壮程序、灵活程序),貌似随机实则各个体概率不等 答案:D 3、参考答案与解析 答案:A:思路分析:根据分层抽样是一种等可能抽样的特点可知选 A. 4、参考答案与解析 答案:D :思路分析:由定义可知,①③是分层抽样;②为系统抽样;④为随机抽样.故选D. 5、参考答案与解析 对;因为④不为系统抽样,所以选项 :解析:因为③可以为系统抽样,所以选项 A 不对;因为②为分层抽样,所以选项 C 不对.故选D. 答案:D 6、参考答案与解析:分析:C 中,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入 样,所以不是系统抽样. 答案:C 7、参考答案与解析:答案:C 思路分析:根据三种抽样方法的特点和操作步骤 ,可知方法1的操作过程是抽签法,属于简单随机抽样;方法2 的特征是分组后各组各抽 1人,得到样本,从而是系统抽样;方法3中是考虑到总体中个体有明显差异,使用了 分层抽样. 8参考答案与解析:思路解析:本题要注意区分总体、个体、样本、样本容量的概念,要特别搞清楚研究 对象是什么,本题研究的是体重 . 答案:C 9、答案与解析:思路解析:不放回抽样是三种抽样的共同点 答案:D 10、参考答案与解析: 1、参考答案与解析:总体容量 2、参考答案与解析:思路分析:70 =20. 答案:20 80 43、参考答案与解析:思路解析:由题意知,每个人被抽到的几率为=5&故n= (200+1200+1000) 込0 =192。
答案:1924、参考答案与解析:思路解析:设甲、乙、丙各生产了丄甲、丄乙、丄面件。
因为丄甩、丄乙、丄氏成等差16800数列,所以2丄邑=丄岁十丄悶,且丄甲+丄己十丄西=16800,因此丄匕= 3=5600。
答案:56005、参考答案与解析:解析:因为抽取的不同型号的3种轿车,所以应采用分层抽样方法.6000 _ 15又共生产汽车9 200辆,而B型车有6 000辆,所以占的比例为9200 23 ,15所以B型车应抽查K X46=30辆. 答案:分层30将一级品的100个产品按00,01,02,…,99编号;将二级品的60个产品按00,01,02,…,59,编号;将三级品的40个产品按00,01,02,…,39编号,采用随机数法,分别从中抽取10个,6个,4个,这样就得到一个容量为20的样本.2、参考答案与解析:分析:按1 : 5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号. 解:抽样过程是:(1)按照1 : 5的比例,应该抽取的样本容量为295廿=59,我们把259名同学分成59组,每组5人,第一组是编号为1 —5的5名学生,第2组是编号为6 —10的5名学生,依次下去,59组是编号为291 —295的5名学生;(2)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为1(1 <5)(3)按照一定的规则抽取样本.抽取的学生编号为l+5k(k=0,1,2, ••,• 58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,…,288,293.3、参考答案与解析:解:(1)抽签法①先将40件产品编号,从00编到39;②把号码写在形状、大小均相同的号签上;③将号签放在某个箱子中充分搅拌,然后依次从箱子中取出10个号签,按这10个号签上的号码取出对应产品,即得样本.(2)随机数表法①先将40件产品编号,从00编到39;②在随机数表中任选一数,例如第8行第7列的数7;③从选定的数7开始向右读,逐次选出16,19,10,12,07,39,38,33,21,34.即得到容量为10的样本.。