通用版高考数学二轮复习课时跟踪检测六文2
- 格式:doc
- 大小:178.82 KB
- 文档页数:7
安徽2015届高考数学二轮复习 高效课时检测试卷6文1.曲线y =ex 在点A(0,1)处的切线斜率为( ) A .1 B .2 C .e D.1e解析:∵y′=ex ,∴k =e0=1. 答案:A2.已知f(x)=14x2+sin ⎝⎛⎭⎫π2+x ,f′(x)为f(x)的导函数,则f′(x)的图象是( )解析:∵f′(x)=12x -sin x ,∴f′(x)为奇函数,排除B ,D.又当x =-π4时,f′(x)=22-π8=42-π8>0,排除C ,故选A. 答案:A3.(2014年嘉兴二模)已知函数f(x)=1x cos x ,则f(π)+f′⎝⎛⎭⎫π2=( ) A .-3π2B .-1π2C .-3πD .-1π解析:∵f′(x)=-1x2cos x +1x (-sin x),∴f(π)+f′⎝⎛⎭⎫π2=-1π+2π·(-1)=-3π.答案:C4.(2014年惠州二模)设P 为曲线C :y =x2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为( )A.⎣⎡⎦⎤-1,-12B .[-1,0]C .[0,1]D.⎣⎡⎦⎤12,1解析:设P(x0,y0),倾斜角为α,由题意知y′=2x +2,则点P 处的切线斜率k =tan α=2x0+2∈[0,1],解得x0∈⎣⎡⎦⎤-1,-12.答案:A5.曲线f(x)=x -3x 上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,则此定值为( ) A .1 B .3 C .6 D .4解析:设P(x0,y0)为曲线上任一点,由y′=1+3x2知曲线在点P(x0,y0)处的切线方程为y -y0=⎝⎛⎭⎫1+3x20(x -x0),即y -⎝⎛⎭⎫x0-3x0=⎝⎛⎭⎫1+3x20(x -x0).令x =0,得y =-6x0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x0.令y =x ,得y =x =2x0,从而得切线与直线y =x 的交点坐标为(2x0,2x0).所以点P(x0,y0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x0·|2x0|=6.故曲线y =f(x)上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,且此定值为6. 答案:C6.已知f(x)是R 上最小正周期为2的周期函数,且当0≤x <2时,f(x)=x3-x ,则函数y =f(x)的图象在区间[0,6]上与x 轴的交点的个数为( ) A .6 B .7 C .8 D .9解析:当0≤x <2时,令f(x)=x3-x =0,得x =0或x =1. 根据周期函数的性质,由f(x)的最小正周期为2, 可知y =f(x)在[0,6)上有6个零点, 又f(6)=f(3×2)=f(0)=0,所以y =f(x)的图象在[0,6]上与x 轴的交点个数为7. 答案:B7.已知f(x)是偶函数,当x ∈⎣⎡⎦⎤0,π2时,f(x)=xsin x ,若a =f(cos 1),b =f(cos 2),c =f(cos 3),则a ,b ,c 的大小关系为( )A .a <b <cB .b <a <cC .c <b <aD .b <c <a解析:由于函数为偶函数,故b =f(cos 2)=f(-cos 2),c =f(cos 3)=f(-cos 3),由于x ∈⎣⎡⎦⎤0,π2,f′(x)=sin x +xcos x≥0,即函数在区间⎣⎡⎦⎤0,π2上为增函数,据单位圆中三角函数线易得0<-cos2<cos 1<-cos 3<π2,根据函数单调性可得f(-cos 2)<f(cos 1)<f(-cos 3),故选B. 答案:B8.已知a≤1-x x +ln x 对任意x ∈⎣⎡⎦⎤12,2恒成立,则a 的最大值为( )A .0B .1C .2D .3解析:设f(x)=1-xx +ln x , 则f′(x)=-x +x -1x2+1x =x -1x2. 当x ∈⎣⎡⎭⎫12,1时,f′(x)<0,故函数f(x)在⎣⎡⎭⎫12,1上单调递减;当x ∈(1,2]时,f′(x)>0,故函数f(x)在(1,2]上单调递增, ∴f(x)min =f(1)=0,∴a≤0,即a 的最大值为0.答案:A9.函数y =x2-2sin x 的图象大致是( )解析:因为y′=12-2cos x ,所以令y′=12-2cos x >0,得cos x <14,此时原函数是增函数;令y′=12-2cos x <0,得cos x >14,此时原函数是减函数,并且原函数是奇函数,其极值点有无数多个,只有C 满足. 答案:C10.已知定义域为R 的函数f(x)满足:f(4)=-3,且对任意x ∈R 总有f′(x)<3,则不等式f(x)<3x -15的解集为( ) A .(-∞,4) B .(-∞,-4)C .(-∞,-4)∪(4,+∞)D .(4,+∞)解析:令g(x)=f(x)-3x +15,则g′(x)=f′(x)-3<0,所以g(x)在R 上是减函数,又因为g(4)=f(4)-3×4+15=0,所以f(x)<3x -15的解集为(4,+∞). 答案:D11.(2014年开封模拟)设直线x =t 与函数f(x)=x2,g(x)=ln x 的图象分别交于点M ,N ,则当|MN|达到最小时t 的值为________.解析:设y =x2-ln x(x >0),则y′=2x -1x ,令y′=0,得x =22.易知当x =22时y 取得最小值.∴t =22. 答案:2212.(2014年江苏高考)在平面直角坐标系xOy 中,若曲线y =ax2+bx (a ,b 为常数)过点P(2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________. 解析:由曲线y =ax2+b x 过点P(2,-5)可得-5=4a +b 2①.又y′=2ax -bx2,所以在点P 处的切线斜率4a -b 4=-72 ②.由①②解得⎩⎪⎨⎪⎧a =-1,b =-2,所以a +b =-3.答案:-313.若函数f(x)=x3+3x 对任意的m ∈[-2,2],f(mx -2)+f(x)<0恒成立,则x ∈________. 解析:由题意可知f(x)为奇函数,且在定义域内为增函数,∴f(mx -2)+f(x)<0可变形为f(mx-2)<f(-x),∴mx -2<-x ,将其看作关于m 的一次函数g(m)=x·m -2+x ,m ∈[-2,2],可得当m ∈[-2,2]时,g(m)<0恒成立,若x≥0,g(2)<0,若x <0,g(-2)<0,解得-2<x <23. 答案:⎝⎛⎭⎫-2,2314.已知a >0,函数f(x)=x3+ax2+bx +c 在区间[-2,2]上单调递减,则4a +b 的最大值为________.解析:∵f(x)=x3+ax2+bx +c ,∴f′(x)=3x2+2ax +b ,∵函数f(x)在区间[-2,2]上单调递减,∴f′(x)=3x2+2ax +b≤0在[-2,2]上恒成立,∵a >0,∴-2a 2×3=-a3<0,∴f′(x)max =f′(2)≤0,即4a +b≤-12,∴4a +b 的最大值为-12. 答案:-1215.若实数a 、b 、c 、d 满足(b +a2-3ln a)2+(c -d +4)2=0,则(a -c)2+(b -d)2的最小值为________.解析:由题可得b =-a2+3ln a ,d =c +4. 设g(x)=x +x2-3ln x(x >0),则g′(x)=1+2x -3x =2x +3x -1x ,当x ∈(0,1)时,g(x)单调递减,当x ∈(1,+∞)时,g(x)单调递增,故g(x)≥g(1)=2.则(a -c)2+(b -d)2=(c -a)2+(-a2+3ln a -c -4)2≥c -a -a2+3ln a -c -422=a +a2-3ln a +422≥2+422=18. 答案:18。
温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。
关闭Word 文档返回原板块。
高考小题标准练(二)满分75分,实战模拟,40分钟拿下高考客观题满分!一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x ∈Z|2<2x+2≤8},B={x ∈R|x 2-2x>0},则A ∩(R B)所含的元素个数为( )A.0B.1C.2D.3【解题提示】求出A 中不等式的解集,找出解集中的整数解确定出A ,求出B 中不等式的解集,确定出B ,求出B 的补集,找出A 与B 补集的交集,即可确定出元素个数.【解析】选C.由集合A 中的不等式变形得:21<2x+2≤23,得到1<x+2≤3, 解得:-1<x ≤1,且x 为整数,所以A={0,1};由集合B 中的不等式变形得:x(x-2)>0,解得:x>2或x<0,即B=(-∞,0)∪(2,+∞),所以R B=[0,2],所以A ∩(R B)={0,1},即元素有2个.2.设i 是虚数单位,a 为实数,复数z=1+ai i为纯虚数,则z 的共轭复数为( )A.-iB.iC.2iD.-2i 【解析】选B.由于z=1+ai i=(1+ai)i i 2=−a+i −1=a-i ,由于z 为纯虚数,故a=0,所以z=-i , 则z ̅=i.3.甲乙两人在一次赛跑中,从同一地点动身,路程s 与时间t 的函数关系如图所示,则下列说法正确的是( )A.甲比乙先动身B.乙比甲跑的路程多C.甲,乙两人的速度相同D.甲比乙先到达终点【解析】选D.由图形可知甲,乙两人从同一时间动身,且路程相同,甲用的时间短,故甲比乙先到达终点.4.某高校进行自主招生,先从报名者中筛选出400人参与笔试,再按笔试成果择优选出100人参与面试.现随机调查了24名笔试者的成果,如表所示:分数段 [60,65) [65,70) [70,75) [75,80) [80,85) [85,90)人数234951据此估量允许参与面试的分数线大约是( )A.75B.80C.85D.90【解析】选B.由于参与笔试的400人中择优选出100人,故每个人被择优选出的概率P=100400=14,由于随机调查24名笔试者,则估量能够参与面试的人数为24×14=6,观看表格可知,分数在[80,85)有5人,分数在[85,90)的有1人,故面试的分数线大约为80分,故选B.5.已知等比数列{a n}中,a3=2,a4a6=16,则a10−a12a6−a8的值为( )A.2B.4C.8D.16【解题提示】结合已知条件得到q4=4,再利用等比数列的性质即可. 【解析】选B.由于a3=2,a4a6=16,所以a4a6=a32q4=16,即q4=4,则a10−a12 a6−a8=q4(a6−a8)a6−a8=q4=4.6.当m=6,n=3时,执行如图所示的程序框图,输出的S值为( )A.6B.30C.120D.360【解题提示】模拟执行程序框图,依次写出每次循环得到的S,k的值,当k=3时,满足条件k<m-n+1=4,退出循环,输出S的值为120.【解析】选C.模拟执行程序框图,可得m=6,n=3,k=6,S=1,不满足条件k<m-n+1=4,S=6,k=5;不满足条件k<m-n+1=4,S=30,k=4;不满足条件k<m-n+1=4,S=120,k=3;满足条件k<m-n+1=4,退出循环,输出S的值为120. 7.实数x,y满足{x≥1,y≤a,a>1,x−y≤0,若目标函数z=x+y取得最大值4,则实数a的值为( )A.4B.3C.2D.32【解析】选C.画出可行域得直线y=-x+z过(a,a)点时取得最大值,即2a=4,a=2.8.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为( )A.83B.43C.4√3D.2√3【解析】选A.结合三视图,借助正方体想象该棱锥的直观图,如图所示.该棱锥是四棱锥P-ABCD.其底面ABCD为一个底边长为2√2和2的矩形,面积S=4√2,高是P点到底面ABCD的距离,即h=√2,故此棱锥的体积V=13Sh=83.9.设函数f(x)是定义在R上的奇函数,当x>0时,f(x)=e x+x-3,则f(x)的零点个数为( )A.1B.2C.3D.4【解题提示】先由函数f(x)是定义在R上的奇函数确定0是一个零点,再令x>0时的函数f(x)的解析式等于0转化成两个函数,转化为推断两函数交点个数问题,最终依据奇函数的对称性确定答案.【解析】选C.由于函数f(x)是定义域为R的奇函数,所以f(0)=0,所以0是函数f(x)的一个零点.当x>0时,令f(x)=e x+x-3=0,则e x=-x+3,分别画出函数y=e x,和y=-x+3的图象,如图所示,有一个交点,所以函数f(x)在x>0时有一个零点,又依据对称性知,当x<0时函数f(x)也有一个零点.综上所述,f(x)的零点个数为3,故选C.【加固训练】函数f(x)=2x3-6x2+7在(0,2)内零点的个数为( )A.0B. 1C.2D.4 【解析】选B.由于f′(x)=6x2-12x=6x(x-2),由f′(x)>0,得x>2或x<0;由f′(x)<0得0<x<2.所以函数f(x)在(0,2)上是减函数,而f(0)=7>0,f(2)=-1<0,由零点存在定理可知,函数f(x)=2x3-6x2+7在(0,2)内零点的个数为1.10.已知二次函数y=ax2+bx+c(ac≠0)图象的顶点坐标为(−b2a,−14a),与x轴的交点P,Q位于y轴的两侧,以线段PQ为直径的圆与y轴交于F1(0,4)和F2(0,-4),则点(b,c)所在曲线为( )A.圆B.椭圆C.双曲线D.抛物线【解析】选B.结合二次函数的顶点坐标为(−b2a,4ac−b24a),依据题意可得Δ=b 2-4ac=1,①,二次函数图象和x轴的两个交点分别为(−b+12a,0)和(−b−12a,0),利用射影定理即得:-(−b+12a×−b−12a)=16 1-b2=64a2,结合①先求出a和c之间的关系,代入①可得到,(b,c)所在的曲线为b2+c24=1,表示椭圆.二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知a=(1,2),b=(4,2),设a,b的夹角为θ,则cosθ= .【解析】由平面对量的夹角公式得,cosθ==1212√x1+y1·√x2+y2=√5×√20=45.答案:45【加固训练】已知向量a=(1,√3),b=(3,m).若向量b在a方向上的投影为3,则实数m= .【解析】依据投影的定义:|b|·cos<a,b>==3+√3m2=3;解得m=√3. 答案:√312.已知函数f(x)={x 3+1,x ≥0,x 2+2,x <0,若f(x)=1,则x= .【解析】若x ≥0则x 3+1=1,所以x=0,若x<0则x 2+2=1无解,所以x=0.答案:013.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且(b-c)(sin B+ sin C)=(a-√3c)·sinA ,则角B 的大小为 .【解题提示】由正弦定理化简已知等式可得c 2+a 2-b 2=√3ac ,由余弦定理可求 cos B ,结合B 的范围即可得解.【解析】由正弦定理,可得sinB=b2R,sin C=c2R,sinA=a2R, 所以由(b-c)(sin B+sin C)=(a-√3c)·sin A 可得(b- c)(b+c)=a(a-√3c),即有c 2+a 2-b 2=√3ac ,则cos B=a 2+c 2−b 22ac=√32,由于0°<B<180°,则B=30°. 答案:30°14.已知三棱锥S-ABC 的全部顶点都在球O 的球面上,SA ⊥平面ABC ,SA=2√3,AB=1,AC=2,∠BAC=π3,则球O 的表面积为 .【解析】三棱锥S-ABC 的全部顶点都在球O 的球面上,由于SA ⊥平面ABC ,SA=2√3,AB=1,AC=2,∠BAC=60°,所以BC=√1+4−2×1×2×cos60°=√3,所以∠ABC=90°. 所以△ABC 截球O 所得的圆O ′的半径r=12AC=1,所以球O 的半径R=√12+(2√32)2=2,所以球O 的表面积S=4πR 2=16π. 答案:16π15.已知直线y=kx+1与曲线y=x 3+ax+b 相切于点(1,3),则b 的值为 . 【解题提示】由于切点在直线与曲线上,将切点的坐标代入两个方程,得到关于a ,b ,k 的方程,再求出在点(1,3)处的切线的斜率的值,即利用导数求出在x=1处的导函数值,结合导数的几何意义求出切线的斜率,再列出一个等式,最终解方程组即可得,从而问题解决.【解析】由于直线y=kx+1与曲线y=x 3+ax+b 相切于点(1,3), 所以{k +1=3,1+a +b =3,①又由于y=x 3+ax+b ,所以y ′=3x 2+a ,当x=1时,y ′=3+a 得切线的斜率为3+a ,所以k=3+a , ②所以由①②得:b=3. 答案:3关闭Word 文档返回原板块。
[A 组 夯基保分专练]一、选择题1.(2018·惠州第二次调研)设随机变量ξ服从正态分布N (4,3),若P (ξ<a -5)=P (ξ>a +1),则实数a 等于( )A .7B .6C .5D .4解析:选B.由随机变量ξ服从正态分布N (4,3)可得正态分布密度曲线的对称轴为直线x =4,又P (ξ<a -5)=P (ξ>a +1),所以x =a -5与x =a +1关于直线x =4对称,所以a -5+a +1=8,即a =6.故选B.2.(2018·武汉调研)将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球,那么甲盒中恰好有3个小球的概率为( )A.310B.25C.320D.14解析:选C.将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球有C 36种放法,甲盒中恰好有3个小球有C 23种放法,结合古典概型的概率计算公式得所求概率为C 23C 36=320.故选C.3.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点不相同”,事件B =“小赵独自去一个景点”,则P (A |B )=( )A.29B.13C.49D.59解析:选A .小赵独自去一个景点共有4×3×3×3=108种可能性,4个人去的景点不同的可能性有A 44=4×3×2×1=24种,所以P (A |B )=24108=29. 4.用1,2,3,4,5组成无重复数字的五位数,若用a 1,a 2,a 3,a 4,a 5分别表示五位数的万位、千位、百位、十位、个位,则出现a 1<a 2<a 3>a 4>a 5特征的五位数的概率为( )A.110B.120C.124D.310解析:选B .1,2,3,4,5可组成A 55=120个不同的五位数,其中满足题目条件的五位数中,最大的5必须排在中间,左、右各两个数字只要选出,则排列位置就随之而定,满足条件的五位数有C 24C 22=6个,故出现a 1<a 2<a 3>a 4>a 5特征的五位数的概率为6120=120. 5.(2018·高考全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p , 各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX =2.4,P (X =4)<P (X =6),则p =( )A .0.7B .0.6C .0.4D .0.3解析:选B.由题意知,该群体的10位成员使用移动支付的概率分布符合二项分布,所以DX =10p (1-p )=2.4,所以p =0.6或p =0.4.由P (X =4)<P (X =6),得C 410p 4(1-p )6<C 610p 6(1-p )4,即(1-p )2<p 2,所以p >0.5,所以p =0.6.6.(2018·贵阳模拟)点集Ω={(x ,y )|0≤x ≤e ,0≤y ≤e },A ={(x ,y )|y ≥e x ,(x ,y )∈Ω},在点集Ω中任取一个元素a ,则a ∈A 的概率为( )A.1e B.1e 2 C.e -1eD.e 2-1e2解析:选B.如图,根据题意可知Ω表示的平面区域为正方形BCDO ,面积为e 2,A 表示的区域为图中阴影部分,面积为⎠⎛01(e -e x )dx =(e x -e x )|10=(e -e)-(-1)=1,根据几何概型可知a ∈A 的概率P =1e2.故选B.二、填空题7.某人在微信群中发了一个7元的“拼手气”红包,被甲、乙、丙三人抢完,若三人均领到整数元,且每人至少领到1元,则甲领到的钱数不少于乙、丙分别领到的钱数的概率是________.解析:利用隔板法将7元分成3个红包,共有C 26=15种领法.甲领3元不少于乙、丙分别领到的钱数的分法有3元,3元,1元与3元,2元,2元两种情况,共有A 22+1=3种领法;甲领4元不少于乙、丙分别领到的钱数的分法有4元,2元,1元一种情况,共有A 22=2种领法;甲领5元不少于乙、丙分别领到的钱数的分法有5元,1元,1元一种情况,共有1种领法,所以甲领到的钱数不少于乙、丙分别领到的钱数的概率是3+2+115=25.答案:258.(2018·唐山模拟)向圆(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率为________.解析:如图,连接CA ,CB ,依题意,圆心C 到x 轴的距离为3,所以弦AB 的长为2. 又圆的半径为2,所以弓形ADB 的面积为12×23π×2-12×2×3=23π-3,所以向圆(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率P =16-34π.答案:16-34π9.某商场在儿童节举行回馈顾客活动,凡在商场消费满100元者即可参加射击赢玩具活动,具体规则如下:每人最多可射击3次,一旦击中,则可获奖且不再继续射击,否则一直射满3次为止.设甲每次击中的概率为p (p ≠0),射击次数为η,若η的均值E (η)>74,则p的取值范围是________.解析:由已知得P (η=1)=p ,P (η=2)=(1-p )p ,P (η=3)=(1-p )2,则E (η)=p +2(1-p )p +3(1-p )2=p 2-3p +3>74,解得p >52或p <12,又p ∈(0,1),所以p ∈⎝⎛⎭⎫0,12. 答案:⎝⎛⎭⎫0,12 三、解答题10.(2018·贵阳模拟)某高校通过自主招生方式在贵阳招收一名优秀的高三毕业生,经过层层筛选,甲、乙两名学生进入最后测试,该校设计了一个测试方案:甲、乙两名学生各自从6个问题中随机抽3个问题.已知这6个问题中,学生甲能正确回答其中的4个问题,而学生乙能正确回答每个问题的概率均为23,甲、乙两名学生对每个问题的回答都是相互独立、互不影响的.(1)求甲、乙两名学生共答对2个问题的概率;(2)请从期望和方差的角度分析,甲、乙两名学生哪位被录取的可能性更大? 解:(1)由题意可得,所求概率为P =C 14C 22C 36×C 13×23×⎝⎛⎭⎫132+C 24C 12C 36×C 03×⎝⎛⎭⎫230×⎝⎛⎭⎫133=115.(2)设学生甲答对的题数为X ,则X 的所有可能取值为1,2,3.P (X =1)=C 14C 22C 36=15,P (X =2)=C 24C 12C 36=35,P (X =3)=C 34C 02C 36=15,E (X )=1×15+2×35+3×15=2,D (X )=(1-2)2×15+(2-2)2×35+(3-2)×15=25.设学生乙答对的题数为Y ,则Y 的所有可能取值为0,1,2,3. 由题意可知Y ~B ⎝⎛⎭⎫3,23, 所以E (Y )=3×23=2,D (Y )=3×23×13=23.因为E (X )=E (Y ),D (X )<D (Y ) , 所以甲被录取的可能性更大.11.(2018·西安模拟)一个盒子中装有大量形状、大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的质量(单位:克),质量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的质量频率分布直方图(如图).(1)求a 的值,并根据样本的数据,试估计盒子中小球质量的众数与平均值;(2)从盒子中随机抽取3个小球,其中质量在[5,15]内的小球个数为X ,求X 的分布列和数学期望.(以直方图中的频率作为概率)解:(1)由题意,得(0.02+0.032+a +0.018)×10=1,解得a =0.03. 由频率分布直方图可估计盒子中小球质量的众数为20克,而50个样本中小球质量的平均数为x -=0.2×10+0.32×20+0.3×30+0.18×40=24.6(克).故由样本估计总体,可估计盒子中小球质量的平均数为24.6克. (2)该盒子中小球质量在[5,15]内的概率为15,则X ~B ⎝⎛⎭⎫3,15.X 的可能取值为0,1,2,3, P (X =0)=C 03⎝⎛⎭⎫150⎝⎛⎭⎫453=64125,P (X =1)=C 13⎝⎛⎭⎫15×⎝⎛⎭⎫452=48125,P (X =2)=C 23⎝⎛⎭⎫152×45=12125,P (X =3)=C 33⎝⎛⎭⎫153⎝⎛⎭⎫450=1125. 所以X 的分布列为所以E (X )=0×64125+1×48125+2×12125+3×1125=35.⎝⎛⎭⎫或者E (X )=3×15=35. 12.(2018·长春质量监测(二))某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在[100,150),[150,200),[200,250),[250,300),[300,350),[350,400](单位:克)中,经统计得频率分布直方图如图所示.(1)现按分层抽样的方法,从质量为[250,300),[300,350)的芒果中随机抽取9个,再从这9个中随机抽取3个,记随机变量X 表示质量在[300,350)内的芒果个数,求X 的分布列及数学期望;(2)以各组数据的中间数代表这组数据的平均值,将频率视为概率,某经销商来收购芒果,该种植园中还未摘下的芒果大约还有10 000个,经销商提出如下两种收购方案:A :所有芒果以10元/千克收购;B :对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购. 通过计算确定种植园选择哪种方案获利更多?解:(1)9个芒果中,质量在[250,300)和[300,350)内的分别有6个和3个.则X 的可能取值为0,1,2,3.P (X =0)=C 36C 39=2084,P (X =1)=C 26C 13C 39=4584,P (X =2)=C 16C 23C 39=1884,P (X =3)=C 33C 39=184.所以X 的分布列为X 的数学期望E (X )=0×2084+1×4584+2×1884+3×184=1.(2)设选择方案A 可获利y 1元,则y 1=(125×0.002+175×0.002+225×0.003+275×0.008+325×0.004+375×0.001)×50×10 000×10×0.001=25 750.设选择方案B ,从质量低于250克的芒果中获利y 2元,从质量高于或等于250克的芒果中获利y 3元,则y 2=(0.002+0.002+0.003)×50×10 000×2=7 000. y 3=(0.008+0.004+0.001)×50×10 000×3=19 500. y 2+y 3=7 000+19 500=26 500.由于25 750<26 500,故B 方案获利更多,应选B 方案.[B 组 大题增分专练]1.(2018·合肥第一次质量检测)2014年9月,国务院发布了《关于深化考试招生制度改革的实施意见》.某地作为高考改革试点地区,从当年秋季新入学的高一学生开始,高考不再分文理科,语文、数学、英语三科为必考科目,考生从物理、化学、生物、思想政治、历史、地理六个科目中任选三个科目参加高考,其中物理、化学、生物为自然科学科目,思想政治、历史、地理为社会科学科目,假设某位考生选考这六个科目的可能性相等.(1)求这位考生所选考的三个科目中至少有一个自然科学科目的概率;(2)已知该考生选考的三个科目中有一个科目属于社会科学科目,两个科目属于自然科学科目,若该考生所选的社会科学科目考试的成绩获A 等的概率都是45,所选的自然科学科目考试的成绩获A 等的概率都是34,且所选的各个科目的考试成绩相互独立,用随机变量X表示他所选的三个科目中考试成绩获A 等的科目数,求X 的分布列和数学期望.解:(1)记“这位考生选考的三个科目中至少有一个科目是自然科学科目”为事件M , 则P (M )=1-C 33C 36=1-120=1920,所以这位考生选考的三个科目中至少有一个自然科学科目的概率为1920.(2)随机变量X 的所有可能取值为0,1,2,3. 因为P (X =0)=15×⎝⎛⎭⎫142=180,P (X =1)=45×⎝⎛⎭⎫142+15×C 12×14×34=18, P (X =2)=45×C 12×14×34+15×⎝⎛⎭⎫342=3380,P (X =3)=45×⎝⎛⎭⎫342=920,所以X 的分布列为所以E (X )=0×180+1×1080+2×3380+3×3680=2.3.2.(2018·高考全国卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p (0<p <1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f (p ),求f (p )的最大值点p 0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值,已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(ⅰ)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?解:(1)20件产品中恰有2件不合格品的概率为f (p )=C 220p 2(1-p )18.因此f ′(p )=C 220[2p (1-p )18-18p 2(1-p )17]=2C 220p (1-p )17(1-10p ).令f ′(p )=0,得p =0.1.当p ∈(0,0.1)时,f ′(p )>0;当p ∈(0.1,1)时,f ′(p )<0.所以f (p )的最大值点为p 0=0.1. (2)由(1)知,p =0.1.(i)令Y 表示余下的180件产品中的不合格品件数,依题意知Y ~B (180,0.1), X =20×2+25Y ,即X =40+25Y . 所以EX =E (40+25Y )=40+25EY =490.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于EX >400,故应该对余下的产品作检验.3.2017年央视3·15晚会曝光了一些饲料企业瞒天过海地往饲料中非法添加各种“禁药”,包括“人用西药”,让所有人惊出一身冷汗.某地区质量监督部门对该地甲、乙两家畜牧用品生产企业进行了突击抽查,若已知在甲企业抽查了一次,抽中某种动物饲料的概率为34,用数字1表示抽中该动物饲料产品,用数字0来表示没有抽中;在乙企业抽查了两次,每次抽中该动物饲料的概率为23,用数字2表示抽中该动物饲料产品,用数字0来表示没有抽中.该部门每次抽查的结果相互独立.假设该部门完成以上三次抽查.(1)求该部门恰好有一次抽中动物饲料这一产品的概率;(2)设X 表示三次抽查所记的数字之和,求随机变量X 的分布列和数学期望. 解:记“恰好抽中一次动物饲料这一产品”为事件A ,“在甲企业抽中”为事件B ,“在乙企业第一次抽中”为事件C ,“在乙企业第二次抽中”为事件D ,则由题意知P (B )=34,P (C )=P (D )=23.(1)因为A =B C -D -+B -C D -+B -C -D ,所以P (A )=P (B C -D -+B -C D -+B -C -D )=P (B C -D -)+P (B -C D -)+P (B -C -D )=P (B )P (C -)P (D -)+P (B -)P (C )P (D -)+P (B -)P (C -)P (D )=34×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-23+⎝⎛⎭⎫1-34×23×⎝⎛⎭⎫1-23+⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-23×23=736. (2)根据题意,X 的所有可能取值为0,1,2,3,4,5.所以P (X =0)=P (B -C -D -)=[1-P (B )][1-P (C )][1-P (D )]=⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-23=136, P (X =1)=P (B C -D -)=P (B )[1-P (C )][1-P (D )]=34×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-23=112, P (X =2)=P (B -C D -+B -C -D )=P (B CD )+P (B -C -D )=⎝⎛⎭⎫1-34×23×⎝⎛⎭⎫1-23+⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-23×23=19, P (X =3)=P (BC D -+B C -D )=P (BC D -)+P (B C -D )=34×23×⎝⎛⎭⎫1-23+34×⎝⎛⎭⎫1-23×23=13, P (X =4)=P (BCD )=[1-P (B )]P (C )P (D )=⎝⎛⎭⎫1-34×23×23=19, P (X =5)=P (BCD )=P (B )P (C )P (D )=34×23×23=13.故X 的分布列为 所以E (X )=0×136+1×112+2×19+3×13+4×19+5×13=4112.4.交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a 元,在下一年续保时,实行的是费率浮动机制,保费与车辆发生有责任道路交通事故的情况相联系,发生有责任交通事故的次数越多,费率也就越高,具体浮动情况如下表:某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车在下一年续保时的情况,统计得到下面的表格:以这60率,完成下列问题:(1)按照我国《机动车交通事故责任强制保险条例》中汽车交强险价格的规定,a =950.某同学家里有一辆该品牌同型号车且车龄刚满三年,记X 为该车在第四年续保时的费用,求X 的分布列与数学期望;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌同型号的二手车,且将下一年的交强险保费高于基准保费的车辆记为事故车.假设购进并销售一辆事故车亏损5 000元,购进并销售一辆非事故车盈利10 000元.①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值. 解:(1)由题意可知,X 的可能取值为0.9a ,0.8a ,0.7a ,a ,1.1a ,1.3a . 由统计数据可知:P (X =0.9a )=16,P (X =0.8a )=112,P (X =0.7a )=112,P (X =a )=13,P (X =1.1a )=14,P (X=1.3a )=112.所以X 的分布列为 所以E (X )=0.9a ×16+0.8a ×112+0.7a ×112+a ×13+1.1a ×14+1.3a ×112=11.9a 12=11 30512≈942(元).(2)①由统计数据可知,任意一辆该品牌车龄已满三年的二手车为事故车的概率为13,则三辆车中至多有一辆事故车的概率P =⎝⎛⎭⎫1-133+C 1313⎝⎛⎭⎫232=2027. ②设Y 为该销售商购进并销售一辆二手车的利润,Y 的可能取值为-5 000,10 000.11 所以Y 的分布列为所以E (Y )=-5 000×13+10 000×23=5 000(元). 故该销售商一次购进并销售100辆(车龄已满三年)该品牌的二手车获得利润的期望值为100×E (Y )=50(万元).。
课时跟踪检测(一)集合、常用逻辑用语1.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( ) A.{1,-3} B.{1,0}C.{1,3} D.{1,5}解析:选C 因为A∩B={1},所以1∈B,所以1是方程x2-4x+m=0的根,所以1-4+m=0,m =3,方程为x2-4x+3=0,解得x=1或x=3,所以B={1,3}.2.(2017·山东高考)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:选D 由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.(2017·合肥模拟)已知命题q:∀x∈R,x2>0,则( )A.命题綈q:∀x∈R,x2≤0为假命题B.命题綈q:∀x∈R,x2≤0为真命题C.命题綈q:∃x0∈R,x20≤0为假命题D.命题綈q:∃x0∈R,x20≤0为真命题解析:选D 全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x=0时,x2≤0成立,所以綈q为真命题.4.(2018届高三·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c解析:选A 命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a≤b,则a+c≤b+c”,故选A.5.(2017·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A 由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.6.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:选D 因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.7.(2017·唐山模拟)已知集合A={x|x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是( )A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1}解析:选C 由x 2-5x -6<0,解得-1<x <6,所以A ={x |-1<x <6}.由2x<1,解得x <0,所以B ={x |x <0}.又图中阴影部分表示的集合为(∁U B )∩A ,因为∁U B ={x |x ≥0},所以(∁U B )∩A ={x |0≤x <6}.8.(2018届高三·河北五校联考)已知命题p :∃x 0∈(-∞,0),2x 0<3x0;命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,tan x >sin x ,则下列命题为真命题的是( )A .p ∧qB .p ∨(綈q )C .(綈p )∧qD .p ∧(綈q )解析:选C 根据指数函数的图象与性质知命题p 是假命题,綈p 是真命题;∵x ∈⎝⎛⎭⎪⎫0,π2,且tan x =sin xcos x, ∴0<cos x <1,tan x >sin x , ∴q 为真命题,选C.9.(2017·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 根据祖暅原理,“A ,B 在等高处的截面积恒相等”是“A ,B 的体积相等”的充分不必要条件,即綈q 是綈p 的充分不必要条件,即命题“若綈q ,则綈p ”为真,逆命题为假,故逆否命题“若p ,则q ”为真,否命题“若q ,则p ”为假,即p 是q 的充分不必要条件,选A.10.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },若P ={x |log 2x <1},Q ={x ||x -2|<1},则P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:选B 由log 2x <1,得0<x <2, 所以P ={x |0<x <2}. 由|x -2|<1,得1<x <3, 所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}.11.(2018届高三·广西五校联考)命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”,命题q :“关于x 的方程2x-m =0有正实数解”,若“p 或q ”为真,“p 且q ”为假,则实数m 的取值范围是( )A .[1,10]B .(-∞,-2)∪(1,10]C .[-2,10]D .(-∞,-2]∪(0,10]解析:选B 若命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”为真命题,则Δ=m 2-8m -20>0,∴m <-2或m >10;若命题q 为真命题,则关于x 的方程m =2x有正实数解,因为当x >0时,2x>1,所以m >1.因为“p 或q ”为真,“p 且q ”为假,故p 真q 假或p 假q真,所以⎩⎪⎨⎪⎧m <-2或m >10,m ≤1或⎩⎪⎨⎪⎧-2≤m ≤10,m >1,所以m <-2或1<m ≤10.12.(2017·石家庄模拟)下列选项中,说法正确的是( ) A .若a >b >0,则ln a <ln bB .向量a =(1,m )与b =(m,2m -1)(m ∈R)垂直的充要条件是m =1C .命题“∀n ∈N *,3n>(n +2)·2n -1”的否定是“∀n ∈N *,3n ≥(n +2)·2n -1”D .已知函数f (x )在区间[a ,b ]上的图象是连续不断的,则命题“若f (a )·f (b )<0,则f (x )在区间(a ,b )内至少有一个零点”的逆命题为假命题解析:选D A 中,因为函数y =ln x (x >0)是增函数,所以若a >b >0,则ln a >ln b ,故A 错; B 中,若a ⊥b ,则m +m (2m -1)=0, 解得m =0,故B 错;C 中,命题“∀n ∈N *,3n>(n +2)·2n -1”的否定是“∃n 0∈N *,3n 0≤(n 0+2)·2n 0-1”,故C 错;D 中,原命题的逆命题是“若f (x )在区间(a ,b )内至少有一个零点,则f (a )·f (b )<0”,是假命题,如函数f (x )=x 2-2x -3在区间[-2,4]上的图象是连续不断的,且在区间(-2,4)内有两个零点,但f (-2)·f (4)>0,故D 正确.13.(2018届高三·辽宁师大附中调研)若集合A ={x |(a -1)x 2+3x -2=0}有且仅有两个子集,则实数a 的值为________.解析:由题意知,集合A 有且仅有两个子集,则集合A 中只有一个元素.当a -1=0,即a =1时,A =⎩⎨⎧⎭⎬⎫23,满足题意;当a -1≠0,即a ≠1时,要使集合A 中只有一个元素,需Δ=9+8(a -1)=0,解得a =-18.综上可知,实数a 的值为1或-18.答案:1或-1814.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R,B ={x |-1<x <m +1,x ∈R},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2. 答案:(2,+∞)15.(2017·广东中山一中模拟)已知非空集合A ,B 满足下列四个条件: ①A ∪B ={1,2,3,4,5,6,7}; ②A ∩B =∅;③A 中的元素个数不是A 中的元素; ④B 中的元素个数不是B 中的元素.(1)如果集合A 中只有1个元素,那么A =________; (2)有序集合对(A ,B )的个数是________.解析:(1)若集合A 中只有1个元素,则集合B 中有6个元素,6∉B ,故A ={6}.(2)当集合A 中有1个元素时,A ={6},B ={1,2,3,4,5,7},此时有序集合对(A ,B )有1个; 当集合A 中有2个元素时,5∉B,2∉A ,此时有序集合对(A ,B )有5个; 当集合A 中有3个元素时,4∉B,3∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有4个元素时,3∉B,4∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有5个元素时,2∉B,5∉A ,此时有序集合对(A ,B )有5个;当集合A 中有6个元素时,A ={1,2,3,4,5,7},B ={6},此时有序集合对(A ,B )有1个. 综上可知,有序集合对(A ,B )的个数是1+5+10+10+5+1=32. 答案:(1){6} (2)3216.(2017·张掖模拟)下列说法中不正确的是________.(填序号) ①若a ∈R ,则“1a<1”是“a >1”的必要不充分条件;②“p ∧q 为真命题”是“p ∨q 为真命题”的必要不充分条件; ③若命题p :“∀x ∈R ,sin x +cos x ≤2”,则p 是真命题;④命题“∃x 0∈R ,x 20+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3>0”.解析:由1a <1,得a <0或a >1,反之,由a >1,得1a <1,∴“1a<1”是“a >1”的必要不充分条件,故①正确;由p ∧q 为真命题,知p ,q 均为真命题,所以p ∨q 为真命题,反之,由p ∨q 为真命题,得p ,q 至少有一个为真命题,所以p ∧q 不一定为真命题,所以“p ∧q 为真命题”是“p ∨q 为真命题”的充分不必要条件,故②不正确;∵sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2, ∴命题p 为真命题,③正确;命题“∃x 0∈R ,x 20+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3≥0”,故④不正确. 答案:②④课时跟踪检测(二) 平面向量与复数1.(2017·全国卷Ⅲ)复平面内表示复数z =i(-2+i)的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:选C z =i(-2+i)=-2i +i 2=-1-2i ,故复平面内表示复数z =i(-2+i)的点位于第三象限.2.(2017·全国卷Ⅲ)设复数z 满足(1+i)z =2i ,则|z |=( ) A.12 B.22 C. 2 D .2解析:选C 因为z =2i1+i =-+-=i(1-i)=1+i ,所以|z |= 2.3.(2017·沈阳模拟)已知平面向量a =(3,4),b =⎝ ⎛⎭⎪⎫x ,12,若a ∥b ,则实数x 的值为( ) A .-23 B.23 C.38 D .-38解析:选C ∵a ∥b ,∴3×12=4x ,解得x =38.4.(2018届高三·西安摸底)已知非零单位向量a ,b 满足|a +b |=|a -b |,则a 与b -a 的夹角是( )A.π6 B.π3 C.π4 D.3π4解析:选D 由|a +b |=|a -b |可得(a +b )2=(a -b )2,即a ·b =0,而a ·(b -a )=a ·b -a 2=-|a |2<0,即a 与b -a 的夹角为钝角,结合选项知选D.5.(2017·湘中模拟)已知向量a =(x ,3),b =(x ,-3),若(2a +b )⊥b ,则|a |=( ) A .1 B. 2 C. 3 D .2解析:选D 因为(2a +b )⊥b ,所以(2a +b )·b =0,即(3x ,3)·(x ,-3)=3x 2-3=0,解得x =±1,所以a =(±1,3),|a |=2+32=2.6.(2017·广西五校联考)设D 是△ABC 所在平面内一点,AB ―→=2DC ―→,则( ) A .BD ―→=AC ―→-32AB ―→B .BD ―→=32AC ―→-AB ―→C .BD ―→=12AC ―→-AB ―→D .BD ―→=AC ―→-12AB ―→解析:选A BD ―→=BC ―→+CD ―→=BC ―→-DC ―→=AC ―→-AB ―→-12AB ―→=AC ―→-32AB ―→.7.(2018届高三·云南调研)在▱ABCD 中,|AB ―→|=8,|AD ―→|=6,N 为DC 的中点,BM ―→=2MC ―→,则AM ―→·NM ―→=( )A .48B .36C .24D .12解析:选C AM ―→·NM ―→=(AB ―→+BM ―→)·(NC ―→+CM ―→)=⎝ ⎛⎭⎪⎫AB ―→+23 AD ―→ ·⎝ ⎛⎭⎪⎫12 AB ―→-13 AD ―→ =12AB―→2-29AD ―→2=12×82-29×62=24. 8.(2018届高三·广西五校联考)已知a 为实数,若复数z =(a 2-1)+(a +1)i 为纯虚数,则a +i 2 0171-i=( )A .1B .0C .iD .1-i解析:选C 因为z =(a 2-1)+(a +1)i 为纯虚数,所以⎩⎪⎨⎪⎧a 2-1=0,a +1≠0,得a =1,则有1+i 2 0171-i =1+i 1-i=+2+-=i.9.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→ 在BA ―→方向上的投影是( ) A .-3 5 B .-322 C .3 5 D.322解析:选 A 依题意得,BA ―→=(-2,-1),CD ―→=(5,5),BA ―→ ·CD ―→=(-2,-1)·(5,5)=-15,|BA ―→|=5,因此向量CD ―→在BA ―→方向上的投影是BA ―→·CD ―→|BA ―→|=-155=-3 5.10.(2018届高三·湖南五校联考)△ABC 是边长为2的等边三角形,向量a ,b 满足AB ―→=2a ,AC ―→=2a +b ,则向量a ,b 的夹角为( )A .30°B .60°C .120°D .150°解析:选C 法一:设向量a ,b 的夹角为θ,BC ―→=AC ―→-AB ―→=2a +b -2a =b ,∴|BC ―→|=|b |=2,|AB ―→|=2|a |=2,∴|a |=1,AC ―→2=(2a +b )2=4a 2+4a ·b +b 2=8+8cos θ=4,∴cos θ=-12,θ=120°.法二:BC ―→=AC ―→-AB ―→=2a +b -2a =b ,则向量a ,b 的夹角为向量AB ―→与BC ―→的夹角,故向量a ,b 的夹角为120°.11.(2017·长春模拟)在△ABC 中,D 为△ABC 所在平面内一点,且AD ―→=13AB ―→+12AC ―→,则S △BCD S △ABD=( )A.16B.13C.12D.23解析:选B 如图,由已知得,点D 在△ABC 中与AB 平行的中位线上,且在靠⎝ ⎛⎭⎪⎫1-12-13S近BC 边的三等分点处,从而有S △ABD =12S △ABC ,S △ACD =13S △ABC ,S △BCD =△ABC=16S △ABC ,所以S △BCD S △ABD =13. 12.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( )A .3B .2 2 C. 5 D .2 解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为222+12=25,所以圆C :(x -1)2+(y -2)2=45. 因为P 在圆C 上,所以P ⎝ ⎛⎭⎪⎫1+255cos θ,2+255sin θ. 又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ), 所以⎩⎪⎨⎪⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.13.(2017·成都模拟)若复数z =a i1+i (其中a ∈R ,i 为虚数单位)的虚部为-1,则a =________.解析:因为z =a i1+i=a-+-=a 2+a 2i 的虚部为-1,所以a2=-1,解得a =-2. 答案:-214.(2017·兰州诊断)已知向量OA ―→=(3,1),OB ―→=(-1,3),OC ―→=m OA ―→-n OB ―→(m >0,n >0),若m +n =1,则|OC ―→|的最小值为________.解析:由OA ―→=(3,1),OB ―→=(-1,3),得OC ―→=m OA ―→-n OB ―→=(3m +n ,m -3n ),因为m +n =1(m >0,n >0),所以n =1-m 且0<m <1,所以OC ―→=(1+2m,4m -3),则|OC ―→|=+2m2+m -2=20m 2-20m +10=20⎝ ⎛⎭⎪⎫m -122+5(0<m <1),所以当m =12时,|OC ―→|min = 5.答案: 515.(2018届高三·石家庄调研)非零向量m ,n 的夹角为π3,且满足|n |=λ|m |(λ>0),向量组x 1,x 2,x 3由一个m 和两个n 排列而成,向量组y 1,y 2,y 3由两个m 和一个n 排列而成,若x 1·y 1+x 2·y 2+x 3·y 3所有可能值中的最小值为4m 2,则λ=________.解析:由题意:x 1·y 1+x 2·y 2+x 3·y 3的运算结果有以下两种可能:①m 2+m ·n +n 2=m 2+λ|m ||m |cos π3+λ2m 2=⎝ ⎛⎭⎪⎫λ2+λ2+1m 2;②m ·n +m ·n +m ·n =3λ|m ||m |cos π3=3λ2m 2.又λ2+λ2+1-3λ2=λ2-λ+1=⎝ ⎛⎭⎪⎫λ-122+34>0,所以3λ2m 2=4m 2,即3λ2=4,解得λ=83.答案:8316.如图所示,已知正方形ABCD 的边长为1,点E 从点D 出发,按字母顺序D →A →B →C 沿线段DA ,AB ,BC 运动到点C ,在此过程中DE ―→·CD ―→的取值范围为________.解析:以BC ,BA 所在的直线为x 轴,y 轴,建立平面直角坐标系如图所示,可得A (0,1),B (0,0),C (1,0),D (1,1).当E 在DA 上时,设E (x,1),其中0≤x ≤1,∵DE ―→=(x -1,0),CD ―→=(0,1), ∴DE ―→·CD ―→=0;当E 在AB 上时,设E (0,y ), 其中0≤y ≤1,∵DE ―→=(-1,y -1),CD ―→=(0,1),∴DE ―→·CD ―→=y -1(0≤y ≤1),此时DE ―→·CD ―→的取值范围为[-1,0]; 当E 在BC 上时,设E (x,0),其中0≤x ≤1, ∵DE ―→=(x -1,-1),CD ―→=(0,1),∴DE ―→·CD ―→=-1.综上所述,DE ―→·CD ―→的取值范围为[-1,0]. 答案:[-1,0]课时跟踪检测(三) 不等式1.(2018届高三·湖南四校联考)已知不等式mx 2+nx -1m <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12或x >2,则m-n =( )A.12 B .-52C.52D .-1解析:选B 由题意得,x =-12和x =2是方程mx 2+nx -1m =0的两根,所以-12+2=-n m 且-12×2=-1m (m <0),解得m =-1,n =32,所以m -n =-52.2.已知直线ax +by =1经过点(1,2),则2a +4b的最小值为( ) A. 2 B .2 2 C .4D .4 2解析:选B ∵直线ax +by =1经过点(1,2),∴a +2b =1,则2a+4b≥22a·22b=22a +2b=22,当且仅当2a =22b,即a =12,b =14时取等号.3.(2017·兰州模拟)设变量x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值是( )A .5B .7C .8D .23解析:选B 作出不等式组所表示的平面区域如图中阴影部分所示,作出直线2x +3y =0,对该直线进行平移,可以发现经过⎩⎪⎨⎪⎧x +y =3,2x -y =3的交点A (2,1)时,目标函数z =2x +3y 取得最小值7.4.(2017·贵阳一模)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:选B 由题意得x +2y =8-x ·2y ≥8-⎝⎛⎭⎪⎫x +2y 22,当且仅当x =2y 时,等号成立,整理得(x+2y )2+4(x +2y )-32≥0,即(x +2y -4)(x +2y +8)≥0,又x +2y >0,所以x +2y ≥4,即x +2y 的最小值为4.5.(2017·云南模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≥1,21-x-2,x <1,则不等式f (x -1)≤0的解集为( )A .{x |0≤x ≤2}B .{x |0≤x ≤3}C .{x |1≤x ≤2}D .{x |1≤x ≤3}解析:选D 由题意,得f (x -1)=⎩⎪⎨⎪⎧2x -2-2,x ≥2,22-x-2,x <2.当x ≥2时,由2x -2-2≤0,解得2≤x ≤3; 当x <2时,由22-x-2≤0,解得1≤x <2.综上所述,不等式f (x -1)≤0的解集为{x |1≤x ≤3}.6.(2017·武汉调研)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-3解析:选B 根据约束条件画出可行域如图①中阴影部分所示.可知可行域为开口向上的V 字型.在顶点A 处z有最小值,联立方程⎩⎪⎨⎪⎧x +y =a ,x -y =-1,得⎩⎪⎨⎪⎧x =a -12,y =a +12,即A ⎝⎛⎭⎪⎫a -12,a +12,则a -12+a ×a +12=7,解得a =3或a =-5. 当a =-5时,如图②,虚线向上移动时z 减小,故z →-∞,没有最小值,故只有a =3满足题意.7.(2017·合肥二模)若关于x 的不等式x 2+ax -2<0在区间[1,4]上有解,则实数a 的取值范围为( )A .(-∞,1)B .(-∞,1]C .(1,+∞)D .[1,+∞)解析:选A 法一:因为x ∈[1,4],则不等式x 2+ax -2<0可化为a <2-x 2x =2x -x ,设f (x )=2x-x ,x ∈[1,4],由题意得只需a <f (x )max ,因为函数f (x )为区间[1,4]上的减函数,所以f (x )max =f (1)=1,故a <1.法二:设g (x )=x 2+ax -2,函数g (x )的图象是开口向上的抛物线,过定点(0,-2),因为g (x )<0在区间[1,4]上有解,所以g (1)<0,解得a <1.8.(2017·太原一模)已知实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,则z =x 2+y 2的取值范围为( )A .[1,13]B .[1,4]C.⎣⎢⎡⎦⎥⎤45,13D.⎣⎢⎡⎦⎥⎤45,4解析:选C 画出不等式组表示的平面区域如图中阴影部分所示,由此得z =x 2+y 2的最小值为点O 到直线BC :2x -y +2=0的距离的平方,所以z min =⎝ ⎛⎭⎪⎫252=45,最大值为点O 与点A (-2,3)的距离的平方,所以z max=|OA |2=13,故选C.9.(2017·衡水二模)若关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+a x 1x 2的最小值是( )A.63 B.233 C.433D.263解析:选C ∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a2>0,又x 1+x 2=4a ,x 1x 2=3a 2, ∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a ≥24a ·13a =433,当且仅当a =36时取等号. ∴x 1+x 2+a x 1x 2的最小值是433. 10.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,50解析:选B 设黄瓜、韭菜的种植面积分别为x 亩,y 亩,则总利润z =4×0.55x +6×0.3y -1.2x-0.9y =x +0.9y .此时x ,y 满足条件⎩⎪⎨⎪⎧x +y ≤50,1.2x +0.9y ≤54,x ≥0,y ≥0.画出可行域如图,得最优解为A (30,20).故黄瓜和韭菜的种植面积分别为30亩、20亩时,种植总利润最大.11.已知点M 是△ABC 内的一点,且AB ―→·AC ―→=23,∠BAC =π6,若△MBC ,△MCA ,△MAB 的面积分别为23,x ,y ,则4x +yxy的最小值为( )A .16B .18C .20D .27解析:选D 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . ∵AB ―→·AC ―→=23,∠BAC =π6,∴|AB ―→|·|AC ―→|cos π6=23,∴bc =4,∴S △ABC =12bc sin π6=14bc =1.∵△MBC ,△MCA ,△MAB 的面积分别为23,x ,y ,∴23+x +y =1,即x +y =13, ∴4x +yxy=1x +4y =3(x +y )⎝ ⎛⎭⎪⎫1x +4y=3⎝ ⎛⎭⎪⎫1+4+y x+4x y ≥3⎝⎛⎭⎪⎫5+2y x ·4x y =27, 当且仅当y =2x =29时取等号,故4x +yxy的最小值为27.12.(2017·安徽二校联考)当x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y ≤2,y -4≤x ,x -7y ≤2时,-2≤kx -y ≤2恒成立,则实数k 的取值范围是( )A .[-1,1]B .[-2,0]C.⎣⎢⎡⎦⎥⎤-15,35D.⎣⎢⎡⎦⎥⎤-15,0解析:选 D 作出不等式组表示的可行域如图中阴影部分所示,设z =kx -y ,由⎩⎪⎨⎪⎧x +2y =2,y -4=x得⎩⎪⎨⎪⎧ x =-2,y =2,即B (-2,2);由⎩⎪⎨⎪⎧x +2y =2,x -7y =2得⎩⎪⎨⎪⎧x =2,y =0,即C (2,0);由⎩⎪⎨⎪⎧y -4=x ,x -7y =2得⎩⎪⎨⎪⎧x =-5,y =-1,即A (-5,-1).要使不等式-2≤kx -y ≤2恒成立,则⎩⎪⎨⎪⎧-2≤-2k -2≤2,-2≤2k ≤2,-2≤-5k +1≤2,即⎩⎪⎨⎪⎧-2≤k ≤0,-1≤k ≤1,-15≤k ≤35,所以-15≤k ≤0.13.(2018届高三·池州摸底)已知a >b >1,且2log a b +3log b a =7,则a +1b 2-1的最小值为________.解析:令log a b =t ,由a >b >1得0<t <1,2log a b +3log b a =2t +3t =7,得t =12,即log a b =12,a=b 2,所以a +1b 2-1=a -1+1a -1+1≥2a -1a -1+1=3,当且仅当a =2时取等号.故a +1b 2-1的最小值为3. 答案:314.(2017·石家庄模拟)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤4,则z =y -2x +3的最小值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,因为目标函数z =y -2x +3表示区域内的点与点P (-3,2)连线的斜率.由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =-125.答案:-12515.(2017·成都二诊)若关于x 的不等式ax 2-|x |+2a <0的解集为空集,则实数a 的取值范围为________.解析:ax 2-|x |+2a <0⇒a <|x |x 2+2,当x ≠0时,|x |x 2+2≤|x |2x 2×2=24(当且仅当x =±2时取等号),当x =0时,|x |x 2+2=0<24,因此要使关于x 的不等式ax 2-|x |+2a <0的解集为空集,只需a ≥24,即实数a 的取值范围为⎣⎢⎡⎭⎪⎫24,+∞. 答案:⎣⎢⎡⎭⎪⎫24,+∞ 16.(2018届高三·福州调研)不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x -2y +2≤0,x +y -4≤0的解集记作D ,实数x ,y 满足如下两个条件:①∀(x ,y )∈D ,y ≥ax ;②∃(x ,y )∈D ,x -y ≤a . 则实数a 的取值范围为________.解析:由题意知,不等式组所表示的可行域D 如图中阴影部分(△ABC 及其内部)所示,由⎩⎪⎨⎪⎧x -2y +2=0,x +y -4=0,得⎩⎪⎨⎪⎧ x =2,y =2,所以点B 的坐标为(2,2).由⎩⎪⎨⎪⎧2x -y +1=0,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3,所以点C 的坐标为(1,3).因为∀(x ,y )∈D ,y ≥ax , 由图可知,a ≤k OB ,所以a ≤1.由∃(x ,y )∈D ,x -y ≤a ,设z =x -y ,则a ≥z min .当目标函数z =x -y 过点C (1,3)时,z =x -y 取得最小值,此时z min =1-3=-2,所以a ≥-2. 综上可知,实数a 的取值范围为[-2,1]. 答案:[-2,1]课时跟踪检测(四) 函数的图象与性质[A 级——“12+4”保分小题提速练]1.函数f (x )=⎩⎪⎨⎪⎧ax +b ,x ≤0,log c ⎝ ⎛⎭⎪⎫x +19,x >0的图象如图所示,则a +b +c =( )A.43 B.73 C .4D.133解析:选D 将点(0,2)代入y =log c ⎝ ⎛⎭⎪⎫x +19,得2=log c 19,解得c =13.再将点(0,2)和(-1,0)分别代入y =ax +b ,解得a =2,b =2,∴a +b +c =133.2.(2018届高三·武汉调研)已知函数f (x )的部分图象如图所示,则f (x )的解析式可以是( )A .f (x )=2-x22xB .f (x )=cos xx 2C .f (x )=-cos 2xxD .f (x )=cos xx解析:选D A 中,当x →+∞时,f (x )→-∞,与题图不符,故不成立;B 为偶函数,与题图不符,故不成立;C 中,当x >0,x →0时,f (x )<0,与题图不符,故不成立.选D.3.下列函数中,既是奇函数又是减函数的是( ) A .f (x )=x 3,x ∈(-3,3) B .f (x )=tan x C .f (x )=x |x |D .f (x )=ln 2e e --x x解析:选D 选项A 、B 、C 、D 对应的函数都是奇函数,但选项A 、B 、C 对应的函数在其定义域内都不是减函数,故排除A 、B 、C ;对于选项D ,因为f (x )=ln 2e e --x x,所以f (x )=(e -x -e x)ln 2,由于函数g (x )=e -x与函数h (x )=-e x 都是减函数,又ln 2>0,所以函数f (x )=(e -x-e x)ln 2是减函数,故选D.4.函数f (x )= -x 2+9x +10-2x -的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D 要使原函数有意义,则⎩⎪⎨⎪⎧-x 2+9x +10≥0,x -1>0,x -1≠1,解得1<x ≤10且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,10]. 5.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln(2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称解析:选 C 由题易知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln[x (2-x )]=ln[-(x-1)2+1],由复合函数的单调性知,函数f (x )=ln x +ln(2-x )在(0,1)单调递增,在(1,2)单调递减,所以排除A 、B ;又f ⎝ ⎛⎭⎪⎫12=ln 12+ln ⎝ ⎛⎭⎪⎫2-12=ln 34,f ⎝ ⎛⎭⎪⎫32=ln 32+ln ⎝⎛⎭⎪⎫2-32=ln 34,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32=ln 34,所以排除D.故选C. 6.函数f (x )=x x2的图象大致是( )解析:选 A 由题意知,函数f (x )的定义域为(-∞,0)∪(0,+∞),f (-x )=-πx-x2=x x2=f (x ),∴f (x )为偶函数,排除C 、D ; 当x =1时,f (1)=cos π1=-1<0,排除B ,故选A. 7.(2018届高三·衡阳八中月考)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1) D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:选B 因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称.又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52,即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 8.(2017·甘肃会宁一中摸底)已知函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a的取值范围是( )A.⎣⎢⎡⎭⎪⎫-1,12B.⎝⎛⎭⎪⎫-1,12C .(-∞,-1]D.⎝ ⎛⎭⎪⎫0,12 解析:选A 法一:当x ≥1时,ln x ≥0,要使函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,只需⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.法二:取a =-1,则函数f (x )的值域为R ,所以a =-1满足题意,排除B 、D ;取a =-2,则函数f (x )的值域为(-∞,-1)∪[0,+∞),所以a =-2不满足题意,排除C ,故选A.9.(2018届高三·辽宁实验中学摸底)已知函数f (x )=(x -a )(x -b )(其中a >b ),若f (x )的图象如图所示,则函数g (x )=a x +b 的图象大致为( )解析:选A 由一元二次方程的解法易得(x -a )(x -b )=0的两根为a ,b ,根据函数零点与方程的根的关系,可得f (x )=(x -a )(x -b )的零点就是a ,b ,即函数f (x )的图象与x 轴交点的横坐标为a ,b .观察f (x )=(x -a )·(x -b )的图象,可得其与x 轴的两个交点分别在区间(-2,-1)与(0,1)上,又由a >b ,可得-2<b <-1,0<a <1.函数g (x )=a x+b ,由0<a <1可知其是减函数,又由-2<b <-1可知其图象与y 轴的交点在x 轴的下方,分析选项可得A 符合这两点,B 、C 、D 均不满足,故选A.10.函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在(-1,3)上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)解析:选C 作出函数f (x )的图象如图所示.当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0); 当x ∈(0,1)时,由xf (x )>0得x ∈∅; 当x ∈(1,3)时,由xf (x )>0得x ∈(1,3). 故x ∈(-1,0)∪(1,3).11.(2017·安徽六安一中测试)已知函数y =3-|x |3+|x |的定义域为[a ,b ](a ,b ∈Z),值域为[0,1],则满足条件的整数对(a ,b )共有( )A .6个B .7个C .8个D .9个解析:选B 函数y =3-|x |3+|x |=63+|x |-1,易知函数是偶函数,x >0时是减函数,所以函数的图象如图所示,根据图象可知,函数y =3-|x |3+|x |的定义域可能为[-3,0],[-3,1],[-3,2],[-3,3],[-2,3],[-1,3],[0,3],共7种,所以满足条件的整数对(a ,b )共有7个.12.已知函数f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:选C 作出函数g (x )=1-x 2和函数|f (x )|=|2x-1|的图象如图①所示,得到函数h (x )的图象如图②所示,由图象得函数h (x )有最小值-1,无最大值.13.若函数f (x )=a -12x+1为奇函数,则a =________. 解析:由题意知f (0)=0,即a -12+1=0,解得a =12.答案:1214.已知f (x )=ax 3+bx +1(ab ≠0),若f (2 017)=k ,则f (-2 017)=________.解析:由f (2 017)=k 可得,a ×2 0173+b ×2 017+1=k ,∴2 0173a +2 017b =k -1,∴f (-2 017)=-a ×2 0173-b ×2 017+1=2-k .答案:2-k15.(2017·安徽二校联考)已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x,则f (log 49)=______.解析:因为log 49=log 23>0,又f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-22log 3-=-221log 3-=-13.答案:-1316.已知y =f (x )是偶函数,当x >0时,f (x )=x +4x,且当x ∈[-3,-1]时,n ≤f (x )≤m 恒成立,则m -n 的最小值是________.解析:∵当x ∈[-3,-1]时,n ≤f (x )≤m 恒成立, ∴n ≤f (x )min 且m ≥f (x )max ,∴m -n 的最小值是f (x )max -f (x )min , 由偶函数的图象关于y 轴对称知,当x ∈[-3,-1]时,函数的最值与x ∈[1,3]时的最值相同,又当x >0时,f (x )=x +4x,在[1,2]上递减,在[2,3]上递增,且f (1)>f (3), ∴f (x )max -f (x )min =f (1)-f (2)=5-4=1. 故m -n 的最小值是1. 答案:1[B 级——中档小题强化练]1.函数f (x )=1+ln ⎝ ⎛⎭⎪⎫x 2+2e 的图象大致是( )解析:选D 因为f (0)=ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D. 2.(2018届高三·东北三校联考)已知函数f (x )=ln(|x |+1)+x 2+1,则使得f (x )>f (2x -1)成立的x 的取值范围是 ( )A.⎝ ⎛⎭⎪⎫13,1 B.⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞) C .(1,+∞)D.⎝⎛⎭⎪⎫-∞,13 解析:选A 易知函数f (x )为偶函数,且当x ≥0时,f (x )=ln(x +1)+x 2+1 是增函数, ∴使得f (x )>f (2x -1)成立的x 满足|2x -1|<|x |, 解得13<x <1.3.(2017·潍坊一模)设函数f (x )为偶函数,且∀x ∈R ,f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12,当x ∈[2,3]时,f (x )=x ,则当x ∈[-2,0]时,f (x )=( )A .|x +4|B .|2-x |C .2+|x +1|D .3-|x +1|解析:选D 因为f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12, 所以f (x )=f (x +2),得f (x )的周期为2. 因为当x ∈[2,3]时,f (x )=x , 所以当x ∈[0,1]时,x +2∈[2,3],f (x )=f (x +2)=x +2.又f (x )为偶函数,所以当x ∈[-1,0]时,-x ∈[0,1],f (x )=f (-x )=-x +2,当x ∈[-2,-1]时,x +2∈[0,1],f (x )=f (x +2)=x +4,所以当x ∈[-2,0]时,f (x )=3-|x +1|.4.(2017·安庆二模)如图,已知l 1⊥l 2,圆心在l 1上、半径为1 m 的圆O 沿l 1以1 m/s 的速度匀速竖直向上移动,且在t =0时,圆O 与l 2相切于点A ,圆O 被直线l 2所截得到的两段圆弧中,位于l 2上方的圆弧的长记为x ,令y =cos x ,则y 与时间t (0≤t ≤1,单位:s)的函数y =f (t )的图象大致为( )解析:选B 法一:如图所示,cosx2=设∠MON =α,由弧长公式知x =α,在Rt △AOM 中,|AO |=1-t ,|OA ||OM |=1-t ,∴y =cos x =2cos 2x 2-1=2(t -1)2-1(0≤t ≤1).故其对应的大致图象应为B.法二:由题意可知,当t =1时,圆O 在直线l 2上方的部分为半圆,所对应的弧长为π×1=π,所以cos π=-1,排除A 、D ;当t =12时,如图所示,易知∠BOC =2π3,所以cos 2π3=-12<0,排除C ,故选B.5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________.解析:因为f (x )是奇函数,且当0≤x ≤1时,f (x )=2x (1-x ),所以当-1≤x <0时,0<-x ≤1,f (-x )=-2x (1+x )=-f (x ),即f (x )=2x (1+x ).又f (x )的周期为2,所以f ⎝ ⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=2×⎝ ⎛⎭⎪⎫-12×12=-12.答案:-126.(2017·张掖模拟)已知定义在R 上的函数f (x ),对任意的实数x ,均有f (x +3)≤f (x )+3,f (x +2)≥f (x )+2且f (1)=2,则f (2 017)的值为________.解析:∵f (x +3)≤f (x )+3,f (x +2)≥f (x )+2, ∴f (x +1)+2≤f (x +3)≤f (x )+3, ∴f (x +1)≤f (x )+1,又f (x )+3+f (x +2)≥f (x +3)+f (x )+2, 即f (x +2)+1≥f (x +3),∴f (x +1)+1≥f (x +2)≥f (x )+2, ∴f (x +1)≥f (x )+1,∴f (x +1)=f (x )+1,利用叠加法,得f (2 017)=2 018.答案:2 018[C 级——压轴小题突破练]1.设m ∈Z ,对于给定的实数x ,若x ∈⎝ ⎛⎦⎥⎤m -12,m +12,则我们就把整数m 叫做距实数x 最近的整数,并把它记为{x },现有关于函数f (x )=x -{x }的四个命题:①f ⎝ ⎛⎭⎪⎫-12=-12;②函数f (x )的值域是⎝ ⎛⎦⎥⎤-12,12;③函数f (x )是奇函数;④函数f (x )是周期函数,其最小正周期为1. 其中,真命题的个数为( ) A .1 B .2 C .3D .4解析:选B ①∵-1-12<-12≤-1+12,∴⎩⎨⎧⎭⎬⎫-12=-1, ∴f ⎝ ⎛⎭⎪⎫-12=-12-⎩⎨⎧⎭⎬⎫-12=-12+1=12, 所以①是假命题;②令x =m +a ,m ∈Z ,a ∈⎝ ⎛⎦⎥⎤-12,12,则f (x )=x -{x }=a ,∴f (x )∈⎝ ⎛⎦⎥⎤-12,12,所以②是真命题; ③∵f ⎝ ⎛⎭⎪⎫12=12-0=12,f ⎝ ⎛⎭⎪⎫-12=12≠-f ⎝ ⎛⎭⎪⎫12, ∴函数f (x )不是奇函数,故③是假命题; ④∵f (x +1)=(x +1)-{x +1}=x -{x }=f (x ), ∴函数f (x )的最小正周期为1,故④是真命题. 综上,真命题的个数为2,故选B.2.如图所示,在△ABC 中,∠B =90°,AB =6 cm ,BC =8 cm ,点P 以 1 cm/s 的速度沿A →B →C 的路径向C 移动,点Q 以2 cm/s 的速度沿B →C →A 的路径向A 移动,当点Q 到达A 点时,P ,Q 两点同时停止移动.记△PCQ 的面积关于移动时间t 的函数为S =f (t ),则f (t )的图象大致为( )解析:选A 当0≤t ≤4时,点P 在AB 上,点Q 在BC 上,此时PB =6-t ,CQ =8-2t ,则S =f (t )=12QC ×BP =12(8-2t )×(6-t )=t 2-10t +24; 当4<t ≤6时,点P 在AB 上,点Q 在CA 上,此时AP =t ,P 到AC 的距离为45t ,CQ =2t -8,则S=f (t )=12QC ×45t =12(2t -8)×45t =45(t 2-4t );当6<t ≤9时,点P 在BC 上,点Q 在CA 上,此时CP =14-t ,QC =2t -8,则S =f (t )=12QC ×CP sin∠ACB =12(2t -8)(14-t )×35=35(t -4)(14-t ).综上,函数f (t )对应的图象是三段抛物线,依据开口方向得图象是A. 3.(2017·河北邯郸一中月考)已知函数f 1(x )=|x -1|,f 2(x )=13x +1,g (x )=f 1x +f 2x2+|f 1x-f 2x2,若a ,b ∈[-1,5],且当x 1,x 2∈[a ,b ]时,g x 1-g x 2x 1-x 2>0恒成立,则b-a 的最大值为________.解析:当f 1(x )≥f 2(x )时,g (x )=f 1x +f 2x2+f 1x -f 2x2=f 1(x );当f 1(x )<f 2(x )时,g (x )=f 1x +f 2x2+f 2x -f 1x2=f 2(x ).综上,g (x )=⎩⎪⎨⎪⎧f 1x ,f 1xf 2x ,f 2x ,f 1x <f 2x ,即g (x )是f 1(x ),f 2(x )两者中的较大者.在同一平面直角坐标系中分别画出函数f 1(x )与f 2(x )的图象,如图所示,则g (x )的图象如图中实线部分所示.由图可知g (x )在[0,+∞)上单调递增,又g (x )在[a ,b ]上单调递增,故a ,b ∈[0,5],所以b -a 的最大值为5.答案:54.(2017·湘中名校联考)定义在R 上的函数f (x )在(-∞,-2)上单调递增,且f (x -2)是偶函数,若对一切实数x ,不等式f (2sin x -2)>f (sin x -1-m )恒成立,则实数m 的取值范围为________.解析:因为f (x -2)是偶函数, 所以函数f (x )的图象关于x =-2对称. 又f (x )在(-∞,-2)上为增函数, 则f (x )在(-2,+∞)上为减函数,所以不等式f (2sin x -2)>f (sin x -1-m )恒成立等价于|2sin x -2+2|<|sin x -1-m +2|, 即|2sin x |<|sin x +1-m |,两边同时平方, 得3sin 2x -2(1-m )sin x -(1-m )2<0, 即(3sin x +1-m )(sin x -1+m )<0,即⎩⎪⎨⎪⎧3sin x +1-m >0,sin x -1+m <0或⎩⎪⎨⎪⎧3sin x +1-m <0,sin x -1+m >0,即⎩⎪⎨⎪⎧3sin x >m -1,sin x <1-m 或⎩⎪⎨⎪⎧3sin x <m -1,sin x >1-m ,即⎩⎪⎨⎪⎧m -1<-3,1-m >1或⎩⎪⎨⎪⎧m -1>3,1-m <-1,即m <-2或m >4,故m 的取值范围为(-∞,-2)∪(4,+∞). 答案:(-∞,-2)∪(4,+∞)课时跟踪检测(五) 基本初等函数、函数与方程[A 级——“12+4”保分小题提速练]1.若f (x )是幂函数,且满足f f=2,则f ⎝ ⎛⎭⎪⎫19=( ) A.12 B.14 C .2D .4解析:选B 设f (x )=x α,由ff=9α3α=3α=2,得α=log 32,∴f ⎝ ⎛⎭⎪⎫19=⎝ ⎛⎭⎪⎫19log 32=14. 2.(2017·云南模拟)设a =60.7,b =log 70.6,c =log 0.60.7,则a ,b ,c 的大小关系为( ) A .c >b >a B .b >c >a C .c >a >bD .a >c >b解析:选D 因为a =60.7>1,b =log 70.6<0,0<c =log 0.60.7<1,所以a >c >b . 3.函数f (x )=|log 2x |+x -2的零点个数为( ) A .1 B .2 C .3D .4解析:选B 函数f (x )=|log 2x |+x -2的零点个数,就是方程|log 2x |+x -2=0的根的个数.令h (x )=|log 2x |,g (x )=2-x ,画出两函数的图象,如图. 由图象得h (x )与g (x )有2个交点,∴方程|log 2x |+x -2=0的解的个数为2.4.(2017·河南适应性测试)函数y =a x-a (a >0,a ≠1)的图象可能是( )解析:选C 由函数y =a x-a (a >0,a ≠1)的图象过点(1,0),得选项A 、B 、D 一定不可能;C 中0<a <1,有可能,故选C.5.已知奇函数y =⎩⎪⎨⎪⎧fx ,x >0,g x ,x <0.若f (x )=a x(a >0,a ≠1)对应的图象如图所示,则g (x )=( )A.⎝ ⎛⎭⎪⎫12-xB .-⎝ ⎛⎭⎪⎫12xC .2-xD .-2x解析:选D 由图象可知,当x >0时,函数f (x )单调递减,则0<a <1,∵f (1)=12,∴a =12,即函数f (x )=⎝ ⎛⎭⎪⎫12x ,当x <0时,-x >0,则f (-x )=⎝ ⎛⎭⎪⎫12-x =-g (x ),即g (x )=-⎝ ⎛⎭⎪⎫12-x =-2x,故g (x )=-2x,x <0,选D.6.已知f (x )=a x和g (x )=b x是指数函数,则“f (2)>g (2)”是“a >b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 由题可得,a >0,b >0且a ≠1,b ≠1. 充分性:f (2)=a 2,g (2)=b 2, 由f (2)>g (2)知,a 2>b 2,再结合y =x 2在(0,+∞)上单调递增, 可知a >b ,故充分性成立; 必要性:由题可知a >b >0,构造函数h (x )=f x g x =a x b x =⎝ ⎛⎭⎪⎫a b x ,显然ab>1,所以h (x )单调递增,故h (2)=a 2b2>h (0)=1,所以a 2>b 2,故必要性成立.7.函数f (x )=e x+x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析:选C 法一:∵f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,∴f (0)f (1)<0,故函数f (x )=e x+x -2的零点所在的一个区间是(0,1),选C.法二:函数f (x )=e x+x -2的零点,即函数y =e x的图象与y =-x+2的图象的交点的横坐标,作出函数y =e x与直线y =-x +2的图象如图所示,由图可知选C.8.已知函数f (x )=ln x +3x -8的零点x 0∈[a ,b ],且b -a =1,a ,b ∈N *,则a +b =( ) A .0 B .2 C .5D .7解析:选 C ∵f (2)=ln 2+6-8=ln 2-2<0,f (3)=ln 3+9-8=ln 3+1>0,且函数f (x )=ln x +3x -8在(0,+∞)上为单调递增函数,∴x 0∈[2,3],即a =2,b =3,∴a +b =5.9.(2018届高三·湖南四校联考)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,g x ,x <0,若f (x )为奇函数,则g ⎝ ⎛⎭⎪⎫-14的值为( )A .-14B.14 C .-2D .2解析:选D 法一:当x >0时,f (x )=log 2x , ∵f (x )为奇函数,∴当x <0时,f (x )=-log 2(-x ), 即g (x )=-log 2(-x ), ∴g ⎝ ⎛⎭⎪⎫-14=-log 214=2. 法二:g ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫-14=-f ⎝ ⎛⎭⎪⎫14=-log 214=-log 22-2=2.10.(2017·杭州二模)已知直线x =m (m >1)与函数f (x )=log a x (a >0且a ≠1),g (x )=log b x (b >0且b ≠1)的图象及x 轴分别交于A ,B ,C 三点,若AB ―→=2BC ―→,则( )A .b =a 2B .a =b 2C .b =a 3D .a =b 3。
考点过关检测(六)1.(2025届高三·广东六校联考)在△ABC 中,D 为AB 的中点,点E 满意E B →=4E C →,则E D →=( )A.56A B →-43A C →B.43A B →-56A C →C.56A B →+43A C → D.43AB →+56A C → 解析:选A 因为D 为AB 的中点,点E 满意E B →=4EC →,所以BD →=12B A →,E B →=43C B →,所以E D →=E B →+B D →=43C B →+12B A →=43(C A →+A B →)-12A B →=56A B →-43A C →.2.(2024·蓉城名校联考)已知向量e 1,e 2,|e 1|=1,e 2=(1,3),e 1,e 2的夹角为60°,则(e 1+e 2)·e 2=( )A.355B.255C .5 D. 5解析:选C 因为e 2=(1,3),所以|e 2|=2,所以(e 1+e 2)·e 2=e 1·e 2+e 22=1×2cos 60°+4=5.故选C.3.已知圆心为O ,半径为1的圆上有不同的三个点A ,B ,C ,其中O A →·O B →=0,存在实数λ,μ满意O C →+λOA →+μOB →=0,则实数λ,μ的关系为( )A .λ2+μ2=1 B.1λ+1μ=1C .λμ=1D .λ+μ=1解析:选A 法一:取特别点,取C 为优弧AB 的中点,此时由平面对量基本定理易得λ=μ=22,只有选项A 符合.故选A. 法二:依题意得|O A →|=|O B →|=|O C →|=1,-O C →=λOA →+μOB →,两边平方得1=λ2+μ2.故选A.4.(2024·广州高三测试)若向量a =(cos θ,sin θ),b =(1,-1),则|2a -b |的取值范围是( )A .[2-2,2+ 2 ]B .[0,2]C .[0,2]D .[1,3]解析:选A ∵a =(cos θ,sin θ),b =(1,-1),∴|2a -b |=(2cos θ-1)2+(2sin θ+1)2=6+4(sin θ-cos θ)=6+42sin ⎝⎛⎭⎪⎫θ-π4,而-42≤42sin ⎝ ⎛⎭⎪⎫θ-π4≤42,∴2-2≤|2a -b |≤2+2,即|2a -b |的取值范围是[2-2,2+ 2 ],故选A.5.在△ABC 中,D 为△ABC 所在平面内一点,且A D →=13AB →+12A C →,则S △BCD S △ABD=( )A.16 B.13 C.12D.23解析:选B 由已知,得点D 在△ABC 中与AB 平行的中位线上,且在靠近BC 边的三等分点处,从而有S △ABD =12S △ABC ,S △ACD =13S △ABC ,S △BCD =1-12-13·S △ABC =16S △ABC ,所以S △BCD S △ABD =13.故选B.6.(2025届高三·辽宁五校联考)在△ABC 中,点P 满意BP →=2PC →,过点P 的直线与AB ,AC 所在直线分别交于点M ,N ,若AM →=mAB →,AN →=nAC →(m >0,n >0),则m +2n 的最小值为( )A .3B .4 C.83D.103解析:选A 因为BP →=2PC →,所以AP →-AB →=2(A C →-A P →),所以A P →=13A B →+23A C →,又因为A M →=mAB →,AN →=nAC →,所以AP →=13m AM →+23n AN →.因为M ,P ,N 三点共线,所以13m +23n=1,所以m +2n =(m +2n )·⎝ ⎛⎭⎪⎫13m +23n =13+43+23⎝ ⎛⎭⎪⎫n m +m n ≥53+23×2n m ·m n =53+43=3,当且仅当⎩⎪⎨⎪⎧n m =m n ,13m +23n =1即m =n =1时等号成立.所以m +2n 的最小值为3.故选A.7.(2024·昆明调研)已知平行四边形OABC 中,O 为坐标原点,A (2,2),C (1,-2),则OB →·AC →=( )A .-6B .-3C .3D .6解析:选B 在平行四边形OABC 中,O A →=C B →,设点B 的坐标为(x ,y ),则O A →=(2,2),CB →=(x -1,y +2),所以x =3,y =0,OB →=(3,0),AC →=(-1,-4) ,所以O B →·A C →=(3,0)·(-1,-4)=-3.故选B.8.(2024·唐山摸底)已知e 1,e 2是两个单位向量,λ∈R 时,|e 1+λe 2|的最小值为32,则|e 1+e 2|=( )A .1 B. 3 C .1或 3D .2解析:选 C 设向量e 1,e 2的夹角为θ,则e 1·e 2=cos θ,因为|e 1+λe 2|= 1+λ2+2λcos θ= (λ+cos θ)2+1-cos 2θ,且当λ=-cos θ时,|e 1+λe 2|min =1-cos 2θ=32,解得cos θ=±12,故|e 1+e 2|=2+2cos θ=1或 3.故选C. 9.(2024·河北六校联考)已知|OA →|=6,|OB →|=23,∠AOB =30°,若t ∈R ,则|OA →+tAB →|的最小值为( )A .6B .2 3C .3D .6-2 3解析:选 C 法一:依题意得|OA →+tAB →|2=|(1-t )OA →+tOB →|2=36(1-t )2+12t 2+36(1-t )t =12t 2-36t +36=12⎝ ⎛⎭⎪⎫t -322+9≥9,当且仅当t =32时|OA →+tAB →|取得最小值,最小值是3.选C.法二:作AC →=tAB →,连接OC ,则点C 在直线AB 上,|OA →+tAB →|=|OA →+AC →|=|OC →|,|OC →|的最小值即点O 到直线AB 的距离.在△OAB 中,AB =OA 2+OB 2-2OA ·OB ·cos 30°=23=OB ,∠BAO =30°,AB 边上的高为OB ·sin 60°=3,即|O C →|的最小值为3,|OA →+tAB →|的最小值是3.选C.10.(2024·北京西城区期末)设a ,b 是不共线的两个平面对量,已知PQ →=a +k b ,QR →=2a -b .若P ,Q ,R 三点共线,则实数k 的值为________.解析:∵a ,b 是不共线的两个平面对量, ∴2a -b ≠0,即QR →≠0.∵P ,Q ,R 三点共线,∴PQ →与QR →共线,∴存在λ,使PQ →=λQR →,∴a +k b =2λa -λb ,∴依据平面对量基本定理得⎩⎪⎨⎪⎧2λ=1,k =-λ,解得k =-12.答案:-1211.(2024·合肥测试)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF 交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.解析:设CG →=xCE →(x >0),则CG →=x (CB →+BE →)=x ⎝⎛⎭⎪⎫CB →+12CD →=x 2C D →+xCB →.因为C G →=λCD→+μCB →,CD →与C B →不共线,所以λ=x 2,μ=x ,所以λμ=12.答案:1212.如图,在平面直角坐标系xOy 中,点A (3,1)在以原点O 为圆心的圆上.已知圆O 与y 轴正半轴的交点为P ,延长AP 至点B ,使得∠AOB =90°,则BP →·OA →=________,|BP →+OA →|=________.解析:由题可得圆O 的半径r =3+1=2,所以P (0,2),则AP 所在直线方程为y -2=2-10-3(x -0),即y =-33x +2.设B ⎝ ⎛⎭⎪⎫x ,-33x +2, 则OA →=(3,1),OB →=⎝ ⎛⎭⎪⎫x ,-33x +2.由∠AOB =90°,可得OA →·OB →=0, 所以3x -33x +2=233x +2=0, 解得x =-3,所以B (-3,3),所以BP →=(3,-1), 所以BP →·OA →=3×3+1×(-1)=2, |BP →+OA →|=|(23,0)|=2 3. 答案:2 2 3。
学 习 资 料 汇编课时跟踪检测(六)A 组——12+4提速练一、选择题1.(2017·成都模拟)在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=( ) A .12 B .18 C .24D .30解析:选B ∵a 3+a 5+a 7=a 3(1+q 2+q 4)=6(1+q 2+q 4)=78,解得q 2=3,∴a 5=a 3q 2=6×3=18.故选B.2.(2017·兰州模拟)已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( ) A .36 B .72 C .144D .288解析:选B ∵a 8+a 10=2a 9=28,∴a 9=14,∴S 9=a 1+a 92=72.3.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.4.设等比数列{}a n 的前n 项和为S n ,若S 1=13a 2-13,S 2=13a 3-13,则公比q =( )A .1B .4C .4或0D .8解析:选B ∵S 1=13a 2-13,S 2=13a 3-13,∴⎩⎪⎨⎪⎧a 1=13a 1q -13,a 1+a 1q =13a 1q 2-13,解得⎩⎪⎨⎪⎧a 1=1,q =4或⎩⎪⎨⎪⎧a 1=-13,q =0(舍去),故所求的公比q =4.5.已知S n 是公差不为0的等差数列{}a n 的前n 项和,且S 1,S 2,S 4成等比数列,则a 2+a 3a 1的值为( )A .4B .6C .8D .10解析:选C 设数列{}a n 的公差为d ,则S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d ,故(2a 1+d )2=a 1(4a 1+6d ),整理得d =2a 1,所以a 2+a 3a 1=2a 1+3d a 1=8a 1a 1=8. 6.(2018届高三·湖南十校联考)已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( )A .72B .88C .92D .98解析:选C 由S n +1=S n +a n +3,得a n +1-a n =3,所以数列{a n }是公差为3的等差数列,S 8=a 1+a 82=a 4+a 52=92.7.已知数列{}a n 满足a n +1=⎩⎪⎨⎪⎧2a n ,0≤a n <12,2a n-1,12≤a n<1.若a 1=35,则a 2 018=( )A.15B.25C.35D.45解析:选A 因为a 1=35,根据题意得a 2=15,a 3=25,a 4=45,a 5=35,所以数列{}a n 以4为周期,又2 018=504×4+2,所以a 2 018=a 2=15,故选A.8.若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( )A.32B.94C .1D .2解析:选D 设等比数列的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9,a 1·a 1q ·a 1q 2·a 1q 3=814,化简得a 21q 3=92,则1a 1+1a 1q +1a 1q 2+1a 1q3=a 1+a 1q +a 1q 2+a 1q 3a 21q3=2. 9.(2017·广州模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( )A.5-12 B.5+12C.3-52D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q 2a 4+a 4q 2=a 3+q2a 4+q2=1q=25+1=5-12,故选A. 10.(2017·张掖模拟)等差数列{a n }中,a na 2n是一个与n 无关的常数,则该常数的可能值的集合为( )A .{1}B.⎩⎨⎧⎭⎬⎫1,12 C.⎩⎨⎧⎭⎬⎫12 D.⎩⎨⎧⎭⎬⎫0,12,1解析:选Ba n a 2n =a 1+n -d a 1+n -d =a 1-d +nd a 1-d +2nd ,若a 1=d ≠0,则a n a 2n =12;若a 1≠0,d =0,则a n a 2n =1.∵a 1-d +nd ≠0,∴a na 2n ≠0,∴该常数的可能值的集合为⎩⎨⎧⎭⎬⎫1,12.11.(2018届高三·湖南十校联考)等差数列{a n }的前n 项和为S n ,且a 1<0,若存在自然数m ≥3,使得a m =S m ,则当n >m 时,S n 与a n 的大小关系是( )A .S n <a nB .S n ≤a nC .S n >a nD .大小不能确定解析:选C 若a 1<0,存在自然数m ≥3,使得a m =S m ,则d >0,否则若d ≤0,数列是递减数列或常数列,则恒有S m <a m ,不存在a m =S m .由于a 1<0,d >0,当m ≥3时,有a m =S m ,因此a m >0,S m >0,又S n =S m +a m +1+…+a n ,显然S n >a n .故选C.12.(2017·洛阳模拟)等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,则当n ∈N *时,S n -1S n的最大值与最小值之和为( )A .-23B .-712C.14D.56解析:选C 依题意得,S n =32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=1-⎝ ⎛⎭⎪⎫-12n.当n 为奇数时,S n =1+12n 随着n 的增大而减小,1<S n =1+12n ≤S 1=32,S n -1S n 随着S n 的增大而增大,0<S n -1S n ≤56;当n 为偶数时,S n =1-12n 随着n 的增大而增大,34=S 2≤S n =1-12n <1,S n -1S n 随着S n 的增大而增大,-712≤S n -1S n <0.因此S n -1S n 的最大值与最小值分别为56,-712,其最大值与最小值之和为56+⎝ ⎛⎭⎪⎫-712=14.二、填空题13.(2017·合肥质检)已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项和S 9=________.解析:由已知,得a 2n +1=4a n a n +1-4a 2n ,即a 2n +1-4a n a n +1+4a 2n =(a n +1-2a n )2=0,所以a n +1=2a n ,又因为a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故S 9=-291-2=210-2=1022.答案:1 02214.(2017·兰州模拟)已知数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且当n ≥2时,有2a na n S n -S 2n=1成立,则S 2 017=________.解析:当n ≥2时,由2a n a n S n -S 2n =1,得2(S n -S n -1)=(S n -S n -1)S n -S 2n =-S n S n -1,∴2S n -2S n -1=1,又2S 1=2,∴⎩⎨⎧⎭⎬⎫2S n 是以2为首项,1为公差的等差数列,∴2S n =n +1,故S n =2n +1,则S 2 017=11 009. 答案:11 00915.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n·⎝ ⎛⎭⎪⎫12-12n n ()=223+22n n n -=227+22n n -.记t =-n 22+7n2=-12(n 2-7n )=-12⎝ ⎛⎭⎪⎫n -722+498,结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:6416.(2017·广州模拟)设S n 为数列{a n }的前n 项和,已知a 1=2,对任意p ,q ∈N *,都有a p +q=a p +a q ,则f (n )=S n +60n +1(n ∈N *)的最小值为________. 解析:a 1=2,对任意p ,q ∈N *,都有a p +q =a p +a q ,令p =1,q =n ,则有a n +1=a n +a 1=a n + 2.故{a n }是等差数列,所以a n =2n ,S n =2×+n n 2=n 2+n ,f (n )=S n +60n +1=n 2+n +60n +1=n +2-n ++60n +1=n +1+60n +1-1.当n +1=8,即n =7时,f (7)=8+608-1=292;当n+1=7,即n =6时,f (6)=7+607-1=1027,因为292<1027,则f (n )=S n +60n +1(n ∈N *)的最小值为292.答案:292B 组——能力小题保分练1.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值为( )A .6B .7C .8D .9解析:选D 不妨设a >b ,由题意得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,∴a >0,b >0,则a ,-2,b 成等比数列,a ,b ,-2成等差数列,∴⎩⎪⎨⎪⎧ab =-2,a -2=2b ,∴⎩⎪⎨⎪⎧a =4,b =1,∴p =5,q =4,∴p +q =9.2.(2017·郑州质检)已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( )A.⎝ ⎛⎭⎪⎫13,+∞B.⎣⎢⎡⎭⎪⎫13,+∞C.⎝ ⎛⎭⎪⎫23,+∞ D.⎣⎢⎡⎭⎪⎫23,+∞ 解析:选D 依题意得,当n ≥2时,a n =a 1a 2a 3…a na 1a 2a 3…a n -1=2n2n -2=2n 2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1=12×⎝ ⎛⎭⎪⎫14n -1,即数列⎩⎨⎧⎭⎬⎫1a n 是以12为首项,14为公比的等比数列,等比数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和等于12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n <23,因此实数t 的取值范围是⎣⎢⎡⎭⎪⎫23,+∞. 3.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k=________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n n +2,1S n =2nn +=2⎝ ⎛⎭⎪⎫1n -1n +1, 因此∑k =1n1S k =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2n n +1.答案:2nn +14.(2017·兰州模拟)已知数列{a n },{b n },若b 1=0,a n =1nn +,当n ≥2时,有b n =b n-1+a n -1,则b 2 018=________.解析:由b n =b n -1+a n -1,得b n -b n -1=a n -1,∴b 2-b 1=a 1,b 3-b 2=a 2,…,b n -b n -1=a n -1,∴b 2-b 1+b 3-b 2+…+b n -b n -1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -n,即b n -b 1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -n =11-12+12-13+…+1n -1-1n =1-1n =n -1n,∵b 1=0,∴b n =n -1n ,∴b 2 018=2 0172 018.答案:2 0172 0185.(2017·石家庄质检)已知数列{a n }的前n 项和为S n ,数列{a n }为12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n,…,若S k =14,则a k =________. 解析:因为1n +2n +…+n -1n =1+2+…+n -1n =n 2-12,1n +1+2n +1+…+n n +1=1+2+…+nn +1=n 2,所以数列12,13+23,14+24+34,…,1n +1+2n +1+…+n n +1是首项为12,公差为12的等差数列,所以该数列的前n 项和T n =12+1+32+…+n 2=n 2+n 4.令T n =n 2+n 4=14,解得n =7(n =-8舍去),所以a k =78.答案:786.在数列{a n }和{b n }中,a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n ,a 1=1,b 1=1.设c n=1a n +1b n,则数列{c n }的前2 018项和为________.解析:由已知a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 得a n +1+b n +1=2(a n +b n ),又a 1+b 1=2,所以数列{a n +b n }是首项为2,公比为2的等比数列,即a n +b n =2n,将a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 相乘并化简,得a n +1b n +1=2a n b n ,即a n +1b n +1a n b n =2.所以数列{a n b n }是首项为1,公比为2的等比数列,所以a n b n =2n -1,因为c n =1a n +1b n ,所以c n =a n +b n a n b n =2n2n -1=2,数列{c n }的前2 018项和为2×2 018=4 036.答案:4 036敬请批评指正。