DNARNA和蛋白质解释这些分子之间的关系
- 格式:docx
- 大小:37.35 KB
- 文档页数:3
第二章一、名词解释1、DNA的一级结构:四种脱氧核苷酸按照一定的排列顺序以3’,5’磷酸二酯键相连形成的直线或环状多聚体,即四种脱氧核苷酸的连接及排列顺序。
2、DNA的二级结构:DNA两条多核苷酸链反向平行盘绕而成的双螺旋结构.3、DNA的三级结构:DNA双螺旋进一步扭曲盘绕所形成的特定空间结构。
4、DNA超螺旋:DNA双螺旋进一步扭曲盘绕所形成的特定空间结构,是DNA结构的主要形式,可分为正超螺旋与负超螺旋两大类。
按DNA双螺旋的相反方向缠绕而成的超螺旋成为负超螺旋,反之,则称为正超螺旋。
所有天然的超螺旋DNA均为负超螺旋。
5、DNA拓扑异构体:核苷酸数目相同,但连接数不同的核酸,称拓扑异构体6、DNA的变性与复性:变性(双链→单链)在某些理化因素作用下,氢键断裂,DNA双链解开成两条单链的过程。
复性(单链→双链)变性DNA在适当条件下,分开的两条单链分子按照碱基互补配对原则重新恢复天然的双螺旋构想的现象。
7、DNA的熔链温度(Tm值):DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链。
Tm值计算公式:Tm=69.3+0.41(G+C)%;<18bp的寡核苷酸的Tm计算:Tm=4(G+C)+2(A+T)。
8、DNA退火:热变性的DNA经缓慢冷却后即可复性,称为退火9、基因:编码一种功能蛋白或RNA分子所必需的全部DNA序列。
10、基因组:生物的单倍体细胞中的所有DNA,包括核DNA和线粒体、叶绿体等细胞器DNA11、C值:生物单倍体基因组中的全部DNA量称为C值12、C值矛盾:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论13、基因家族:一组功能相似、且核苷酸序列具有同源性的基因。
可能由某一共同祖先基因经重复和突变产生。
14、假基因:假基因是原始的、有活性的基因经突变而形成的、稳定的无活性的拷贝。
表示方法:Ψα1表示与α1相似的假基因15、转座:遗传可移动因子介导的物质的重排现象。
基因表达与蛋白质合成的差异解释基因表达与蛋白质合成之间的差异基因表达和蛋白质合成是生物体内两个重要的生物过程。
在细胞内,基因通过转录生成RNA分子,然后通过翻译生成蛋白质。
这个过程中,基因表达和蛋白质合成之间存在着一些差异,下面将对这些差异进行解释。
1. 基因表达和蛋白质合成的位置差异基因表达主要发生在细胞核内,即基因被特定的转录因子调控转录成RNA分子。
而蛋白质合成则主要发生在细胞质内的核糖体中,通过转译过程将RNA翻译成特定的蛋白质。
因此,基因表达和蛋白质合成的位置有明显的差异。
2. 基因表达和蛋白质合成的过程差异基因表达包括转录和RNA加工等过程。
在细胞核中,DNA的双链会先解旋,转录酶会识别特定的转录起始位点,并以3'-5'方向进行合成RNA分子,这个过程是一种逆转录转录,同时伴随着RNA的加工,包括剪接、剪切、修饰等。
而蛋白质合成则是在核糖体中,通过mRNA和tRNA的互作用,将氨基酸按照编码信息连接而成,形成特定的蛋白质。
3. 基因表达和蛋白质合成的速度差异基因表达的速度相对较慢,转录和RNA加工等过程需要一定的时间,而且参与的因子较多。
而蛋白质合成的速度相对较快,核糖体可以同时翻译多个mRNA,形成多个蛋白质。
这种速度差异可能是因为细胞需要及时调控蛋白质的合成,以适应身体的需要。
4. 基因表达和蛋白质合成的调控机制差异基因表达的调控主要通过转录因子和其他调控因子的作用,可以使得特定的基因在特定的时间和空间中得到表达。
而蛋白质合成的调控主要通过翻译过程的调控,包括mRNA的选择性翻译、tRNA的选择性装载等。
这种调控机制可以使细胞对环境和刺激做出及时的应答。
综上所述,基因表达和蛋白质合成之间存在着位置、过程、速度和调控机制等方面的差异。
基因表达和蛋白质合成是生物体内重要的生物过程,它们的差异为细胞和生物体的正常功能提供了基础。
深入理解基因表达和蛋白质合成的差异对于揭示生物学的奥秘、研究疾病的发生和发展等具有重要的意义。
基因转录与蛋白质表达的关系基因转录和蛋白质表达是生物体内两个关键的分子生物学过程。
基因转录是指DNA中的基因通过转录过程生成RNA分子,而蛋白质表达则是指RNA分子通过翻译过程合成蛋白质。
这两个过程密切相关,相互作用,并且对生物体的正常功能和发展起着重要的作用。
基因转录是指DNA信息的转录过程,将DNA转录为RNA分子。
这个过程由RNA聚合酶酶促进,在基因的控制区域启动。
在转录过程中,RNA聚合酶与DNA序列结合,并将RNA分子中的一条链复制为RNA分子。
RNA分子是一条由核苷酸组成的单链,与DNA具有相似的核苷酸序列。
转录后的RNA分子可以进一步被翻译成蛋白质。
蛋白质表达是指细胞内RNA的翻译过程,将RNA转化为蛋白质。
这个过程是由核糖体完成的,核糖体是由RNA和蛋白质组成的细胞器。
在翻译过程中,核糖体会读取RNA分子的核苷酸序列,并将其翻译成具有特定氨基酸序列的多肽链。
这个多肽链之后会经过后续的修饰和折叠,形成具有特定功能的蛋白质。
基因转录和蛋白质表达之间存在密切的关系。
首先,基因转录是蛋白质表达的前提。
只有通过基因转录过程,DNA中的信息才能够被复制成RNA分子,进而参与到蛋白质合成的过程中。
其次,基因转录的调控可以影响蛋白质表达水平。
在转录过程中,调控基因的启动子和阻遏子等调控元件可以影响RNA聚合酶的结合和转录速率,从而影响RNA的合成量。
这直接影响到后续蛋白质的合成水平和表达水平。
基因转录和蛋白质表达的关系还可以通过转录后调控机制进一步展开。
在RNA的后转录过程中,包括RNA的修饰、剪接、运载和稳定性控制等步骤,这些步骤可以影响转录产物的成熟程度、稳定性和功能。
这些进一步的调控机制在蛋白质合成过程中发挥重要的作用,可以使得细胞对环境变化做出相应的调整,以保持正常的蛋白质表达。
在细胞生物学和分子生物学研究中,基因转录和蛋白质表达的关系被广泛应用于基因和疾病的研究。
通过对转录水平和蛋白质水平的测量和比较,可以揭示基因调控网络的运作和异常,进而为疾病的诊断和治疗提供新的思路。
基因工程、分子生物学和分子遗传学重要名词解释基因工程、分子生物学和分子遗传学重要名词解释5’Cap 5’-末端帽:有时简称帽,是在许多真核生物mRNA5`-末端发现的一种由7-甲基-鸟嘌呤核苷-5`-ppp –末端核苷构成的特殊构成的特殊结构。
它是在转录后不久经酶催反应加入到TATA (Hogness)序列的附近,具有保护mRNA稳定性的功能。
在原核生物的mRNA分子中不存在5`-末端帽结构。
A protein A蛋白:他参与λDNA插入噬菌体头部和在粘性末端(cos)位点上裂解多联体DNA的过程。
abortive lysgeny 流产溶原性:温和噬菌体感染敏感的宿主菌后,既不整合进宿主染色体中,也不进行复制,从而使每一个带有噬菌体的宿主菌分裂产生的两个细胞中,只有一个是溶原性的。
abortive transduction 流产转导:这是得到不稳定转导子的一类转导,区别于得到稳定转导子的完全转导。
在流产转导中,转导子分裂产生两个细胞时,只有其中的一个获得供体基因,另一个细胞则仍属受体基因型。
Abundance of an mRNA mRNA丰度:是指每个细胞平均拥有的某一种特定mRNA的分子数,跟据丰度的差异可将分为两种不同的等级:其一是富裕型的,每个细胞拥有的平均考贝数为1000——10000,属于此型的mRNA约有100种;其二是稀少型的,每个细胞拥有平均考贝数仅有1——10个上下,属于这一类行的mRNA达10000多种。
Abzymes 抗体酶: 应用单克隆抗体技术生产的兼具抗体及酶催活性的工程蛋白质。
也就是说,其行为如同蛋白酶一样,能够催化化学反应的一类新型的抗体。
Acceptor splicing site 受体拼接位点: 间隔子的右端和与其相连的表达子的左端之间的接合点。
Acquired immunodeficiency syndrome, AIDS 获得性免疫缺损综合征: 由人类免疫缺损病毒(HIV)引起的一种疾病,他最早于1980年在美国洛杉叽发现。
论文: RNA种类和功能的多样性RNA种类和功能的多样性引言DNA 是遗传信息的主要载体,生物体的生理功能主要由蛋白质来执行。
在DNA 和蛋白质之间,RNA 起着中介作用。
与DNA 相比,RNA 种类较多,分子量相对较小,在遗传信息表达和调控过程中各类RNA 分别发挥作用。
这是我们对RNA 的基本知识。
随着研究的深入,人们发现生物体内RNA 的种类和功能已远远超出从前对它的认识,不仅仅是在基因表达时作为中介那样简单,它在生命活动的各个方面和生物进化过程中起着相当重要的作用。
现从生物体内RNA 的种类和功能的多样性作一概述。
2生物体内RNA 的种类目前看来,生物体内有14个种类的RNA:(1) 信使RNA(mRNA),携带从DNA 转录来的遗传信息。
(2) 转运RNA(tRNA) ,负责蛋白质合成时氨基酸的转运。
(3) 核糖体RNA( rRNA),在核糖体中起装配和催化作用。
(4)具有催化作用的RNA ,即核酶(ribozyme) 和其它RNA 自我催化分子。
(5) 基因组RNA(genome RNA) ,指一些病毒以RNA 为遗传物质。
(6)指导RNA(guide RNA),是指导RNA 编辑的小RNA 分子。
(7)mRNA 样非编码RNA ,其转录和加工方式同mRNA ,但不翻译为蛋白质。
已知这类RNA 有20 多种,例如人的xistRNA 和X染色体的XIST结合,使此X染色体失去转录活性。
(8) tmRNA,本身既是tRNA 又是mRNA ,翻译时一身二任。
如大肠杆菌中的10Sa RNA。
(9) 小胞质RNA( small cytoplasmic RNA ,scRNA),存在于细胞质中的小RNA 分子。
如信号识别颗粒(signal recognition particle ,SRP) 组分中含有的7S RNA。
(10) 小核RNA(small nuclear RNA ,snRNA) ,是剪接体的组分。
分子生物学考试名词解释同学们没事就背背,六十多个。
还有二十多天。
Central dogma(中心法则):DNA的遗传信息经RNA一旦进入蛋白质就不能再输出了。
Reductionism(还原论):把问题分解为各个部分,然后再按逻辑顺序进行安排的研究方法。
Genome(基因组):单倍体细胞的全部基因。
transcriptome(转录组):一个细胞、组织或有机体在特定条件下的一组完整基因。
proteome (蛋白质组):在大规模水平上研究蛋白质特征,获得蛋白质水平上的关于疾病的发生、细胞代谢等过程的整体而全面的认识。
Metabolome(代谢组):对生物体内所有代谢物进行定量分析并寻找代谢物与生病理变化的相关关系的研究方法。
Gene(基因):具有遗传效应的DNA片段。
Epigenetics(表观遗传学现象):DNA结构上完全相同的基因,由于处于不同染色体状态下具有不同的表达方式,进而表现出不同的表型。
Cistron(顺反子):即结构基因,决定一条多肽链合成的功能单位。
Muton(突变子):顺反子中又若干个突变单位,最小的突变单位被称为突变子。
recon(交换子):意同突变子。
Z DNA(Z型DNA):DNA的一种二级结构,由两条核苷酸链反相平行左手螺旋形成。
Denaturation(变性):物质的自然或非自然改变。
Renaturation(复性):变形的生物大分子恢复成具有生物活性的天然构想的现象。
negative superhelix(负超螺旋):B-DNA分子被施加左旋外力,使双螺旋体局部趋向松弛,DNA分子会出现向右旋转的力的超螺旋结构。
C value paradox (C值矛盾):生物overlapping gene(重叠基因):不同的基因公用一段相同的DNA序列。
体的大C值与小c值不相等且相差非常大。
interrupted gene(断裂基因):由若干编码区和非编码区连续镶嵌而成的基因。
splitting gene(间隔基因):意思与断裂基因相同。
名词解释:核酸构造,性质与功能分子生物学:是从分子水平研究生命现象、生命的本质、生命活动及其规律的科学。
医学分子生物学:是从分子水平研究人体在正常和疾病状态下生命活动及其规律的一门科学。
它主要研究人体生物大分子和大分子体系的构造、功能、相互作用及其同疾病发生、开展的关系。
基因:是核酸分子中贮存遗传信息的遗传单位,是指DNA特定区段,是RNA和蛋白质相关遗传信息的根本存在形式。
大局部生物中构成基因的核酸是DNA, 少数生物〔如RNA病毒〕是RNA。
核酸的一级构造:核酸中核苷酸的排列顺序。
组成DNA分子的脱氧核糖核苷酸(dAMP, dGMP, dTMP, dCMP)的排列顺序。
组成RNA分子的核糖核苷酸(AMP, GMP, UMP, CMP)的排列顺序。
由于核苷酸间的差异主要是碱基不同,所以也称为碱基序列。
DNA的一级构造:四种脱氧核糖核苷酸(dAMP, dGMP, dTMP, dCMP)或四种碱基的排列顺序。
DNA三级构造:DNA分子在形成双螺旋构造的根底上,进一步折叠成超螺旋构造(supercoil) (原核细胞),或在蛋白质的参与下,进展精细的包装(真核细胞),所形成的空间构造。
超螺旋构造(superhelix 或supercoil):DNA双螺旋链再盘绕即形成超螺旋构造。
正超螺旋(positive supercoil)盘绕方向与DNA双螺旋方同一样;负超螺旋(negative supercoil)盘绕方向与DNA双螺旋方向相反。
构造基因:在基因片段中,贮存着一个特定的转录RNA分子的DNA序列,这段序列决定该RNA分子的一级构造,就称为构造基因。
外显子〔exon):构造基因中在成熟RNA分子中保存的相对应的序列内含子(intron):是指RNA分子剪接时删除局部相对应的构造基因序列基因转录调控序列:与转录相关的、构造基因以外的序列启动子〔promoter):是RNA聚合酶特异性识别和结合的DNA序列,位于构造基因转录起始点的上游,偶见位于转录起始点的下游。
分子生物学名词解释:基因(gene):编码蛋白质或RNA等具有特定功能产物的遗传信息的基本单位,是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的RNA病毒而言则是RNA序列)。
包括编码序列(外显子)、编码区前后对于基因表达具有调控功能的序列和单个编码序列间的间隔序列(内含子)。
Tm值:Tm值就是DNA熔解温度,指把DNA的双螺旋结构降解一半时的温度。
不同序列的DNA,Tm值不同。
DNA中G-C含量越高,Tm值越高,成正比关系。
中度重复序列(moderately repetitive sequence ) :基因组中有10个到几千个拷贝的DNA 序列。
重复单元的平均长度约300bp。
高度重复序列(highly repetitive sequence ):基因组中有数千个到几百万个拷贝的DNA 序列。
这些重复序列的长度为6~200碱基对。
启动子(promoter ):DNA分子上能与RNA聚合酶结合并形成转录起始复合体的区域,在许多情况下,还包括促进这一过程的调节蛋白的结合位点。
增强子(enhancer element ):增强基因启动子工作效率的顺式作用序列,能够在相对于启动子的任何方向和任何位置(上游或下游)上都发挥作用。
分子杂交(molecular hybridization ):不同来源或不同种类生物分子间相互特异识别而发生的结合。
如核酸(DNA、RNA)之间、蛋白质分子之间、核酸与蛋白质分子之间、以及自组装单分子膜之间的特异性结合。
限制性内切酶(restriction endonuclease):识别并切割特异的双链DNA序列的一种内切核酸酶。
反式作用因子(trans-acting factor ):通过直接结合或间接作用于DNA、RNA等核酸分子,对基因表达发挥不同调节作用(激活或抑制)的各类蛋白质因子。
半保留复制(semiconservative replication ):DNA复制时亲代DNA的两条链解开,每条链作为新链的模板,从而形成两个子代DNA分子,每一个子代DNA分子包含一条亲代链和一条新合成的链。
名词解释第一章绪论1 分子生物学是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平上阐明蛋白质与蛋白质、蛋白质与核酸之间的互作及其基因表达调控机理的学科。
2 DNA重组技术是将不同DNA片段(如某个基因或基因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
3 功能基因组学又往往被称为后基因组学,它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质得研究转向多个基因或蛋白质同时进行系统的研究。
第二章染色体与DNA1组蛋白是染色体的结构蛋白,其与DNA组成核小体。
2 C值:一种生物单倍体基因组DNA的总量。
3 DNA的一级结构即是指四种核苷酸的连接及排列顺序,表示该DNA分子的化学构成。
4DNA二级结构是指两条多核苷酸链反相平行盘绕所生成的双螺旋盘绕结构。
5DNA的高级结构指DNA双螺旋进一步扭曲盘旋所形成的特定空间结构。
6核小体是由H2A、H2B、H3、H4各两个分子生成的八聚体和由大约200bpDNA组成的。
八聚体在中间,DNA分子盘绕在外,而H1则在核小体的外面。
每个核小体只有一个H1。
7DNA的半保留复制是DNA在复制时首先两条链之间的氢键断裂两条链分开,然后以每一条链分别做模板各自合成一条新的DNA链,这样新合成的子代DNA分子中一条链来自亲代DNA,另一条链是新合成的。
8复制时,双链DNA要解开成两股链进行,使复制起点呈叉状,被称为复制叉。
9复制子为生物体DNA的复制单位。
10错配 (mismatch):DNA分子上的碱基错配称点突变(point mutation)11缺失:一个碱基或一段核苷酸链从DNA大分子上消失。
12插入:原来没有的一个碱基或一段核苷酸链插入到DNA大分子中间。
13框移突变是指三联体密码的阅读方式改变,造成蛋白质氨基酸排列顺序发生改变。
一、名词解释1.中心法则(Central Dogma):是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。
也可以从DNA传递给DNA,即完成DNA的复制过程。
2.反向重复序列(IR):存在于双链核酸分子中排列顺序方向相反的一段核苷酸序列。
3.DNA链的呼吸作用:配对碱基之间的氢键不但处于断裂和再生的平衡状态中,氢键上的氢原子还能和水发生交换4.Cot曲线(Cot1/2):DNA 复性通常符合Cot 曲线(Cotcurve) 。
Cot 曲线标出了DNA复性的部分(1-C/C0)和横轴上的Cot 值。
5.DNA变性,复性:核酸的变性是指核酸双螺旋区的氢键断裂,变成单链结构的过程。
变性DNA在适当的条件下,两条彼此分开的单链可以重新缔合成为双螺旋结构,这一过程称为复性。
6.DNA的熔解温度(TM):最大吸光值一半时的温度。
7.基因组(Genome):生物细胞中单套染色体的所含DNA序列的全部组成。
8.C-值矛盾:从总体上说,生物基因组的大小同生物在进化上所处地位的高低无关,这种现象称为C值矛盾9.基因家族(gene family):一组功能相似且核苷酸序列具有同源性的基因.可能由某一共同祖先基因(ancestral gene)经重复(duplication)和突变产生。
10.基因簇:基因家族中来源相同、结构相似和功能相关的基因在染色体上彼此紧邻所构成的串联重复单位。
11.割裂基因,Intron 内元,Economic外元:真核生物基因的编码序列是不连续的而是被若干个非编码区(内含子)分割。
12.卫星DNA:真核细胞染色体具有的高度重复核苷酸序列的DNA。
总量可占全部DNA的10%以上,主要存在于染色体的着丝粒区域,通常不被转录。
因其碱基组成中GC 含量少,具有不同的浮力密度,在氯化铯密度梯度离心后呈现与大多数DNA有差别的“卫星”带而得名。
13.半保留复制:DNA复制时以双链中的每一条单链作为模板,分别合成一条互补新链,重新形成的双链中各保留一条原有DNA单链。
生物分子的结构与功能之间的关系生物分子是构成生物体的基本单位,它们的结构和功能密切相关。
在生物学研究中,探究生物分子的结构与功能之间的关系是一项重要的研究领域。
本文将从蛋白质、核酸和碳水化合物三个方面探讨生物分子的结构与功能之间的关系。
蛋白质蛋白质是生物分子中最为重要和复杂的一类。
它们的结构决定了它们的功能。
蛋白质的结构层级分为四个等级:一级结构、二级结构、三级结构和四级结构。
一级结构指的是蛋白质的氨基酸序列,即多肽链的线性结构。
二级结构指的是由氢键、静电相互作用等相邻氨基酸间的结合而形成的局部稳定结构,如α-螺旋和β-折叠。
三级结构指的是多个二级结构通过各种相互作用而形成的整体折叠方式,如酶的酵素活性主要依赖于酶的特定三级结构。
四级结构指的是两个或多个多肽链相互作用形成的唯一蛋白质分子的结构。
蛋白质的功能与其结构密切相关。
由于蛋白质的结构和功能间复杂性,研究其结构和功能之间的关系是长期以来生物学领域的研究热点之一。
以核糖体为例,它由蛋白质和RNA组成。
蛋白质形成核糖体的支架,RNA则为其提供功能元素。
在RNA翻译和核酸合成中,蛋白质起着不可替代的作用。
核酸核酸是重要的生物大分子之一,其结构决定了其功能。
核酸的结构分为DNA和RNA。
DNA分子由核苷酸组成,RNA分子由核苷酸和核糖糖分子组成。
DNA分子的结构为双螺旋结构,两条螺旋互相对旋转,每个螺旋由磷酸基团、脱氧核糖糖和碱基构成。
DNA的功能主要是存储和传递遗传信息。
DNA的遗传信息存储在碱基序列中,这就是遗传密码。
DNA分子在细胞DNA复制过程中起重要作用。
这种复制过程是DNA的双螺旋结构对裂开,形成两个相同的单螺旋DNA分子。
RNA分子的结构为单股分子,每个核糖糖分子、核苷酸和碱基结合成一个游离单体结构,这些结构相互作用形成RNA分子。
RNA合成后在细胞内提供多种功能,包括RNA的翻译和转录,DNA的复制和维护等作用。
碳水化合物碳水化合物是生物体的主要能源来源,是由碳、氢、氧组成的有机分子。
基因表达与蛋白质结构之间的关系在生命科学领域,基因与蛋白质是两个不可分割的概念。
基因是指生物体细胞中储存遗传信息的DNA分子,而蛋白质则是由氨基酸组成的生物分子,具有许多不同的功能。
对基因表达和蛋白质结构之间关系的深入研究,可以帮助我们更好地了解生物的工作机制。
基因表达是指基因信息传递到蛋白质的过程。
这一过程分为两个主要步骤:转录和翻译。
在转录过程中,DNA上的遗传信息被转录成RNA分子,RNA分子则被送到细胞质中进行翻译。
在翻译过程中,RNA分子被翻译为氨基酸序列,而氨基酸序列则被连接起来形成蛋白质。
换句话说,基因的信息被转化为蛋白质的结构。
但是,基因对蛋白质的表达并不是直接的。
由于基因编码的是蛋白质的氨基酸序列,而蛋白质的结构则决定着其功能,因此基因表达和蛋白质结构之间的关系非常重要。
基因编码的氨基酸序列会决定蛋白质的基本结构,但并不是所有氨基酸都具有相同的特性。
由于不同的氨基酸会在蛋白质结构中占据不同的位置,它们的性质会对整个蛋白质的稳定性和功能产生重要影响。
另外,蛋白质结构中还存在许多酶作用位点、配体结合位点等功能区域,这些功能区域则受到基因表达的精确控制。
例如,在转录过程中,RNA聚合酶需要定位到正确的基因序列上,以确保正确的基因信息能够被传递到RNA分子中。
而在翻译过程中,则需要依靠许多转录因子、起始和终止密码子等因素来确保蛋白质能够正确地被合成出来。
有时,基因表达和蛋白质结构之间的关系也会发生一些变化。
例如,在某些情况下,基因表达会被中断或者发生变异,导致蛋白质的结构发生改变,如果这些改变使蛋白质失去了原有的功能或导致其变成一种有害的蛋白质,则可能导致一些严重的疾病,例如癌症、阿尔茨海默病等。
总之,基因表达和蛋白质结构之间的关系是非常复杂而且紧密的。
对于这一关系的深入研究,不仅可以帮助我们更好地了解生物的工作机制,而且可以为疾病的防治提供一定的启示和支持。
1、核酸的增色效应;核酸变性后,增加了A260的光吸收称为增色效应。
变性后DNA溶液的紫外线吸收具有增强的效应,变性DNA的双链解开,碱基中电子的相互作用有利于紫外线吸收,故而产生增色效应。
一般以260nm下的紫外线吸收光度作为此效应的指标,DNA变性后260nm 处的吸收光度通常有明显增加,但不同来源DNA的变化不一。
核酸的减色效应;双螺旋结构和3’,5’-磷酸二酯键的形成都会减弱碱基对紫外光的吸收,这种效应称减色效应DNA复性后,其溶液的A260减小,最多可减小至变性前的A260,这现象称减色效应。
2、核酸的 Tm 值;通常将DNA的变性达到50%时,即增色效应达到一半时的温度称为DNA的解链温度(Tm),Tm也称熔解温度或DNA的熔点。
DNA的Tm值一般在70-85℃之间。
加热可以使DNA变性,DNA热变性是在很狭的温度范围内突发的跃变过程,很像结晶达到熔点时的融化现象,故名熔解温度,用Tm表示。
Tm定义中包含了使被测DNA50%的双螺旋结构遭到破坏,即增色效应达到一半的温度作为Tm的含义,不同来源的DNATm值一般为70~85℃。
3、DNA 双螺旋; DNA分子由两条反向平行的多核苷酸链构成双螺旋结构。
两条链围绕同一个“中心轴”形成右手螺旋,在螺旋中形成大沟和小沟两条反向平行的多聚核苷酸链沿一个假设的中心轴右旋相互盘绕而形成,形成一个大沟和小沟,大沟位于相毗邻的双股之间,而小沟位于双螺旋的互补链之间。
磷酸和脱氧核糖单位作为不变的骨架组成位于外侧,作为可变成分的碱基位于内侧,链间碱基按A-T,G-C配对,碱基对以氢键维系,配对的碱基处于同一个平面上,与螺旋轴垂直。
4、核酸分子杂交;把不同的DNA或RNA链放在同一溶液中作变性处理,然后复性,不同来源的DNA或RNA 单链之间就按碱基配对原则可能形成局部的双链,这一过程称为分子杂交。
根据变性和复性的原理,将不同来源的DNA变性,若这些异源DNA之间在某些区域有相同的序列,则退火条件下能形成DNA-DNA异源双链,或将变性的单链DNA与RNA经复性处理形成DNA-RNA杂合双链,这种过程称为分子杂交5、核小体;真核生物染色质的基本结构单位,是DNA绕组蛋白核心盘旋所形成的串珠结构是染色体形成的基本结构单位,是由组蛋白形成的寡聚蛋白体核心和盘绕在其上的DNA组成6、退火;热变性DNA在缓慢冷却时,可以复性,这种复性成为退火7、核酸变性;核酸双螺旋区的H键断裂,变成单链,没有共价键的断裂。
现代分子生物学简介现代分子生物学是研究生物体分子级别的组成和功能的学科。
它集合了生物学、化学、物理学和计算机科学等多个学科的知识,在20世纪中叶出现并迅猛发展。
现代分子生物学的研究对象包括DNA、RNA、蛋白质等生物分子,其目标是理解生物分子之间的相互作用以及它们在生命过程中的功能。
DNA的结构和功能DNA是分子生物学中最重要的分子之一,它是遗传信息的存储介质。
DNA由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶、鳞氨酸)组成,以双螺旋结构存在。
DNA 的双螺旋结构由两个互补的链组成,其中一个链以5’-3’方向排列,另一个链以3’-5’方向排列。
DNA的结构决定了其功能,包括遗传信息的复制、转录和翻译等。
RNA的结构和功能RNA是DNA的转录产物,也是调控基因表达的重要分子。
与DNA类似,RNA 也由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶、尿嘧啶)组成。
RNA的基本结构包括信使RNA(mRNA)、转运RNA(tRNA)和核糖体RNA(rRNA)等。
mRNA携带着从DNA转录而来的遗传信息,tRNA参与蛋白质合成,rRNA则是组成核糖体的主要成分。
蛋白质的结构和功能蛋白质是分子生物学中最重要的功能性分子,它们参与几乎所有生命过程。
蛋白质的结构分为四个层次:一级结构是氨基酸的线性排列,二级结构是氢键形成的α螺旋和β折叠,三级结构是二级结构的空间排布,四级结构是多个亚基相互结合形成的复合物。
蛋白质的功能包括催化反应、结构支持、信号传导等。
基因调控基因调控是生物体在不同发育阶段和环境条件下合理利用基因资源的重要机制。
分子生物学研究揭示了基因调控的分子机制,其中包括转录因子、启动子、转录因子结合位点等。
这些分子间的相互作用构成了复杂的基因调控网络,决定了基因表达的时空特异性。
基因工程基因工程是通过改变生物体的基因组来创造具有特定性状的生物体的技术。
分子生物学为基因工程提供了理论和方法支持。
其中包括基因克隆、基因转导和基因编辑等技术。
第十章D N A的生物合成(复制)一、A型选择题1.遗传信息传递的中心法则是()A.DNA→RNA→蛋白质 B.RNA→DNA→蛋白质 C.蛋白质→DNA→RNA D.DNA→蛋白质→RNA E.RNA→蛋白质→DNA2.关于DNA的半不连续合成,错误的说法是()A.前导链是连续合成的 B.随从链是不连续合成的C.不连续合成的片段为冈崎片段 D.随从链的合成迟于前导链酶合成E.前导链和随从链合成中均有一半是不连续合成的3.冈崎片段是指()A.DNA模板上的DNA片段 B.引物酶催化合成的RNA片段C.随从链上合成的DNA片段 D.前导链上合成的DNA片段E.由DNA连接酶合成的DNA4.关于DNA复制中DNA聚合酶的错误说法是()A.底物都是dNTP B.必须有DNA模板 C.合成方向是5,→3,D.需要Mg2+参与 E.需要ATP参与5.下列关于大肠杆菌DNA聚合酶的叙述哪一项是正确()A.具有3,→5,核酸外切酶活性 B.不需要引物 C.需要4种NTPD.dUTP是它的一种作用物 E.可以将二个DNA片段连起来6.DNA连接酶()A.使DNA形成超螺旋结构 B.使双螺旋DNA链缺口的两个末端连接C.合成RNA引物D.将双螺旋解链 E.去除引物,填补空缺7.下列关于DNA复制的叙述,哪一项是错误的()A.半保留复制 B.两条子链均连续合成 C.合成方向5,→3,D.以四种dNTP为原料 E.有DNA连接酶参加8.DNA损伤的修复方式中不包括()A.切除修复 B.光修复 C.SOS修复 D.重组修复 E.互补修复9.镰刀状红细胞性贫血其β链有关的突变是()A.断裂B.插入C.缺失 D.交联 E.点突变10.子代DNA分子中新合成的链为5,-ACGTACG-3,,其模板链是()A.3,-ACGTACG-5, B.5,-TGCATGC-3, C.3,-TGCATGC-5,D.5,-UGCAUGC-3, E.3,-UGCAUGC-5,二、填空题1.复制时遗传信息从传递至;翻译时遗传信息从传递至。
分子生物学名词解释1、广义的分子生物学:是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平阐述蛋白质与核酸、蛋白质与蛋白质之间相互作用的关系及基因表达调控机理的学科,是人类从分子水平上真正揭开生物世界的奥秘,即从分子水平阐明生命现象和生物学规律的学科。
2、狭义的分子生物学:人们常采用狭义的概念,将分子生物学的范畴偏重于核酸的分子生物学(核酸的结构、DNA的复制、基因的转录、表达和调控),当然也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。
3、蛋白质组:指的是一个基因组所表达的全部蛋白质。
蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。
4、生物信息学:对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和传输。
5、蛋白质(protein)是由许多氨基酸(amino acids)通过肽键(peptide bond)相连形成的高分子含氮化合物。
蛋白质的化学组成:1、主要元素:C、H、O、N和S,有些蛋白质还含有少量磷和金属元素。
2、特点:各种蛋白质的含氮量很接近,平均含氮量为16%。
3、凯氏定氮法测定蛋白质含量:蛋白质含量=6.25×样品含氮量6、等电点:在某一pH的溶液中,氨基酸上的-NH2和-COOH解离成度完全相等,即氨基酸所带净电荷为零,呈电中性,此时溶液的pH值称为该氨基酸的等电点。
7、结构域( Domain):球状蛋白质的折叠单位。
相邻的超二级结构紧密联系,形成二个或多个空间上明显突出的局部区域。
它与分子整体以共价键相连,不易分离,具有不同的生物学功能。
8、电泳:带电粒子在电场中向着与其本身所带电荷相反的电极移动的过程称为电泳。
9、DNA的呼吸作用:正常情况下,DNA双螺旋结构中的氢键处于不断的断裂和重新形成的平衡状态(特别是稳定性较低的富含A-T的区段,氢键的断裂和再生更加明显),这种现象称为DNA的呼吸作用。
10、DNA的变性:DNA双链间的氢键断裂,空间结构破坏,形成单链无规线团状态的过程叫做DNA的变性,或解链。
分子遗传学的结构和功能解析分子遗传学是以分子水平为研究对象的遗传学分支学科,它研究基因在分子水平上的结构和功能及其与生命活动之间的关系。
分子遗传学通过研究DNA、RNA和蛋白质等分子的结构、功能和相互作用,揭示了生命的遗传机制和调控过程,为生物学的研究和应用奠定了基础。
本文将对分子遗传学的结构和功能进行解析。
一、DNA的结构和功能DNA(deoxyribonucleic acid)是生物体内最基本的遗传物质,是遗传信息的载体。
DNA双螺旋结构是由两条互相垂直的螺旋状链构成的,链由核苷酸组成,每个核苷酸由一个磷酸基、一个五碳糖(脱氧核糖)、和一个带有四种碱基中的一种(腺嘌呤、鸟嘌呤、胸腺嘧啶和鳥嘧啶)的氮素环组成。
其中的碱基是决定一个人或物种的基因遗传信息的单位。
在DNA中,A(腺嘌呤)和T(胸腺嘧啶)之间形成两个氢键,C(鸟嘌呤)和G(鳥嘧啶)之间形成三个氢键。
这些键是DNA的稳定的结构基础。
两条链是相互衔接的,它们是互补的,互补性体现为腺嘌呤和胸腺嘧啶之间的互补,以及鸟嘌呤和鳥嘧啶之间的互补。
这两条链以对数和双螺旋的形式彼此缠绕,因为互补的碱基可以形成特定的配对。
DNA的主要功能是存储和传递遗传信息,即生命的基础。
在细胞分裂的过程中,DNA会被复制并遗传给下一代,这被称为DNA 复制。
在基因表达的过程中,DNA的信息转染入RNA,进而指导蛋白质的合成。
二、RNA的结构和功能RNA(ribonucleic acid)是由核苷酸构成的单链分子,是DNA转录的产物。
RNA与DNA有同样的四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶、尿嘧啶),但在RNA中,胸腺嘧啶被替换为尿嘧啶。
RNA与DNA的双螺旋结构有所不同,RNA通常呈现为单链的“螺旋”型或其他复杂的结构。
RNA的主要功能是在基因表达中传递遗传信息,即对DNA信息的转录和翻译。
其中,mRNA (messenger RNA)是最重要的一种,它的主要功能是将DNA信号转换成蛋白质信号,通过依次“读取”三个碱基的方式,在核糖体内指导多肽链的合成。
DNARNA和蛋白质解释这些分子之间的关系DNA(脱氧核糖核酸)和RNA(核糖核酸)以及蛋白质是生命活动中非常重要的分子。
它们在遗传信息的传递、蛋白质合成以及基因调控等方面扮演着不可或缺的角色。
在本文中,我们将探讨DNARNA 和蛋白质之间的关系。
一、DNA的作用
DNA是一种巨大的分子,由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)的排列组合而成。
DNA主要存在于细胞核中,它承载着遗传信息,决定了细胞的特征和功能。
DNA具有双螺旋结构,其中两条单链通过碱基间的氢键连接在一起。
DNA的重要作用之一是作为模板参与蛋白质的合成。
二、RNA的作用
RNA和DNA在结构上有一些相似之处,都由核苷酸组成。
然而,RNA具有单链结构,而不像DNA那样具有双链结构。
RNA有多种类型,包括信使RNA(mRNA)、转运RNA(tRNA)和核糖体RNA (rRNA)等。
RNA在细胞中具有多种功能,其中最重要的是参与蛋白质的合成过程。
三、蛋白质的合成
蛋白质是由氨基酸组成的。
氨基酸通过形成肽键而连接在一起,形成多肽链,最终折叠成特定的三维结构。
蛋白质合成是一个复杂的过程,涉及到DNA、RNA和各种酶的参与。
具体而言,DNA中的基因
在转录过程中生成mRNA,mRNA携带着从DNA中复制的遗传信息,通过核糖体上的rRNA指导tRNA将特定的氨基酸带入多肽链的生长中。
四、DNARNA与蛋白质的关系
DNARNA和蛋白质之间存在着密切的联系。
DNA是生物体内最重
要的遗传物质,它保存着生物体的全部遗传信息。
而RNA作为DNA
的复制品,在蛋白质合成过程中发挥着关键的作用。
DNA通过转录过
程生成的mRNA携带着从DNA中获得的信息,它通过核糖体上的rRNA与tRNA相互配对,控制了氨基酸的选择和氨基酸的带入,进而
实现蛋白质的合成。
此外,DNARNA还参与到基因调控的过程中。
一些特定的RNA分子,如微小RNA(miRNA)和小干扰RNA(siRNA),可以与mRNA 配对,从而影响mRNA的稳定性和翻译过程,进而影响蛋白质的表达
水平。
综上所述,DNARNA和蛋白质之间存在着密切的关系。
DNA作为
遗传物质,储存着生物体的遗传信息;RNA作为DNA的复制品,在
蛋白质合成过程中扮演着携带信息的角色;而蛋白质则是生物体内功
能分子的重要组成部分。
这三者相互依赖、相互作用,共同构建了生
命的奇妙世界。
本文简要介绍了DNARNA、蛋白质的基本概念和作用,并探讨了
它们之间的紧密联系。
了解这些分子之间的关系有助于我们更好地理
解生命的本质,并为生物学研究提供基础。
通过深入研究DNARNA、
蛋白质等生物分子,我们有望在传染病治疗、遗传疾病研究等领域取得更大的进展。