蛋白质与核酸的异同点
- 格式:docx
- 大小:36.41 KB
- 文档页数:1
简述核酸和蛋白质代谢的相互关系全文共四篇示例,供读者参考第一篇示例:核酸是细胞内的一种重要有机物质,它由核苷酸构成,是构成核酸的基本单元。
核酸分为DNA(脱氧核糖核酸)和RNA(核糖核酸)两种。
核酸在细胞内具有非常重要的功能,它们可以携带遗传信息,参与蛋白质的合成,调控细胞的生长和分化等过程。
蛋白质则是细胞内最重要的有机物质之一,是生命体内各种生物学功能和生命活动不可或缺的组成部分。
蛋白质合成是一个复杂的生物化学过程,需要核酸的介入才能完成。
在细胞内,RNA起着传递DNA信息的作用,RNA通过转录过程将DNA上的遗传信息转换成RNA信息,然后RNA将这些信息传递给细胞内的核蛋白合成机器,进而合成蛋白质。
核酸代谢和蛋白质代谢是密切相关的,两者之间存在着相互关系。
在细胞内,核酸和蛋白质代谢之间的相互关系主要体现在以下几个方面:核酸还可以调控蛋白质的合成。
在细胞内,存在着一些特殊类型的RNA,如miRNA和siRNA等,它们能够通过靶向特定基因的mRNA,抑制或促进这些基因的表达,从而影响蛋白质的合成。
这种核酸介导的蛋白质合成调控,使得核酸和蛋白质代谢之间形成了一种复杂的调控网络。
核酸代谢和蛋白质代谢还存在着其他相互关系。
核酸可以通过调节细胞内mRNA的降解速率,影响蛋白质的合成水平;而蛋白质也可以参与核酸的合成和修复过程。
这些相互关系构成了细胞内核酸和蛋白质代谢的相互调节机制,维持了细胞内生物学功能的正常运行。
第二篇示例:核酸和蛋白质是生物体内两种重要的生物大分子,它们在生物体内的代谢过程中密不可分。
核酸是生物体内的遗传物质,负责信息的传递和储存,而蛋白质则是生物体内的最重要的功能分子,承担着多种生物过程中的功能。
核酸和蛋白质之间通过一系列生物化学反应相互转化,相互影响,共同维持着生物体内的代谢平衡和生物功能的正常进行。
核酸的合成过程称为核酸代谢,蛋白质的合成过程称为蛋白质代谢。
核酸和蛋白质的代谢密切相关,二者之间的相互关系主要体现在以下几个方面:核酸和蛋白质的合成过程相互依赖。
蛋白质的功能、核酸的结构和功能【课标要求】蛋白质的功能、核酸的结构和功能。
【考向瞭望】蛋白质的功能;联系社会热点考查各种化合物对生物体的重要意义。
【知识梳理】一、蛋白质的功能一切生命活动都离不开蛋白质,蛋白质是。
(一)结构蛋白:是构成的重要物质,如等的成分。
(二)作用:绝大多数酶的本质是蛋白质。
(三)运输作用:具有的功能,如能运输氧。
(四)作用:调节机体的,如胰岛素等激素。
(五)功能:如人体内的抗体。
二、蛋白质的结构和功能及其多样性(一)蛋白质的分子结构脱水缩合盘曲折叠1、形成:氨基酸多肽(肽链)蛋白质。
2、蛋白质与多肽的关系:每个蛋白质分子可以由1条多肽链组成,也可由几条肽链通过一定的化学键(肯定不是肽键)连接而成。
但多肽只有折叠成特定的空间结构进而构成蛋白质时,才能执行特定的生理功能。
(二)蛋白质的多样性1、蛋白质结构的多样性(1)氨基酸的不同,构成的肽链不同。
(2)氨基酸的不同,构成的肽链不同。
(3)氨基酸的不同,构成的肽链不同。
(4)肽链的数目和空间结构不同,构成的蛋白质不同。
两个蛋白质分子结构不同,则这两个蛋白质不是同种蛋白质。
但并不是以上这四点同时具备才能确定两个蛋白质分子结构不同,而是只要具备以上其中的一点,这两个蛋白质的分子结构就不同。
2、蛋白质功能的多样性蛋白质的多样性决定了蛋白质的多样性。
蛋白质据功能分为蛋白和蛋白两大类,前者如人和动物的肌肉。
后者如具有催化作用的绝大多数酶,具有免疫功能的抗体等。
【思考感悟】许多蛋白质分子中含有—S—S—,它是如何形成的?。
三、核酸的结构和功能(一)基本组成单位:,其分子组成为。
(二)核酸的种类及比较(见右表)Array(三)核酸的功能:细胞内携带遗传信息的物质,控制蛋白质的生物合成。
(四)核酸的分布1、观察DNA和RNA在细胞中分布实验中,利用两种染色剂,前者使DNA呈现,后者使RNA呈现,从而显示DNA和RNA在细胞中的分布。
2、DNA主要存在于中,另外内也含有少量的DNA;RNA主要分布于中。
第三节蛋白质和核酸一、氨基酸1、氨基酸的分子结构氨基酸是羧酸分子烃基上的氢原子被氨基(—NH2)取代后的产物。
氨基酸的命名是以羧基为母体,氨基为取代基,碳原子的编号通常把离羧基最近的碳原子称为α碳原子,离羧基次近碳原子称为β碳原子,依次类推。
2、氨基酸的物理性质常温下状态:无色晶体;熔、沸点:较高;溶解性:能溶于水,难溶于有机溶剂。
3、氨基酸的化学性质(1)甘氨酸与盐酸反应的化学方程式:;(2)甘氨酸与氢氧化钠反应的化学方程式:氨基酸是两性化合物,基中—COOH为酸性基团,—NH2为碱性基团。
(3)成肽反应两个氨基酸分子(可以相同也可以不同)在酸或碱存在下加热,通过一分子的氨基和另一分子的羧基脱去一分子水,缩合形成含有肽键的化合物,称为成肽反应。
【习题一】下列对氨基酸和蛋白质的描述正确的是()A.氨基酸和蛋白质遇重金属离子均会变性B.蛋白质水解的最终产物是氨基酸C.α-氨基丙酸与α-氨基苯丙酸混合物脱水成肽,只生成2种二肽D.氨基酸溶于过量氢氧化钠溶液中生成的离子,在电场作用下向负极移动【分析】A.重金属盐能使蛋白质发生变性;B.氨基酸是组成蛋白质的基本单位,蛋白质水解的最终产物是氨基酸;α-氨基丙酸与α-氨基苯丙酸混合物脱水成肽,生成4种二肽;D.氨基酸中-COOH和NaOH反应生成羧酸根离子,应该向正极移动。
【解答】解:A.重金属盐能使蛋白质发生变性,但不能使氨基酸发生变性,故A错误;B.氨基酸通过发生水解反应生成蛋白质,所以蛋白质最终水解产物是氨基酸,故B正确;C.氨基酸生成二肽,是两个氨基酸分子脱去一个水分子,当同种氨基酸脱水,生成2种二肽;是异种氨基酸脱水:可以是α-氨基丙酸脱羟基、α-氨基苯丙酸脱氢;也可以α-氨基丙酸脱氢、α-氨基苯丙酸脱羟基,生成2种二肽。
所以共有4种,故C错误;D.氨基酸中-COOH和NaOH反应生成羧酸根离子,带负电荷,该向正极移动,故D错误;故选:B。
【习题二】下列叙述错误的是()A.氨基酸在一定条件下可发生缩聚反应B.氨基酸具有两性C.天然蛋白蛋水解的最终产物均为α-氨基酸D.饱和Na2SO4、CuSO4溶液均可用于蛋白质的盐析【分析】A.氨基酸在一定条件下可发生缩聚反应形成多肽;B.氨基酸中有氨基和羧基,氨基能与酸反应,羧基能与碱反应;C.天然蛋白质是α-氨基酸形成的;D.硫酸铜是重金属盐.【解答】解:A.氨基酸可发生缩聚反应形成多肽,故A正确;B.氨基酸分子中有氨基(-NH2)和羧基(-COOH),既能够和与酸反应,又能与碱反应,故B正确;C.天然蛋白质水解的最终产物是α-氨基酸,故C正确;D.硫酸铜是重金属盐,蛋白质遇硫酸铜发生变性,故D错误。
1998一、说明下列酶的作用(25分)1、线粒体氨甲酰磷酸合成酶2、烯脂酰ACP还原酶3、△3-顺-△2-反-烯脂酰COA异构酶4、肉毒碱脂酰COA转移酶5、异柠檬酸裂解酶6、分支酶7、磷酸烯醇式丙酮酸羧激酶8、 DNA旋转酶9、焦磷酸酶10、细胞色素氧化酶二、列举甲硫氨酸在代谢中的作用。
甲硫氨酸的生物合成与哪种维生素有关?写出S-酰苷甲硫氨酸的结构。
(9分)三、胰凝乳蛋白酶原是由245个氨基酸残基组成的单链蛋白,该蛋白的基因长度是多少NM?合成该酶蛋白需消耗多少高能磷酸键? 6分四、某分子量为24.000,PI为5.5的酶被一种分子量类似但PI为7.0的蛋白质和另为一种分子量为1000.000,PI为5.4的蛋白质污染,提出该纯化酶的方案。
若纯化后,测总蛋白含量为18mg,从中取出相当于0.1mg蛋白的酶量,10分钟内,可催化50μmol底物反应,该酶的比活力是多少?已知该酶对底物A的Km=5×10-6,对底物B的Km=5×10-3,,该酶与哪些底物的亲和力大?当加入非竞争性抑制剂时,Km及V max将如何变化?(10分)1999一、名词解释1. 反转录酶2. εdman降解3. 右手3,5,3-螺旋4. 人体必需氨基酸5. 酮体二写出下列物质结构式(20分)1.纤维二糖2.ADPE3.磷脂酰胆碱(卵磷脂)4.C16:1△9,trans三、填空1..参与脂肪酸氧化分解的维生素是____________、____________、____________。
2.非竞争抑制剂是酶Vmax____________、而使Km____________。
3.软脂酸合成时酰基的载体是________________________。
4.NADPH + H+来自____________途径,其主要功能是________________________。
5.生物体内参与甲基化反应,甲基的直接供体是________________________。
2024年高考生物复习易错点解析—蛋白质和核酸的三个理解误区易错陷阱1:蛋白质变性和盐析本质相同。
【分析】高温使蛋白质变性的原因不是高温破坏了氨基酸之间的肽键,而是高温使肽链盘曲折登形成的空间结构发生不可逆变化。
低温和盐析未使蛋白质分子的空间结构发生不可逆变。
易错陷阱2:DNA分子和蛋白质分子在高温下空间结构都会出现不可逆的变化。
【分析】DNA分子和蛋白质分子对高温的耐受性不同,DNA分子对高温的耐受性通常比蛋白质分子高。
易错陷阱3:蛋白质的水解就是氧化分解。
【分析】蛋白质初步水解的产物是:多肽,彻底水解的产物是:氨基酸,氧化分解的产物是:二氧化碳、水和尿素。
【易错点提醒一】变性≠盐析【例1】某兴趣小组采用两种途径处理鸡蛋清溶液,过程如图所示。
有关叙述正确的是()A.①③处理后溶液中含有氨基酸B.②过程可能破坏了蛋白质的空间结构C.高温后蛋白质容易被蛋白酶水解,吃熟鸡蛋容易消化D.④过程若加入取自动物消化道中的物质,会破坏蛋白质的空间结构但不影响肽键【答案】BC【解析】蛋白质经盐析处理后再溶解还是蛋白质,A错误;②过程可能破坏了蛋白质的空间结构,B正确;高温后蛋白质分子的空间结构变得伸展、松散,更易被蛋白酶水解,吃熟鸡蛋容易消化,C正确;④过程蛋白质被消化液中的蛋白酶催化水解,会破坏蛋白质的空间结构和肽键,D错误;【变式1-1】(2023·海南·高考真题)科学家将编码天然蜘蛛丝蛋白的基因导入家蚕,使其表达出一种特殊的复合纤维蛋白,该复合纤维蛋白的韧性优于天然蚕丝蛋白。
下列有关该复合纤维蛋白的叙述,正确的是()A.该蛋白的基本组成单位与天然蜘蛛丝蛋白的不同B.该蛋白的肽链由氨基酸通过肽键连接而成C.该蛋白彻底水解的产物可与双缩脲试剂发生作用,产生紫色反应D.高温可改变该蛋白的化学组成,从而改变其韧性【答案】B【解析】该蛋白的基本组成单位是氨基酸,与天然蜘蛛丝蛋白的基本单位相同,A 错误;氨基酸是组成蛋白质的基本单位,该蛋白的肽链由氨基酸经过脱水缩合反应通过肽键连接而成,B正确;该蛋白彻底水解的产物为氨基酸,不能与双缩脲试剂发生作用产生紫色反应,C错误;高温可改变该蛋白的空间结构,从而改变其韧性,但不会改变其化学组成,D错误。
专题03 蛋白质与核酸【高频考点解读】1.近三年高考中,蛋白质的结构和功能、蛋白质的鉴定、核酸是高考命题的热点。
在理综高考中蛋白质的结构和功能常与代谢、调节、遗传等知识进行综合考查。
2.对本讲的复习可从以下角度展开:(1)按照网络图中的元素→氨基酸→多肽→结构→功能的层次依次掌握各部分知识。
(2)联系翻译过程和分泌蛋白的加工理解氨基酸的脱水缩合和蛋白质的空间结构。
(3)通过示意图和模型理解蛋白质结构的多样性,通过调节、免疫、催化、运输等具体实例理解蛋白质功能的多样性。
(4)由蛋白质的多样性联系基因多样性、物种多样性和生态系统多样性。
(5)生物多样性与核酸分子多样性的关系;【热点题型】题型一考查蛋白质例1、如图是一种化合物的结构示意图,请根据图解回答下面的问题:(1)该化合物的具体名称是________,组成该化合物的基本结构单位是________,其结构特点是_________________________。
(2)该化合物的基本连接键是________,是由一个________与另一个________缩去一分子________形成的。
(3)如果该化合物的相对分子质量是a,则组成该化合物的基本单位的平均相对分子质量是________,若R1、R2、R3既可以相同也可以不同,理论上生物体可以形成________种上图所示化合物。
解析:(1)该化合物含两个肽键,由三个氨基酸脱水缩合而成,所以为三肽;多肽的基本结构单位为氨基酸,组成蛋白质的氨基酸的结构特点为至少含有一个氨基和一个羧基,并且连在同一个碳原子上。
(2)氨基酸脱水缩合形成的化学键为肽键,是由一个氨基酸分子的氨基提供一个—H ,另一个氨基酸分子的羧基提供一个—OH ,脱去一分子水形成的。
(3)设氨基酸的相对分子质量为x ,那么a =3x -2×18,则x =(a +36)/3;组成蛋白质的氨基酸共有20种,它们组成三肽化合物的可能性为20×20×20=203种。
化学蛋白质和核酸知识点蛋白质是组成人体一切细胞、组织的重要成分。
核酸是由许多核苷酸聚合成的生物大分子化合物,为生命的最基本物质之一。
接下来店铺为你整理了化学蛋白质和核酸知识点,一起来看看吧。
化学蛋白质和核酸知识点(一)氨基酸的结构与性质羧酸分子中烃基上的氢原子被氨基(-NH2)取代后的生成物称为氨基酸;分子结构中同时存在羧基(-COOH)和氨基(-NH2)两个官能团,既具有氨基又具有羧基的性质。
说明:1、氨基酸的命名有习惯命名和系统命名法两种。
习惯命名法如常见的氨基酸的命名,如:甘氨酸、丙氨酸、苯丙氨酸、谷氨酸等;而系统命名法则是以酸为母体,氨基为取代基,碳原子的编号通常把离羧基最近的碳原子称为α-碳原子,次近的碳原子称为β-碳原子,依次类推。
如:甘氨酸又名α-氨基乙酸,丙氨酸又名α-氨基丙酸,苯丙氨酸又名α-氨基β-苯基丙酸,谷氨酸又名α-氨基戊二酸等。
2、某些氨基酸可与某种硝基化合物互为同分异构体,如:甘氨酸与硝基乙烷等。
3、氨基酸结构中同时存在羧基(-COOH)和氨基(-NH2),氨基具有碱性,而羧基具有酸性,因此氨基酸既具有酸性又具有碱性,是一种两性化合物,在与酸或碱作用下均可生成盐。
氨基酸在强碱性溶液中显酸性,以阴离子的形式存在,而在强酸性溶液中则以阳离子形式存在,在溶液的pH合适时,则以两性的形式存在。
如:4、氨基酸结构中存在羧基(-COOH)在一定条件下可与醇作用生成酯。
5、氨基酸结构中羧基(-COOH)和氨基(-NH2)可以脱去水分子,经缩合而成的产物称为肽,其中-CO-NH-结构称为肽键,二个分子氨基酸脱水形成二肽;三个分子氨基酸脱水形成三肽;而多个分子氨基酸脱水则生成多肽。
如:发生脱水反应时,酸脱羟基氨基脱氢多个分子氨基酸脱水生成多肽时,可由同一种氨基酸脱水,也可由不同种氨基酸脱水生成多肽。
6、α-氨基酸的制取:蛋白质水解可得到多肽,多肽水解可得到α-氨基酸。
各种天然蛋白质水解的最终产物都是α-氨基酸。
第二章核酸一.填空:1.无论DNA还是RNA都是由许许多多()通过()连接而成的。
2.()是RNA中才有的含氮碱基。
3.()是DNA中才有的含氮碱基。
4.核酸的结构单位是()。
5.tRNA上的()可以识别mRNA上的密码子。
6. ( )是分子量最小的一类RNA。
7. DNA中( )与胞嘧啶以1׃1的比例存在。
8. DNA能形成双螺旋的作用力是( )。
9.1953年( )和( )提出DNA的双螺旋结构模型。
10.双螺旋的每一转有( )对核苷酸.每转高度为( )nm.。
11.tRNA的3′一端都含有( )三个核苷酸具有()作用。
12.在左旋DNA中主链呈Z字形左向盘绕.直径约为()埃.螺距()埃。
螺旋的每一转含()个碱基对.整个分子比较细而伸。
.13.Tm值常用于DNA的碱基组成分析.在标准条件下(pH7.0 0.165M ⁄L ΝаCl中)(G-C)%=( )。
14.核酸分子中含有( )和( )所以对波长( )有强烈吸收。
15.一般来说,DNA分子G-C含量高,分子较稳定,同时比重( ),熔解温度( )。
16.DNA变性后,刚性( )粘度( )紫外吸收值( )。
17.核酸研究中,地衣酚(3,5-二羟基甲苯)法常用来测定( ),二苯胺法常用来测定( )。
18.核酸中参与氢键形成的重要官能团如嘌呤上的( )基( )基及氧原子,嘧啶碱上的( )基及氧原子。
19.四种核苷酸在DNA链中排列的可能方式数目极大,例如由100个核苷酸组成的短链就有( )种不同的排列方式。
二.是非题:1.核酸的基本组成成分是碱基、戊糖和磷酸。
2.DNA只存在于细胞核的染色体中。
3.DNA是遗传信息的载体。
4.mRNA是转运核糖核酸.tRNA是信使核糖核酸。
5.细胞内RNA含量最大的是rRNA。
6.核苷中碱基和糖的连接一般是C-C连接的糖苷键。
7.核苷是指碱基与戊糖通过糖苷键连接而成的化合物。
8.嘌呤环的第9位氮原子或嘧啶环的第3位氮原子与戊糖第1位碳原子连接形成的化学键称糖苷键。
蛋白质与核酸的定性与定量一、实验目的1、学习和掌握纯化蛋白质的原理和方法、蛋白质等电点的测量原理和方法。
2、进一步掌握使用双缩脲法对蛋白质的定性测定、利用定糖法对核酸的定性与定量测定二、实验原理1、蛋白质的定性测定:双缩脲法,课本P992、蛋白质的定量测定:Folin-酚法,实验P193、核酸的定性与定量测定:定糖法,课本P131、4、蛋白质等电点的测量在IEF的电泳中,具有pH梯度的介质其分布是从阳极到阴极,pH值逐渐增大。
如前所述,蛋白质分子具有两性解离及等电点的特征,这样在碱性区域蛋白质分子带负电荷向阳极移动,直至某一pH位点时失去电荷而停止移动,此处介质的pH恰好等于聚焦蛋白质分子的等电点(pl)。
同理,位于酸性区域的蛋白质分子带正电荷向阴极移动,直到它们的等电点上聚焦为止。
可见在该方法中,等电点是蛋白质组分的特性量度,将等电点不同的蛋白质混合物加入有pH梯度的凝胶介质中,在电场内经过一定时间后,各组分将分别聚焦在各自等电点相应的pH位置上,形成分离的蛋白质区带pH梯度的组成pH梯度的组成方式有二种,一种是人工pH梯度,由于其不稳定,重复性差,现已不再使用。
另一种是天然pH梯度。
天然pH梯度的建立是在水平板或电泳管正负极间引入等电点彼此接近的一系列两性电解质的混合物,在正极端吸入酸液,如硫酸、磷酸或醋酸等,在负极端引入碱液,如氢氧化钠、氨水等。
电泳开始前两性电解质的混合物pH为一均值,即各段介质中的pH 相等,用pH0表示。
电泳开始后,混合物中pH最低的分子,带负电荷最多,pI1为其等电点,向正极移动速度最快,当移动到正极附近的酸液界面时,pH突然下降,甚至接近或稍低于PI1,这一分子不再向前移动而停留在此区域内。
由于两性电解质具有一定的缓冲能力,使其周围一定的区域内介质的pH保持在它的等电点范围。
pH稍高的第二种两性电解质,其等电点为pI2,也移向正极,由于pI2>pI1,因此定位于第一种两性电解质之后,这样,经过一定时间后,具有不同等电点的两性电解质按各自的等电点依次排列,形成了从正极到负极等电点递增,由低到高的线性pH梯度。
蛋白质与核酸的异同点
蛋白质和核酸是生命体内两种重要的生物大分子。
它们在结构、
功能、组成和作用等方面各有不同。
1.结构异同点:蛋白质是由氨基酸通过肽键连接而成的长链,三
级结构多种多样;核酸则是由核苷酸经过磷酸二酯键连接而成的长链,具有双螺旋结构。
2.功能异同点:蛋白质是细胞内的重要功能分子,具有运输物质、催化反应、结构支持等多种功能;核酸则是存储和传递遗传信息的分子,主要负责生命遗传信息的传递和转录。
3.组成异同点:蛋白质的氨基酸种类较少,共有20种;核酸则
包括腺嘌呤、鸟嘌呤、胸腺嘧啶、尿嘧啶等四种碱基。
总之,蛋白质和核酸在生命体内起着不同的作用,其结构、功能
和组成等方面也有很多不同之处。