矩阵特征值分解和奇异值分解共15页
- 格式:ppt
- 大小:2.48 MB
- 文档页数:15
矩阵的特征分解和奇异值分解在线性代数中,矩阵的特征分解和奇异值分解是两种重要的分解方法。
特征分解可以将一个方阵分解为特征向量和对应的特征值,而奇异值分解则适用于非方阵,将矩阵分解为奇异向量和对应的奇异值。
本文将详细介绍这两种分解方法的原理和应用。
一、特征分解特征分解是将一个方阵分解为特征向量和对应的特征值的过程。
对于一个n阶方阵A,存在特征向量x和对应的特征值λ,使得满足下式:Ax = λx其中λ是一个标量,x是非零向量。
特征分解的步骤如下:1. 求方阵A的特征多项式:先计算A减去λ乘以单位矩阵I的行列式,得到特征多项式。
2. 求特征多项式的根:解特征多项式的方程,得到所有特征值λ。
3. 求特征向量:对每个特征值λ,带入原方程组(A-λI)x = 0,求解齐次线性方程组,得到特征向量x。
4. 归一化特征向量:对每个特征值对应的特征向量进行归一化处理。
特征分解是一种重要的矩阵分解方式,可以用于求解线性方程组、矩阵运算和特征值问题等。
特征分解的结果可以提供矩阵的基本性质和结构信息。
二、奇异值分解奇异值分解是将一个m×n矩阵分解为奇异向量和对应的奇异值的过程。
对于一个m×n矩阵A,存在奇异向量u和v以及对应的奇异值σ,使得满足下式:Av = σu其中σ是一个非负标量,u和v是非零向量。
奇异值分解的步骤如下:1. 求矩阵A的转置矩阵A'的乘积AA'的特征值和对应的特征向量。
2. 求矩阵A的乘积A'A的特征值和对应的特征向量。
3. 计算奇异值:将特征值开根号得到矩阵A的奇异值。
4. 求解奇异向量:将特征向量与奇异值对应,得到矩阵A的奇异向量。
奇异值分解是一种常用的矩阵分解方法,它能够提取矩阵的结构信息和重要特征。
奇异值分解在信号处理、图像压缩、数据降维和推荐系统等领域得到广泛应用。
三、特征分解与奇异值分解的比较特征分解和奇异值分解都是将矩阵分解为向量和标量的过程,但它们的目的和应用场景有所不同。
矩阵的“特征值分解”和“奇异值分解”区别在信号处理中经常碰到观测值的⾃相关矩阵,从物理意义上说,如果该观测值是由⼏个(如 K 个)相互统计独⽴的源信号线性混合⽽
成,则该相关矩阵的秩或称维数就为 K,由这 K 个统计独⽴信号构成 K 维的线性空间,可由⾃相关矩阵最⼤ K 个特征值所对应的特征向量或观测值矩阵最⼤ K 个奇异值所对应的左奇异向量展成的⼦空间表⽰,通常称信号⼦空间,它的补空间称噪声⼦空间,两类⼦空间相互正交。
理论上,由于噪声的存在,⾃相关矩阵是正定的,但实际应⽤时,由于样本数量有限,可能发⽣奇异,矩阵条件数⽆穷⼤,造成数值不稳定,并且⾃相关矩阵特征值是观测值矩阵奇异值的平⽅,数值动态范围⼤,因⽽⼦空间分析时常采⽤观测值矩阵奇异值分解,当然奇异值分解也可对奇异的⾃相关矩阵进⾏。
在⾃相关矩阵正定时,特征值分解是奇异值分解的特例,且实现时相对简单些,实际中,常采⽤对⾓加载法保证⾃相关矩阵正定,对各特征⼦空间没有影响。
在信号处理领域,两者都⽤于信号的特征分析,但两者的主要区别在于:奇异植分解主要⽤于数据矩阵,⽽特征植分解主要⽤于⽅型的相关矩阵。
矩阵特征分解计算矩阵的特征值分解和奇异值分解矩阵特征分解是一种常见的矩阵分解方法,用于计算矩阵的特征值和特征向量。
而奇异值分解也是一种重要的矩阵分解技术,可以将一个矩阵分解为三个矩阵的乘积。
本文将详细介绍矩阵特征分解和奇异值分解的原理以及其在计算机科学和工程领域中的应用。
一、矩阵特征分解矩阵特征分解是一种将一个方阵分解为特征向量和特征值的方法。
对于一个n × n的方阵A,如果存在一个非零向量x和标量λ,使得Ax = λx,那么x称为A的特征向量,λ称为A的特征值。
特征向量和特征值是成对出现的,每个特征值对应一个特征向量。
特征分解的过程可以表述为:A = QΛQ^(-1),其中Q是一个由特征向量构成的矩阵,Λ是一个对角阵,对角线上的元素是A的特征值。
矩阵特征分解在很多领域都有广泛的应用,比如在物理学中用于描述振动模式,化学中用于描述分子的电子云运动,图像处理中用于特征提取和图像压缩等。
二、奇异值分解奇异值分解是一种将一个矩阵分解为三个矩阵的乘积的方法。
对于一个m × n的矩阵A,它的奇异值分解可以表述为:A = UΣV^T,其中U是m × m的正交矩阵,Σ是一个对角阵,对角线上的元素是矩阵A的奇异值,V^T是n × n的正交矩阵的转置。
奇异值分解广泛应用于数据降维、图像压缩和推荐系统等领域。
在数据降维中,通过保留较大的奇异值可以有效地提取出重要的特征,减少数据的维度;在图像压缩中,利用奇异值分解可以将图像矩阵分解为若干个部分,其中一部分的奇异值较大,可以用于恢复图像的大部分信息。
三、特征分解与奇异值分解的联系和区别虽然特征分解和奇异值分解都为矩阵分解的方法,但两者在应用场景和结果解释上有所不同。
特征分解更适用于方阵,可以得到矩阵的特征向量和特征值,用于描述矩阵的振动模式、电子云运动等。
而奇异值分解适用于任意矩阵,可以得到矩阵的奇异值和正交矩阵,常用于数据降维和图像压缩。
矩阵的特征值分解和奇异值分解矩阵的特征值分解和奇异值分解是线性代数中非常重要的理论和方法。
它们在很多领域都有着广泛的应用,如机器学习、图像处理、信号处理等。
本文将详细介绍矩阵的特征值分解和奇异值分解的概念、计算方法以及应用。
一、特征值分解(Eigenvalue Decomposition)特征值分解是将一个矩阵分解为可对角化的形式,其中对角线上的元素为特征值,对应的非零特征值所对应的特征向量构成的集合构成了矩阵的特征向量矩阵。
特征值分解可以表示为以下形式:A = PDP^{-1}其中,A是一个n×n的矩阵,P是一个由特征向量构成的矩阵,D 是一个对角阵,对角线上的元素是矩阵A的特征值。
特征值分解可以用于解决线性方程组、矩阵对角化、矩阵幂的计算等问题。
它在降维、特征提取、谱聚类等领域也有广泛的应用。
二、奇异值分解(Singular Value Decomposition)奇异值分解是将一个矩阵分解为三个矩阵的乘积,形式如下:A = UΣV^T其中,A是一个m×n的矩阵,U是一个m×m的酉矩阵,Σ是一个m×n的矩阵,对角线上的元素称为奇异值,V是一个n×n的酉矩阵的转置。
奇异值分解是一种对矩阵进行降维和压缩的方法。
它可以用于最小二乘问题的求解、图像压缩、特征提取等领域。
在机器学习中,奇异值分解也常用于主成分分析(PCA)方法。
三、特征值分解与奇异值分解的计算特征值分解的计算比较复杂,需要求解矩阵的特征多项式,然后通过求解特征多项式的根来得到特征值和特征向量。
对于大规模矩阵,特征值分解计算的时间复杂度较高。
奇异值分解的计算相对简单,可以通过多种算法来实现,如Jacobi迭代法、分裂法等。
在实际应用中,大部分计算都是基于奇异值分解来进行的。
四、特征值分解与奇异值分解的应用特征值分解和奇异值分解在科学研究和工程实践中有着广泛的应用。
以下列举几个常见的应用场景:1. 图像处理和压缩:奇异值分解可以用于图像压缩,通过取前k个奇异值实现图像的降维和压缩。
§2 矩阵的奇异值分解定义 设A 是秩为r 的m n ⨯复矩阵,T A A 的特征值为1210r r n λλλ>λλ+≥≥≥=== .则称i σ=(1,2,,)i n = 为A 的奇异值.易见,零矩阵的奇异值都是零,矩阵A 的奇异值的个数等于A 的列数,A 的非零奇异值的个数等于其秩.矩阵的奇异值具有如下性质:(1)A 为正规矩阵时,A 的奇异值是A 的特征值的模;(2)A 为半正定的Hermite 矩阵时,A 的奇异值是A 的特征值;(3)若存在酉矩阵,m m n n ⨯⨯∈∈U V C C ,矩阵m n ⨯∈B C ,使=UAV B ,则称A 和B 酉等价.酉等价的矩阵A 和B 有相同的奇异值.奇异值分解定理 设A 是秩为r (0)r >的m n ⨯复矩阵,则存在m 阶酉矩阵U 与n 阶酉矩阵V ,使得H⎡⎤==⎢⎥⎣⎦O U AV O O ∑∆. ①其中12diag(,,,)r σσσ= ∑,i σ(1,2,,)i r = 为矩阵A 的全部非零奇异值.证明 设Hermite 矩阵H A A 的n 个特征值按大小排列为1210r r n λλλ>λλ+≥≥≥=== .则存在n 阶酉矩阵V ,使得12H H()n λλ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦O V A A V OO ∑. ②将V 分块为 12()=V V V ,其中1V ,2V 分别是V 的前r 列与后n r -列.并改写②式为2H⎡⎤=⎢⎥⎣⎦O A AV V O O ∑.则有H 2H 112==A AV V A AV O , ∑. ③由③的第一式可得H H 2H 1111()()r ==V A AV AV AV E , 或者∑∑∑.由③的第二式可得H 222()() ==AV AV O AV O 或者.令111-=U AV ∑,则H 11r =U U E ,即1U 的r 个列是两两正交的单位向量.记作112(,,,)r =U u u u ,因此可将12,,,r u u u 扩充成m C 的标准正交基,记增添的向量为1,,r m +u u ,并构造矩阵21(,,)r m +=U u u ,则12121(,)(,,,,,,)r r m +==U U U u u u u u是m 阶酉矩阵,且有 H H1121 r ==U U E U U O ,.于是可得H HH1121H 2()()⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦O U U AV U AV AV U O O O U ,,∑∑.由①式可得H H HH 111222r r r σσσ⎡⎤==+++⎢⎥⎣⎦O A U V u v u v u v O O ∑. ④称④式为矩阵A 的奇异值分解.值得注意的是:在奇异值分解中121,,,,,,r r m +u u u u u 是H AA 的特征向量,而V 的列向量是H A A 的特征向量,并且H AA 与H A A 的非零特征值完全相同.但矩阵A 的奇异值分解不惟一.证明2 设Hermite 矩阵H A A 的n 个特征值按大小排列为1210r r n λλλ>λλ+≥≥≥=== .则存在n 阶酉矩阵V ,使得12H H()n λλ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦O V A A V OO ∑. ②将V 分块为12(,,,)n =V v v v ,它的n 个列12,,,n v v v 是对应于特征值12,,,n λλλ 的标准正交的特征向量.为了得到酉矩阵U ,首先考察m C 中的向量组12,,,r Av Av Av ,由于当i 不等于j 时有H H H H H (,)()()0i j j i j i j i i i j i λλ=====Av Av Av Av v A Av v v v v所以向量组12,,,r Av Av Av 是m C 中的正交向量组.又 2H H H 2||||i i i i i i iλσ===Av v A Av v v ,所以 ||||i i i σ=Av .令1i i i=u Av σ,1,2,,i r = ,则得到m C 中的标准正交向量组12,,,r u u u ,把它扩充成为m C 中的标准正交基11,,,,r r m +u u u u ,令11(,,,,)r r m +=U u u u u则U 是m 阶酉矩阵.由已知及前面的推导可得i i i σ=Av u ,1,2,,i r = ;i =Av 0,1,,i r n =+ ;从而 121(,,,)(,,,,,)n r ==AV A v v v Av Av 0011120(,,,,,)(,,,)0r m r σσσσ⎛⎫⎪ ⎪== ⎪ ⎪ ⎪⎝⎭O u u u u u O O 00 ⎛⎫= ⎪⎝⎭ΣO U O O故有=AV U Δ,即H =U AV Δ.例1 求矩阵120202⎡⎤=⎢⎥⎣⎦A 的奇异值分解.解 T52424044⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A A 的特征值为1239,4,0λλλ===, 对应的单位特征向量依次为T T T 1231,1),(2,1,2)3==-=-v v v .所以5052643⎡-⎢=⎥⎥-⎥⎣⎦V .于是可得()2r =A ,3002∑⎡⎤=⎢⎥⎣⎦.计算111221∑-⎡⎤==⎢⎥-⎣⎦U AV ,则A 的奇异值分解为T 300020⎡⎤=⎢⎥⎣⎦A U V .在A 的奇异值分解中,酉矩阵V 的列向量称为A 的右奇异向量,V 的前r 列是H A A 的r 个非零特征值所对应的特征向量,将他们取为矩阵V 1,则12(,)=V V V .酉矩阵U 的列向量被称为A 的左奇异向量,将U 从前r 列处分块为12(,)=U U U ,由分块运算,有H H H H1111212H H H22122()⎡⎤⎛⎫⎡⎤=== ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭O U U AV U AV U AV AV AV O O U U AV U AV ,∑ 从而 211=A V A V U Σ,=0.正交基;(2)1U 的列向量组是矩阵A 的列空间(){}R =A Ax 的一组标准正交基;(1)1V 的列向量组是矩阵A 的零空间(){}N ==A x Ax 0正交补H ()R A 的一组标准正交基;(1)2U 的列向量组是矩阵A 的列空间(){}R =A Ax 正交补H ()N A 的一组标准正交基.在A 的奇异值分解中,酉矩阵U 和V 不是惟一的.A 的奇异值分解给出了矩阵A 的许多重要信息.更进一步,由于12(,,)m =U u u u ,12(,,,)n =V v v v ,可借助于奇异值分解,将A 表示为H 11H 212H 0(,,,)0m r n σσ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭v O v A u u u O O v H HH 111222r r r σσσ=+++u v u v u v归纳这一结果,有如下定理.定理 设m n ⨯∈A C ,A 的非零奇异值为12r σσσ≥≥≥ ,12,,ru u u 是应于奇异值的左奇异向量,12,,,r v v v 是应于奇异值的右奇异向量,则T TT 111222r r r σσσ=+++A u v u v u v .上式给出的形式被称为矩阵A 的奇异值展开式,对一个k r ≤,略去A 的一些小的奇异值对应的项,去矩阵k A 为T T T111222k k k kσσσ=+++A u v u v u v .则k A 是一个秩为k 的m ×n 矩阵.可以证明,k A 是在所有秩为k 的m ×n 矩阵中,从Frobenius 范数的意义下,与矩阵A 距离最近的一个矩阵.这在实际中应用广泛.例如,在图像数字化技术中,一副图片可以转换成一个m ×n 阶像素矩阵来储存,存储量m ×n 是个数.如果利用矩阵的奇异值展开式,则只要存储A 的奇异值i σ,奇异向量,i i u v 的分量,总计r (m +n +1)个数.取m =n =1000,r =100作一个比较, m ×n =1000000,r (m +n +1)=100(1000+1000+1)=200100.取A 的奇异值展开式,,存储量较A 的元素情形减少了80%.另外,可取k r <,用k A 逼近A ,能够达到既压缩图像的存储量,又保持图像不失真的目的.由矩阵A 的奇异值分解可得T TT 111222r r r σσσ=+++A u v u v u v可见,A 是矩阵T TT 1122,,,r r u v u v u v 的加权和,其中权系数按递减排列120r σσσ≥≥≥> .显然,权系数大的那些项对矩阵A 的贡献大,因此当舍去权系数小的一些项后,仍然能较好的“逼近”矩阵A ,这一点在数字图像处理方面非常有用.矩阵的秩k 逼近定义为T T T111222 1k k k k r σσσ=+++≤≤A u v u v u v秩r 逼近就精确等于A ,而秩1逼近的误差最大.矩阵的奇异值分解不但在线性方程组,矩阵范数,广义逆,最优化等方面有着广泛的应用.而且在数字计算,数字图像处理,信息检索,心里学等领域也有着极重要的应用.有兴趣的读者可参阅有关教科书,如Steven J.Leon 的《线性代数》.3 矩阵A的奇异值分解与线性变换T A设A 是一个秩为r 的m ×n 复矩阵,即m n⨯∈A C,rank()r =A ,则由()T ==A A βαα可以定义线性变换:n m T →A C C .设矩阵A 有奇异值分解H=A U ΣV ,则将矩阵n n⨯∈V C 的列向量组12,,,n v v v 取作空间nC 的标准正交基;则将矩阵m m⨯∈U C的列向量组12,,m u u u 取作空间mC的标准正交基,则在所取的基下,线性变换T A 对应的变换矩阵就是Σ.设n ∈C α,α在基12,,,n v v v 下坐标向量为T12(,,,)n x x x =x ,=Vx α.那么α在线性变换T A 下的像β具有形式:11H()()()00r r x x T σσ⎛⎫ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭A A U ΣV Vx U Σx U βαα.其中12,,,r σσσ 是A 的非零奇异值,所以,α的像()T =A βα在m C 中基12,,m u u u 下的坐标是T 11(00)r rx x σσ==y Σx .从中可以看出,当rank()r =A 时,在取定的基下,线性变换()T A α的作用是将原像坐标中的前r 个分量分别乘以A 的非零奇异值12,,,r σσσ ,后(n-r )分量化为零.如果原像坐标满足条件:222121n x x x +++= ,则像坐标满足条件:2221212()()()1rry y y σσσ+++≤ .在rank()r n ==A 时,等式成立.因此,有如下定理.定理 设H=A U ΣV 是m ×n 实矩阵A 的奇异值分解,rank()r =A ,则nR 中的单位圆球面在线性变换T A 下的像集合是:(1)若r n =,则像集合是mR 中的椭球面;(2)若r n <,则像集合是mR 中的椭球体.例2 设矩阵120202⎡⎤=⎢⎥⎣⎦A ,求3R 中的单位圆球面在线性变换:T A y =Ax 下的像的几何图形.解 由例1,矩阵A 有如下奇异值分解T5012300262102043⎛⎫⎡-⎪⎢⎛⎫⎡⎤⎡⎤⎪=⎥⎪⎢⎥⎢⎥-⎪⎣⎦⎣⎦⎥⎭⎪-⎥⎣⎦⎝⎭A. rank()23,n=<=A由定理,单位球面的像满足不等式221222132y y+≤.即单位球面的像是实心椭圆2212194y y+≤.。
讲⼀下numpy的矩阵特征值分解与奇异值分解1、特征值分解主要还是调包:from numpy.linalg import eig特征值分解: A = P*B*P T当然也可以写成 A = Q T*B*Q 其中B为对⾓元为A的特征值的对⾓矩阵,P=Q T,⾸先A得对称正定,然后才能在实数域上分解,>>> A = np.random.randint(-10,10,(4,4))>>> Aarray([[ 6, 9, -10, -1],[ 5, 9, 5, -5],[ -8, 7, -4, 4],[ -1, -9, 0, 6]])>>> C = np.dot(A.T, A)>>> Carray([[126, 52, -3, -69],[ 52, 292, -73, -80],[ -3, -73, 141, -31],[-69, -80, -31, 78]])>>> vals, vecs = eig(C)>>> valsarray([357.33597086, 174.10172008, 8.84429957, 96.71800949])>>> vecsarray([[-0.28738314, -0.51589436, -0.38221983, -0.71075449],[-0.87487263, 0.12873861, -0.24968051, 0.39456798],[ 0.2572149 , -0.69304313, -0.33950158, 0.58161018],[ 0.29300052, 0.48679627, -0.82237845, -0.02955945]])故使⽤时应先将特征值转换为矩阵:>>> Lambda = np.diag(vals)>>> Lambdaarray([[357.33597086, 0. , 0. , 0. ],[ 0. , 174.10172008, 0. , 0. ],[ 0. , 0. , 8.84429957, 0. ],[ 0. , 0. , 0. , 96.71800949]])>>> np.dot(np.dot(vecs, Lambda), vecs.T) # 与C=A.T*A相等array([[126., 52., -3., -69.],[ 52., 292., -73., -80.],[ -3., -73., 141., -31.],[-69., -80., -31., 78.]])>>> np.dot(np.dot(vecs.T, Lambda), vecs)array([[171.65817919, 45.58778569, 53.20435074, 13.37512137],[ 45.58778569, 125.15670964, 28.22684299, 134.91290105],[ 53.20435074, 28.22684299, 129.48789571, 80.5284382 ],[ 13.37512137, 134.91290105, 80.5284382 , 210.69721545]])故验证了使⽤np中的eig分解为A=P*B*P T⽽不是A=Q T*B*Q,其中P=vecs,即 C = vecs * np.diag(vals) * vecs.T # 这⾥简写*为矩阵乘法然后再来看使⽤np中的eig分解出来的vec中⾏向量是特征向量还是列向量是特征向量,只需验证:A*vecs[0] = vals[0]*vecs[0] >>> np.dot(C, vecs[0])array([-12.84806258, -80.82266859, 6.66283128, 17.51094927])>>> vals[0]*vecs[0]array([-102.69233303, -184.34761071, -136.58089252, -253.97814676])>>> np.dot(C, vecs[:,0])array([-102.69233303, -312.62346098, 91.91213634, 104.69962583])>>> vals[0]*vecs[:, 0]array([-102.69233303, -312.62346098, 91.91213634, 104.69962583])后者两个是相等的,故使⽤np中的eig分解出的vecs的列向量是特征向量。
矩阵的特征分解与奇异值分解矩阵是线性代数中重要的概念之一,广泛应用于各个领域。
在矩阵的研究中,特征分解与奇异值分解是两个常用的方法。
本文将对矩阵的特征分解和奇异值分解进行详细介绍,并探讨它们在实际应用中的意义。
一、特征分解特征分解是一种将矩阵分解为特征向量和特征值的方法。
对于一个n阶方阵A,如果存在非零向量x和标量λ,使得Ax=λx成立,那么向量x称为矩阵A的特征向量,标量λ称为矩阵A的特征值。
特征分解的目的就是将矩阵A表示为特征向量和特征值的线性组合。
特征分解的步骤如下:1. 求出矩阵A的特征方程det(A-λI)=0,其中I是单位矩阵。
2. 解特征方程得到矩阵A的特征值λ。
3. 对于每一个特征值λ,求出对应的特征向量x。
4. 将特征向量和特征值组合,得到矩阵A的特征分解。
特征分解在实际应用中有广泛的用途,例如在图像处理中,可以利用特征分解对图像进行降维处理,提取图像的主要特征;在物理学中,特征分解可以用于求解量子力学中的定态问题等。
二、奇异值分解奇异值分解是一种将矩阵分解为奇异值和特征向量的方法。
对于一个m×n的矩阵A,假设它的秩为r,那么奇异值分解的结果可以表示为A=UΣV^T,其中U是一个m×r的正交矩阵,Σ是一个r×r的对角矩阵,V^T是一个r×n的正交矩阵。
奇异值分解的步骤如下:1. 求出矩阵A的转置矩阵A^T与矩阵A的乘积AA^T的特征值和特征向量。
2. 对特征值进行排序,得到矩阵A的奇异值。
3. 根据奇异值计算矩阵A的奇异向量。
4. 将奇异向量和奇异值组合,得到矩阵A的奇异值分解。
奇异值分解在数据压缩、图像处理、语音识别等领域有广泛的应用。
例如在图像处理中,可以利用奇异值分解对图像进行压缩,减少存储空间的占用;在语音识别中,奇异值分解可以用于提取语音信号的主要特征。
总结:特征分解和奇异值分解是矩阵分解的两种常用方法。
特征分解将矩阵分解为特征向量和特征值的线性组合,而奇异值分解将矩阵分解为奇异值和特征向量的线性组合。