第七章 信源与信源编码
- 格式:pdf
- 大小:2.84 MB
- 文档页数:94
信源编码与信道编码⼀.信源编码和信道编码的发展历程信源编码:最原始的信院编码就是莫尔斯电码,另外还有ASCII码和电报码都是信源编码。
但现代通信应⽤中常见的信源编码⽅式有:Huffman编码、算术编码、L-Z编码,这三种都是⽆损编码,另外还有⼀些有损的编码⽅式。
信源编码的⽬标就是使信源减少冗余,更加有效、经济地传输,最常见的应⽤形式就是压缩。
相对地,信道编码是为了对抗信道中的噪⾳和衰减,通过增加冗余,如校验码等,来提⾼抗⼲扰能⼒以及纠错能⼒。
信道编码:1948年Shannon极限理论→1950年Hamming码→1955年Elias卷积码→1960年 BCH码、RS码、PGZ译码算法→1962年Gallager LDPC(Low Density Parity Check,低密度奇偶校验)码→1965年B-M译码算法→1967年RRNS码、Viterbi算法→1972年Chase⽒译码算法→1974年Bahl MAP算法→1977年IMaiBCM分组编码调制→1978年Wolf 格状分组码→1986年Padovani恒包络相位/频率编码调制→1987年Ungerboeck TCM格状编码调制、SiMonMTCM多重格状编码调制、WeiL.F.多维星座TCM→1989年Hagenauer SOVA算法→1990年Koch Max-Lg-MAP算法→1993年Berrou Turbo码→1994年Pyndiah 乘积码准最佳译码→1995年 Robertson Log-MAP算法→1996年 Hagenauer TurboBCH码→1996MACKay-Neal重新发掘出LDPC码→1997年 Nick Turbo Hamming码→1998年Tarokh 空-时卷格状码、AlaMouti空-时分组码→1999年删除型Turbo码虽然经过这些创新努⼒,已很接近Shannon极限,例如1997年Nickle的TurboHamming码对⾼斯信道传输时已与Shannon极限仅有0.27dB相差,但⼈们依然不会满意,因为时延、装备复杂性与可⾏性都是实际应⽤的严峻要求,⽽如果不考虑时延因素及复杂性本来就没有意义,因为50多年前的Shannon理论本⾝就已预⽰以接近⽆限的时延总容易找到⼀些⽅法逼近Shannon 极限。
第7章 模拟信号的数字传输7.1 学习指导 7.1.1 要点本章的要点主要有抽样定理;自然抽样和平顶抽样;均匀量化和非均匀量化;PCM 原理,A 律13折线编码,译码;ΔM 原理,不过载条件;PCM ,ΔM 系统的抗噪声性能;PCM 与ΔM 的比较;时分复用和多路数字电话系统原理;1. 概述为了使模拟信号实现数字化传输,首先要通过信源编码使模拟信号转换为数字信号,或称为“模/数转换”即A/D 转换。
模/数转换的方法采用得最早而且应用较广泛的是脉冲编码调制(PCM),PCM 通信系统原理图如图7-1所示。
图7-1 PCM 通信系统原理图抽样量化器编码器模拟信号PCM 信号译码器低通滤波器模拟信号数字通信系统PCM 信号由图7-1可见,PCM 系统由以下三部分组成。
(1) 模/数转换(A/D 转换)模/数转换包括三个步骤:抽样(Sampling)、量化(Quantization)和编码(Coding)。
a. 抽样是把在时间上连续的模拟信号转换成时间上离散的抽样信号,抽样信号在时间上是离散的,但是其取值仍然是连续的,所以是离散模拟信号。
b. 量化。
量化是把幅度上连续的抽样信号转换成幅度离散的量化信号,故量化信号已经是数字信号了,它可以看成是多进制的数字脉冲信号。
c. 是编码。
编码是把时间离散且幅度离散的量化信号用一个二进制码组表示。
(2) 数字方式传输——基带传输或带通传输;(3) 数/模转换(D/A )——将数字信号还原为模拟信号。
包含了译码器和低通滤波器两部分。
2.抽样定理为模拟信号的数字化和时分多路复用(TDM )奠定了理论基础。
根据抽样的脉冲序列是冲激序列还是非冲激序列,抽样可以分为理想抽样和实际抽样。
抽样是按照一定的抽样速率,把时间上连续的模拟信号变成一系列时间上离散的抽样值的过程。
能否由此样值序列重建源信号,取决于抽样速率大小,而描述这一抽样速率条件的定理就是著名的抽样定理。
(1) 低通信号的抽样定理定理:设有一个频带限制在(0,f H )内的连续模拟信号m (t ),若以T s ≤1/(2f H )间隔对它抽样,则m (t )将被这些抽样值所完全确定。
信源编码概述信源编码是信息论的一个重要概念,用于将源信号转换成一系列编码的比特流。
在通信系统中,信源编码被广泛用于提高信息的传输效率和可靠性。
本文将介绍信源编码的基本概念、常见的信源编码方法和应用。
基本概念信源在通信系统中,信源是指产生信息的原始源头。
信源可以是任何可以生成离散或连续信号的设备或系统,比如人的语音、文本、图像等等。
信源编码信源编码是指将信源产生的原始信号转换成一系列编码的比特流。
它的主要目的是通过消除冗余、提高信号的压缩率以及提高传输的可靠性。
码字信源编码中的最小单位被称为码字(codeword)。
码字由编码器根据特定规则生成,每个码字可以表示一个或多个原始信号。
码长码长是指每个码字中的比特数。
它决定了编码器产生的每个码字传输所需的比特数,码长越短,传输效率就越高。
码率码率是指信源编码中每秒传输的码字数量。
它可以用比特/秒(bps)来表示,码率越高表示每秒传输的信息量越大。
常见的信源编码方法均匀编码均匀编码是一种简单的信源编码方法,它将每个原始信源符号映射到固定长度的码字上。
均匀编码适用于信源符号概率分布均匀的情况,例如二进制信源。
霍夫曼编码霍夫曼编码是一种基于信源符号概率分布的编码方法。
它通过将频率较高的信源符号映射到较短的码字,频率较低的信源符号映射到较长的码字来实现压缩。
高斯混合模型编码高斯混合模型编码是一种适用于连续信源的编码方法。
它假设源信号是由多个高斯分布组成的,通过对这些高斯分布进行建模来实现有效的压缩。
游程编码游程编码是一种用于压缩离散信号的编码方法,它基于信源连续出现相同符号的特性。
游程编码将连续出现的相同符号替换为一个计数符号和一个重复符号,从而实现压缩。
信源编码的应用数据压缩信源编码在数据压缩中起着关键作用。
通过使用有效的信源编码方法,可以大大减少传输数据的比特数,从而提高数据传输的效率和速率。
影音编码在数字媒体领域,信源编码常用于音频和视频的压缩。
通过采用适当的信源编码方法,可以减小音频和视频文件的大小,从而节省存储空间和传输带宽。
数字通信中的信源编码和信道编码摘要:如今社会已经步入信息时代,在各种信息技术中,信息的传输及通信起着支撑作用.而对于信息的传输,数字通信已经成为重要的手段。
本论文根据当今现代通信技术的发展,对信源编码和信道编码进行了概述性的介绍。
关键词:数字通信;通信系统;信源编码;信道编码Abstract:Now it is an information society。
In the all of information technologies,transmission and communication of information take an important effect。
For the transmission of information,Digital communication has been an important means。
In this thesis we will present an overview of source coding and channel coding depending on the development of today’s communica tion technologies.Key Words:digital communication; communication system; source coding; channel coding1.前言通常所谓的“编码”包括信源编码和信道编码。
编码是数字通信的必要手段。
使用数字信号进行传输有许多优点, 如不易受噪声干扰,容易进行各种复杂处理,便于存贮,易集成化等。
编码的目的就是为了优化通信系统.一般通信系统的性能指标主要是有效性和可靠性.所谓优化,就是使这些指标达到最佳。
除了经济性外,这些指标正是信息论研究的对象.按照不同的编码目的,编码可主要分为信源编码和信道编码。
在本文中对此做一个简单的介绍.2.数字通信系统通信的任务是由一整套技术设备和传输媒介所构成的总体—-通信系统来完成的.电子通信根据信道上传输信号的种类可分为模拟通信和数字通信.最简单的数字通信系统模型由信源、信道和信宿三个基本部分组成.实际的数字通信系统模型要比简单的数字通信系统模型复杂得多。
信息论与编码课程大作业
一、信源与信源编码
1、若信源包含N 个符号,在什么情况下熵最大?(10分)
最大的熵值是多少?(10分)
2、简述信源编码的两个作用。
(10分)
3、已知离散无记忆信源中各符号的概率空间为
X = 符号u1 u2 u3 u4
概率:1/2 1/4 1/8 1/8
(1)求信源的熵(10分);
(2)对其进行哈夫曼编码(要求码方差较小),写出过程(10分);
(3)求出平均码长和编码效率(10分)。
4、举出学过的无失真与限失真编码方法,各1种。
(10分)
并选择一种,阐述其在实际中的应用(不少于200字)。
(10分)
5、编程题(20分)
二、信道与信道编码
1、 对称信道容量公式?(10分)
在信源如何分布时达到信道容量?(10分)
2、信道编码的基本原理是什么?(10分)
3、对一个(4,2)码,其生成矩阵为
(1)写出伴随式译码表(10分);
(2)接收序列R=1100,估算发码(10分);
(3)判断码的检错能力(10分)。
4、举出两种常用的纠错码,(10分)
并选择一种,阐述其在实际中的应用(不少于200字)。
(10分)
5、编程题(20分)
说明:(1)按学号排列前30名同学完成信源与信源编码方面的作业,其余同学
完成信道与信道编码方面的作业。
(2)第5题编程题另付题目与具体要求,可在20道编程题中任选一道;
自己编写课程相关的其他程序也可以。
(3)第4题和第5题,任意两个同学不能雷同,否则均不能通过。
10010111G ⎡⎤=⎢⎥⎣⎦。
北邮通信原理复习重点提示作者:雪山灰虎时间:2010-2-24说明:本文是根据我自己的考研经验,以及近两年来讲授北邮通信原理辅导班的经历所写,旨在为大家复习通信原理提供一些参考,这样在复习中更容易做到有的放矢,提高复习的效率。
无论是801还是803都有通信原理的考试大纲,但是实际上考试大纲的参考价值并不大,其主要原因在于考试大纲所给出的内容太过简单,这样使得很多内容都模糊,令考生无法把握复习的度。
本文将在考试大纲的基础上进行更详细的说明。
考虑到801和803中通信原理的部分基本相同,下面的介绍同时适合801和803。
以下对北邮通信原理的内容进行标记,标记中重要程度顺序为:了解,识记,理解,掌握。
了解就是看看就行,能记下一些就记一些。
对于识记,就是知道有这么回事,遇到填空要会,能记住结论,实在记不下也没事,没有必要详细推导其中的原理。
理解就是要求能弄懂知识点的来龙去脉,能独立推导出结论。
掌握其实也是理解,只是更深入的理解,不但能理解书上所提到的知识本身,还应该能将基本原理灵活运行,遇到与之类似的问题也能解决。
其中标有★的内容为最重点内容,几乎是每年必考的,务必掌握。
再次说明:以下所说的不是大纲,是我根据自己的经验所写,仅供参考。
第一章绪论介绍通信的发展历史和一些相关的技术,考纲没有要求,肯定不考。
也没有什么可以考,不过可以在复习累了的时候当小说看,消遣嘛!第二章确定信号分析这一章系统介绍了通信的基础知识,包括傅立叶变换,相关,卷积,希尔伯特变换,能量信号与功率信号,解析信号,频带信号,这些都是非常重要的,而且是全书中比较难的地方,花的时间可能会比较多。
如果这章很熟练了,看起后面的章节来会比较容易2.2 确定信号的分类了解2.3 周期信号的傅利叶级数分析识记结论2.4 傅利叶变换理解变换的原理,并能运用2.5 单位冲激函数的傅利叶变换识记结论,掌握变换的方法2.6 功率信号的傅利叶变换识记结论2.7 能量谱密度和功率谱密度理解定义,并能运用2.8 确定信号的相关函数理解定义的含义2.9 卷积理解定义,掌握计算方法2.10 确定信号通过线性系统了解基本过程2.11 希尔伯特变换掌握所有相关知识2.12 解析信号掌握所有相关知识,并能运用★ 2.13 频带信号与带通系统掌握相关原理★第三章随机过程这章基本是数学,就是讲随机过程,因为实际传送的信号不会是确定信号,因此这些基本知识是要会的,而且后面用得很多。
信源编码知识点总结一、引言信源编码是数字通信中的一个重要环节,它的作用是将源符号序列转换为码字序列,以便能够方便地存储、传输和解码。
在实际应用中,不同的信源编码算法有不同的适用领域,可以根据实际情况选择合适的编码算法。
二、基本概念1. 信源:信源是指产生消息的实体,它可以是声音、图像、文本等各种形式的信息。
2. 符号:符号是信源所产生的基本单位,它可以是0/1比特、字母、数字或其它形式的符号。
3. 离散信源和连续信源:离散信源是指符号集合有限的信源,可以通过一定的方式对其信号进行采样和量化;而连续信源是指符号集合是无限的信源,信号无法进行离散化处理。
三、信息熵信息熵是度量信源信息量大小的一种方法,它描述了信息的不确定度。
信息熵越大,表示信息的不确定度越大;而信息熵越小,表示信息的不确定度越小。
信息熵的计算公式为:H(X) = -Σp(x)log2p(x)其中,H(X)表示信源的信息熵,p(x)表示信源符号x出现的概率。
四、香农定理香农定理是描述信源编码极限的理论基础,它指出了信源编码的极限压缩率。
其中,信源编码的极限压缩率为信源的信息熵和编码方法的平均码长之间的关系:R ≥ H(X)其中,R表示平均码长。
五、熵编码熵编码是一种利用符号出现概率来确定码字长度的编码方法。
常见的熵编码方法有霍夫曼编码、算术编码等。
熵编码的特点是能够达到香农定理的极限压缩率,因此在实际应用中有着广泛的应用。
六、字典编码字典编码是一种通过查表来实现编码的方法,它可以根据出现频率的不同来确定码字的长度。
常见的字典编码算法有静态字典编码和动态字典编码。
字典编码的特点是在一定程度上可以实现压缩,但通常达不到熵编码的效率。
七、变长编码变长编码是一种根据符号出现概率来确定码字长度的编码方法。
它的特点是可以根据符号出现概率确定码字长度,从而达到一定的压缩效果。
变长编码方法包括前缀编码、霍夫曼编码等。
八、无损编码和有损编码无损编码是一种通过编码解码过程中不损失信息的编码方法,它对信源进行了完全可逆的编码。