浙江省衢州市2018-2019学年七年级上学期数学期中试卷含答案解析
- 格式:docx
- 大小:144.21 KB
- 文档页数:11
2018-2019学年浙江省衢州市Q21教学联盟七年级(上)期中数学试卷1.长城总长约为6700000米,用科学记数法表示正确的是()A. 6.7×108米B. 6.7×107米C. 6.7×106米D. 6.7×105米2.下列有理数−(−2),(−1)6,−|−5|,−3.14,0,其中负数的个数有()A. 1个B. 2个C. 3个D. 4个3.在代数式x2+5,−1,x2−3x+2,√2,x2+1x ,x+13中,整式有()A. 3个B. 4个C. 5个D. 6个4.下列各组是同类项的一组是()A. x2y与−xy2B. 3x2y与−4x2yzC. a3与b3D. −2a3b与12a3b5.下列等式一定成立的是()A. a⋅a2=a2B. a2÷a=2C. 2a2+a2=3a4D. (−a)3=−a36.下列计算正确的是()A. (−5)−5=0B. (−12)×(−2)=1C. 2−(−1)=−3D. −23=−67.下列各组运算中,运算后结果相等的是()A. 43和34B. −42和(−4)2C. (−3)3和−33D. −334和(−34)38.下列说法,其中正确的个数为()①正数和负数统称为有理数;②x是实数,且x2=a,则a>0;③3是9的算术平方根;④如果一个数有立方根,那么它一定有平方根;⑤−a一定在原点的左边.A. 1个B. 2个C. 3个D. 4个9.实数a、b在数轴上的位置如图所示,下列各式正确的是()A. a+b>0B. a−b<0C. ab>0D. |b|>a10.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和−1,若△ABC绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1;则翻转2018次后,点B所对应的数是()A. 2017B. 2016.5C. 2015.5D. 201511. 若x 2=9,则x = ______ ,√x 2=9,则x = ______ . 12. 近似数5.70万精确到______位. 13. 比较大小:(1)−13______0; (2)0.05______−|−1|; (3)−23______−35. 14. 单项式−5ab 38的系数是______ ,次数是______ .15. 已知代数式2x 2−3x +9的值为7,则x 2−32x +9的值为______. 16. 已知a 的相反数是5,|b|=4,则|a +b|−|a −b|=______.17. 对于两个不相等的实数a 、b ,定义一种新的运算如下:a ∗b =√a+ba−b(a +b >0),如:3∗2=√3+23−2=√5,那么7∗(6∗3)= ______ . 18. 已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图①、图②,那么,图①中阴影部分的周长与图②中阴影部分的周长的差是______(用含a 的代数式表示).19. 把下列各数填入表示它所在的数集的大括号:−2.3,π,−√25,−310,−0.15,0,−9,√93,|√−13|.整数集合:{______…}; 正数集合:{______…}; 无理数集合:{______…}.20. 计算下列各式:(1)(−27+79−421)×(−63).(2)−1100−(1−0.5)×13×[3−(−3)2].(3)√64÷√273−√(−13)2.21. 若a ,b 互为相反数,c ,d 互为倒数,|m|=2,求a −(−b)−mcd 的值.22. 先化简,再求值:x 2−3(2x 2−4y)+2(x 2−y),其中x =−2,y =15。
2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共计36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在括号内)1.(3分)在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数分析:本题可根据数轴的定义,原点表示的数是0,原点右边的点表示的数是正数,都是非负数.解答:解:依题意得:原点及原点右边所表示的数大于或等于0.故选D.点评:解答此题只要知道数轴的定义即可.在数轴上原点左边表示的数为负数,原点右边表示的数为正数,原点表示数0.2.(3分)当x=1时,代数式2x+5的值为()A. 3 B. 5 C.7 D.﹣2考点:代数式求值.专题:计算题.分析:将x=1代入代数式2x+5即可求得它的值.解答:解:当x=1时,2x+5=2×1+5=7.故选:C.点评:本题考查代数式的求值问题,直接把值代入即可.3.(3分)计算:﹣32+(﹣2)3的值是()A.0 B.﹣17 C.1D.﹣1考点:有理数的乘方.专题:计算题.分析:根据有理数的乘方法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:﹣32+(﹣2)3=﹣9﹣8=﹣17.故选B.点评:本题考查了有理数的乘方法则,解题的关键是牢记法则,此题比较简单,易于掌握.4.(3分)x增加2倍的值比x扩大5倍少3,列方程得()A.2x=5x+3 B.2x=5x﹣3 C.3x=5x+3 D.3x=5x﹣3考点:由实际问题抽象出一元一次方程.专题:和差倍关系问题.分析:首先理解题意,x增加2倍即是3x,x扩大5倍即为5x,从而列出方程即可.解答:解:因为x增加2倍的值应为x+2x=3x,x扩大5倍即为5x,所以由题意可得出方程:3x=5x﹣3.故选D.点评:此题的关键是理解增加和扩大的含义,否则很容易出错.5.(3分)方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C. 2 D.8考点:方程的解.分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.点评:本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a 的方程.6.(3分)如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为()A.0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.7.(3分)减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+4考点:整式的加减.分析:设该整式为A,则A﹣(2﹣x)=3x2﹣x+6,求出A即可.解答:解:设该整式为A,∵A减去2﹣x等于3x2﹣x+6,∴A﹣(2﹣x)=3x2﹣x+6,∴A=3x2﹣x+6+2﹣x=3x2﹣2x+8.故选A.点评:本题考查的是整式的加减,熟知整式加减的法则是解答此题的关键.8.(3分)在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a<0,b>0,那么ab<0;④多项式a2﹣2a+1是二次三项式中,正确的个数有()A.1个B.2个C.3个D. 4个考点:不等式的性质;近似数和有效数字;多项式.分析:根据有效数字、精确度的定义,有理数的乘法符号法则及多项式的次数和项数的定义作答.解答:解:①正确;②近似数2.5万精确到千位,错误;③正确;④正确.故选C.点评:本题主要考查了有效数字、精确度、多项式的次数和项数的定义,以及有理数的乘法符号法则.有效数字:在四舍五入后的近似数中,从左边第一个不是0的数字起到右边最后一个精确的数位止,所有的数字都叫它的有效数字.精确度:一个近似数,四舍五入到哪一位,就叫精确到哪一位.有理数的乘法符号法则:两数相乘,同号得正,异号得负.多项式的次数:一个多项式中,次数最高项的次数叫做这个多项式的次数.多项式的项数:一个多项式含有几项,就叫几项式.9.(3分)一批电脑进价为a元,加上20%的利润后优惠8%出售,则售出价为()A.a(1+20%)B.a(1+20%)8% C.a(1+20%)(1﹣8%)D.8%a考点:列代数式.分析:此题要根据题意列出代数式.可先求加上20%的利润价格后,再求出又优惠8%的价格.解答:解:依题意可知加上20%的利润后价格为a(1+20%)又优惠8%的价格是a(1+20%)(1﹣8%)∴售出价为a(1+20%)(1﹣8%).故选C.点评:读懂题意,找到关键语列出代数式.需注意用字母表示数时,在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号.10.(3分)已知有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.a﹣b>0 C.a﹣1>0 D.b+1>0考点:数轴.分析:根据数轴上a|的位置可以判定a与b大小与符号;然后据此来求a、b与1的大小比较.解答:解:根据图示知:b<﹣1<0<a<1;∴a+b<0,a﹣b>0,a﹣1<0,b+1<0.故选B.点评:本题考查了数轴.解答本题时,需注意:b在﹣1的左边,a在1的左边.11.(3分)个位数字为a,十位数字为b,则这个两位数可用代数式表示为()A.ab B.ba C.10a+b D. 10b+a考点:列代数式.分析:两位数=10×十位数字+个位数字,把相关字母代入即可求解.解答:解:∵个位上的数字是a,十位上的数字是b,∴这个两位数可表示为10b+a.故选:D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.12.(3分)小明在一张日历上圈出一个竖列且相邻的三个日期,算出它们的和是48,则这三天分别是()A.6,16,26 B.15,16,17 C.9,16,23 D.不确定考点:一元一次方程的应用.专题:数字问题.分析:竖列且相邻的三个日期,则上边的数总比下边的数小7,根据这个关系可以设中间的数是x,列出方程求解.解答:解:设中间的数是x,则上边的数是x﹣7,下边的数是x+7,根据题意列方程得:x+(x﹣7)+(x+7)=48解得:x=16,x﹣7=9,x+7=23这三天分别是9,16,23.故选C.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题(本大题共10小题,每题3分,共计30分.不需写出解答过程,请把答案直接填写在横线上)13.(4分)单项式的系数是,次数是3.考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.14.(4分)比较大小:﹣3<2;﹣>﹣|﹣|.考点:有理数大小比较.专题:计算题.分析:根据正数大于一切负数进行比较即可;先比较两个数的绝对值的大小,再根据两个负数相比较,绝对值大的反而小比较即可.解答:解:﹣3<2;|﹣|=,﹣|﹣|=﹣,|﹣|=,=,=,<,∴﹣>﹣|﹣|.故答案为:<,>.点评:本题考查了有理数的大小比较,熟记正数大于一切负数,两个负数相比较,绝对值大的反而小是解题的关键.15.(4分)已知:2x+3y=4,则代数式(2x+3y)2+4x+6y﹣2的值是22.考点:代数式求值.专题:整体思想.分析:把2x+3y的值整体代入所求代数式求值即可.解答:解:当2x+3y=4时,原式=(2x+3y)2+2(2x+3y)﹣2=42+2×4﹣2=22.点评:代数式求值以及整体代入的思想.16.(4分)若单项式与﹣2x m y3是同类项,则m﹣n的值为﹣1.考点:同类项.专题:计算题.分析:此题的切入点是由同类项列等式.由已知与﹣2x m y3是同类项,根据其意义可得,x2=x m,y n=y3,所以能求出m,n的值.解答:解:∵单项式与﹣2x m y3是同类项,∴x2=x m,y n=y3,∴m=2,n=3,则m﹣n=2﹣3=﹣1,故答案为:﹣1点评:此题考查了学生对同类项的理解和掌握.关键是根据题意得出关系式x2=x m,y n=y3求得m,n的值.17.(4分)如果3x5a﹣2=﹣6是关于x的一元一次方程,那么a=,方程的解x=﹣2.考点:一元一次方程的定义.专题:计算题.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:由一元一次方程的特点得5a﹣2=1,解得:a=,故原方程可化为3x=﹣6,解得:x=﹣2.点评:判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1,此类题目可严格按照定义解题.18.(4分)2008年北京奥运会火炬接力传递距离约为137000千米,将137000用科学记数法表示为 1.37×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:137000=1.37×105,故答案为:1.37×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(4分)某股票星期一收盘时每股18元,星期二收盘每股跌了1.8元,星期三收盘每股涨了1.1元,则星期三的收盘价为每股17.3元.考点:有理数的加减混合运算.专题:应用题.分析:根据股票的涨跌信息,转化为数学问题,这里根据具有相反意义的量规定一个为正,则另一个为负,再运用有理数的加减混合运算规则.就可以容易的得到答案.解答:解:星期三的收盘价为每股18+(﹣1.8)+1.1=17.3元.故答案为:17.3.点评:考查了有理数的加减混合运算.有理数加减混合运算的方法:有理数加减法统一成加法.方法指引:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.20.(4分)按下面程序计算:输入x=﹣3,则输出的答案是﹣12.考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.21.(4分)若m、n满足|m﹣2|+(n+3)2=0,则n m=9.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.22.(4分)有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水15升.考点:一元一次方程的应用.专题:应用题.分析:要求甲桶应向乙桶倒水多少,可先设甲桶应向乙桶倒水x升,然后根据甲桶﹣倒水=乙桶+倒水这个等量关系列出方程求解.解答:解:设甲桶应向乙桶倒水x升.则180﹣x=150+x解得:x=15故填15.点评:此题的关键是找出等量关系,即:甲桶﹣倒水=乙桶+倒水.三、解答题(本大题共5小题,23至28小题每题8分,共计84分,请在指定区域内作答,解答时应写出必要文字说明、证明过程或演算步骤.)23.(16分)(1)1+(﹣1)+4﹣4(2)﹣14+(1﹣0.5)××|2﹣(﹣3)2|(3)6a2+4ab﹣4(2a2+ab)(4)2(a2﹣2ab﹣b2)+(a2+3ab+3b2)(5)3x﹣(2x+7)=32(6)=1﹣.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果;(5)方程去括号,移项合并,将x系数化为1,即可求出解;(6)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)原式=6﹣6=0;(2)原式=﹣1+××7=﹣1+=;(3)原式=6a2+4ab﹣8a2﹣2ab=﹣2a2+2ab;(4)原式=2a2﹣4ab﹣2b2+a2+3ab+3b2=3a2﹣ab+b2;(5)方程去括号得:3x﹣2x﹣7=32,移项合并得:x=41;(6)去分母得:10x+5=15﹣3x+3.移项合并得:13x=13,解得:x=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(14分)有这样一道计算题:“计算2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2的值,其中x=,y=﹣1”,王聪同学把“x=”错看成“x=﹣”,但计算结果仍正确,许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.考点:整式的混合运算—化简求值.分析:先将2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2合并同类项,再进行分析.解答:解:将原式合并同类项得﹣2y2,此代数式与x的取值无关,所以王聪将“x=”错看成“x=﹣”,计算结果仍正确;又因为当y取互为相反数时,﹣2y2的值相同,所以许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的.点评:本题是一道生活问题,解答时要读出题中的隐含条件:把“x=”错看成“x=﹣”,但计算结果仍正确,即可考虑此代数式与x的取值无关,进而想到先合并同类项.25.(16分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一21 二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?考点:有理数的加法.专题:应用题;图表型.分析:(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.解答:解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.26.(12分)列方程解应用题.把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本.这个班有多少名学生?考点:一元一次方程的应用.专题:应用题.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.解答:解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中书的总量相等的等量关系列出方程,再求解.27.(16分)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1;当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1,x=﹣5.(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b+1 ①无解;②只有一个解;③有两个解.考点:同解方程.专题:应用题;分类讨论.分析:(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)运用分类讨论进行解答.解答:答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解.点评:此题比较难,提高了学生的分析能力,解题的关键是认真审题.。
衢州市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各式中结果为负数的是()A . ﹣(﹣3)B . (﹣3)2C . ﹣|﹣3|D . |﹣32|2. (2分)甲、乙、丙三地的海拔高度分别为20 m,-15 m和-10 m,那么最高的地方比最低的地方高()A . 5mB . 10mC . 25mD . 35m3. (2分)今年我市参加中考的学生人数约为6.01×104人.对于这个近似数,下列说法正确的是()A . 精确到百分位,有3个有效数字B . 精确到百位,有3个有效数字C . 精确到十位,有4个有效数字D . 精确到个位,有5个有效数字4. (2分)如果|x|=|-5|,那么x等于()A . 5B . -5C . +5或-5D . 以上都不对5. (2分)下列运算中,结果是a18的是()A . a9+a9B . a3a6C . (a3)6D . (a2a3)36. (2分) (2019七上·凤山期中) 有理数a,b在数轴上的位置如图所示,则a,b两数的商为()A . -4B . - 1C . 0D . 17. (2分)下列判断中不正确的是()A . 单项式m的次数是0B . 单项式y的系数是1C . ,-2a都是单项式D . +1是二次三项式8. (2分)一天早晨的气温是,中午上升了,半夜又下降了,半夜的气温是()A .B .C .D .9. (2分) (2016七上·肇源月考) 兄弟俩集邮,哥哥的邮票比弟弟多,弟弟的邮票比哥哥少()A .B .C .D .10. (2分)在下列各数:﹣(﹣3),(﹣2)×(﹣),﹣|﹣3|,﹣|a|+1中,负数的个数为()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共9分)11. (1分) (2019七上·江干期末) 如图,在生产图纸上通常用来表示轴的加工要求,这里F300表示直径是,+0.2和-0.5是指直径在到之间的产品都属于合格产品。
浙江省衢州市2018-2019学年七年级上学期数学期中考试试卷一、单选题1.在-2,0,,1,这四个数中,最大的数是( )A.-2B.0C.D.1【答案】D【考点】有理数大小比较【解析】【解答】解:∵1>>0>-2∴最大的数是1故答案为:D【分析】利用有理数的大小比较方法,可得出答案。
2.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A. 7.14×103m2B. 7.14×104m2C. 2.5×105m2D. 2.5×106m2【答案】C【考点】科学记数法—表示绝对值较大的数,有理数的乘法【解析】【解答】解:由题意得:7140×35=249900≈2.5×105m2故答案为:C【分析】根据题意列式计算可解答。
3.如图为张小亮的答卷,他的得分应是( )A.100分B.80分C.60分D.40分【答案】B【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,立方根及开立方,平均数及其计算【解析】【解答】解:①-1的绝对值是1,故①正确;②2的倒数是,故②错误;③-2的相反数是2,故③正确;④1的立方根是1,故④正确;⑤-1和7的平均数为:(-1+7)÷2=3,故⑤正确;小亮的得分为:4×20=80分故答案为:B【分析】利用绝对值、相反数、倒数、立方根的定义及平均数的计算方法,对各个小题逐一判断,就可得出小亮答对的题数,再计算出他的得分。
4.下列各数中,2.3,,3.141141114…,无理数的个数有( )A.2个B.3个C.4个D.5个【答案】B【考点】无理数的认识【解析】【解答】解:∵∴无理数有:、、3.141141114…一共3个故答案为:B【分析】根据无限不循环的小数是无理数;开方开不尽的数是无理数,含的数是无理数,就可得出答案。
七年级上册数学期中考试题【含答案】一、选择题(每小题3分,共30分)1.下列各组数中,互为相反数的是()A.2和-2B.-2和C.-2和-D.和22.如图QZ2-1,点M表示的数可能是()图QZ2-1A.1.5B.-1.5C.2.5D.-2.53.一个圆的面积是πa2b m,如果这个单项式是一个六次单项式,那么指数m等于()A.1B.2C.3D.44.化简m+n-(m-n)的结果为()A.2mB.-2mC.2nD.-2n5.下列计算结果中,正确的是()A.(-9)÷(-3)2=1B.(-9)2÷(-32)=-9C.-(-2)3×(-3)2=1D.-(-2)6×(-3)2=-86.2017年某市生产总值约2450亿元,将2450....亿.用科学记数法表示为()A.0.245×104B.2.45×103C.24.5×1010D.2.45×10117.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式-x3y2的系数是-1D.3x2-y+5xy2是二次三项式8.某种商品原价是m元,第一次降价打八折,第二次降价每件又减15元,第二次降价后的售价是()A.0.8m元B.0.2m元C.(0.8m-15)元D.(0.2m-15)元9.若整式2x2+3x+7的值是8,则整式4x2+6x+15的值是()A.2B.17C.3D.1610.若a<-1,下面4个结论:①|a|>a;②a>-a;③<a;④>a,其中不正确的有()A.0个B.1个C.2个D.3个请将选择题答案填入下表:第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.-的绝对值的相反数是.12.比较大小:--(填“>”“=”或“<”).13.点A在数轴上距原点5个单位长度,且位于原点左侧,若将点A向右移动4个单位长度,再向左移动1个单位长度,此时点A表示的数是.14.按照如图QZ2-2所示的操作步骤,若输入的x的值为2.5,则输出的值为.图QZ2-215.若一个长方形的周长为2a-4b+6,长比宽多a-3,则这个长方形的宽是.16.图形表示运算a-b+c,图形x my n表示运算x+n-y-m,则×4 567=.三、解答题(共52分)17.(6分)计算:(1)(-24)÷-2+×--0.25;(2)--×|-24|-×-×(-8).18.(6分)化简:(7x2-4xy+2y2)-2-,并求当x=1,y=-1时,其值为多少.19.(6分)电力工人开车沿着一条南北方向的公路来回行驶,某天早晨从A地出发,晚上到达了B地,约定向北为正,向南为负,当天行驶的各段路程记录如下(单位:千米):-17,+8,+6,-14,-8,+17,+5,-6.(1)问B地在A地何处,相距多少千米?(2)若汽车每千米耗油0.2升,那么这一天共耗油多少升?20.(6分)某食品厂从生产的袋装食品中抽出样品8袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这8袋样品的总质量比标准质量多还是少?多或少几克?(2)若标准质量为500克,则抽样检测这8袋的总质量是多少?21.(6分)邮购一种图书,每本定价为m元,不足100本时,另加总书价的5%作为邮费.(1)当邮购x(x<100且为正整数)本书时,总计金额是多少元?(2)当一次邮购超过100本时,本店除免付邮费外,同时还给予优惠10%,计算当m=3.2,x=120时的总计金额是多少元.22.(6分)已知两个关于x,y的单项式mx a y3与-2nx3y3b-6是同类项(其中xy≠0).(1)求a,b的值;(2)如果它们的和为零,求(m-2n-1)2017的值.23.(8分)明明在计算机中设计了一个有理数运算的程序:a*b=a2-b2-2(a3-1)-÷(a-b).当输入a,b的数据时,屏幕会根据运算程序显示出结果.(1)求(-2)*的值;(2)芳芳在运用这个程序计算时,输入a,b的数据后屏幕显示“操作无法进行”,请你猜想芳芳输入数据时可能出现了什么情况,为什么?24.(8分)将连续的奇数1,3,5,7,9,…,排列成如图QZ2-3所示的数表:图QZ2-3(1)十字框中的五个数的和与中间数23有什么关系?(2)设中间数为a,用式子表示十字框中五个数之和.(3)将十字框上、下、左、右平移,可框住另外五个数,这五个数还有这种规律吗?(4)十字框中的五个数之和能等于2015吗?若能,请写出这五个数;若不能,请说明理由.阶段综合测试二(期中)1.A2.D3.D4.C5.B6.D7.C8. C9.B10.C11.-12.<13.-214.2015. -b+316.017.解:(1)原式=-16×-×-=---=-.(2)原式=-×24-×24+×24-××8=-6-12+16-25=-43+16=-27.18.解:原式=5x2-4xy+5y2.当x=1,y=-1时,原式=5×12-4×1×(-1)+5×(-1)2=14.19.解:(1)∵(-17)+(+8)+(+6)+(-14)+(-8)+(+17)+(+5)+(-6)=-9,∴B地在A地南边9千米处.(2)|-17|+|+8|+|+6|+|-14|+|-8|+|+17|+|+5|+|-6|=81(千米),81×0.2=16.2(升).答:这一天共耗油16.2升.20.解:(1)由题意,得-3×1+(-1)×2+0×3+2×2=-1(克).答:这8袋样品的总质量比标准质量少,少1克.(2)500×8+(-1)=4000-1=3999(克).答:抽样检测这8袋的总质量是3999克.21.解:(1)邮购的本数不足100本时,总计金额为(1+5%)mx=1.05mx(元).(2)邮购的本数超过100本时,总计金额为(1-10%)mx=0.9mx(元).当m=3.2,x=120时,0.9mx=0.9×3.2×120=345.6(元).答:当m=3.2,x=120时的总计金额为345.6元.22.解:(1)依题意,得a=3,3b-6=3,解得a=3,b=3.(2)∵mx3y3+(-2nx3y3)=0,∴m-2n=0,∴(m-2n-1)2017=(-1)2017=-1.23.解:(人教版七年级(上)期中模拟数学试卷【含答案】一、选择题(本题有10个小题,每小题3分,满分30分。
2018—2019学年第二学期七年级期中测试数学试题卷一、选择题(共10小题,每题3分,共30分)1.在同一网格中,下列选项中的直线,与如图中的线段平行的是( )A .B .C .D .2.下列运算中结果正确的个数为( )①236a a a ⋅=②()236aa =③()333ab a b =④55a a a ÷= A .1 B .2 C .3 D .4 3.如图,165∠=︒,//CD EB ,则B ∠的度数为( )A .115︒B .110︒C .105︒D .65︒4.在下列运算中,正确的是( )A .()222x y x y −=− B .()()2236a a a +−=− C .()222244a b a ab b +=++D .()()22222x y x y x y −+=− 5.如果方程组4x y m x y m +=⎧⎨−=⎩的解是二元一次方程35300x y −−=的一个解,那么m 的值为( ) A .7 B .6 C .3 D .26.如图,下列条件:①12∠=∠;②34∠=∠;③5B ∠=∠;④1180ACE ∠+∠=︒.其中,能判定//AD BE 的条件有( )A .4个B .3个C .2个D .1个7.为丰富同学们的课余活动,某校计划成立足球和篮球课外兴趣小组,现需购买篮球和足球若干个,已知购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元,问篮球和足球各买了多少个?设购买篮球x 个,购买足球y 个,可列方程组( )A .16030480x y x y −=⎧⎨+=⎩B .16030480x y x y =−⎧⎨+=⎩C .13060480x y x y =−⎧⎨+=⎩D .13060480x y x y −=⎧⎨+=⎩ 8.已知252a a −=,则代数式()()2221a a −++的值为( )A .11−B .1−C .1D .11 9.若25m =,43n =,则34n m −的值是( ) A .910 B .2725C .2D .4 10.在矩形ABCD 内,将两张边长分别为a 和b ()a b >的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分面积为1S ,图2中阴影部分的面积和为2S .则关于1S ,2S 的大小关系表述正确的是( )图1 图2A .12S S >B .12S S <C .12S S =D .无法确定二、填空题(共8小题,每题3分,共24分)11.()223242x y xy ÷=_______.12.结合下面图形列出关于未知数x ,y 的方程组为________.13.如图,已知//AB CD ,//AD BE ,40B ∠=︒,48E ∠=︒,则CDF ∠=_______度.14.如果2210x x m −+是完全平方式,则m =_________.15.如图,直线//a b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 作直线l 的垂线交直线b 于点C .若232∠=︒;则1∠的度数为_________︒.16.某电视台组织知识竞赛,共设20道选择题,各题分值相同,答对得分,答错扣分,每题必答.如表记录了4个参赛者的得分情况.若在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是_______.17.如图,小倩家买了一套新房,其结构如图所示(单位:m ).施工方已经根据合同约定把公共区域(客厅、餐厅、厨房、卫生间)铺上了地板砖,小倩打算把两个卧室铺上实木地板,则小倩需要准备的地板面积是________.18.若规定符号a b c d 的意义是:a b ad bc c d =−,则当3730m m −−=时,23122m m m m −−−的值为________. 三、解答题(共6小题,共46分)19.如图,//AB CD ,60A ∠=︒,C E ∠=∠,求E ∠.20.解方程组:(1)421x y y x +=⎧⎨=+⎩ (2)11233210x y x y +−=+=⎧⎪⎨⎪⎩ 21.计算:(1)2()2()x y x x y +−+;(2)2(1)(1)(1)a a a +−−−;(3)先化简,再求值:()322(2)(2)242x y x y x y x y xy +−−−÷,其中3x =−,12y =. 22.已知2a b +=,12ab =,求下列各式的值. (1)()()11a b −−; (2)()212a b − 23.列方程(组)解应用题:《九章算术》是中国古代第一部数学专著,也是世界上最早的印刷本数学书,它的出现标志着中国古代数学体系的形成.《九章算术》早在隋唐时期即已传入朝鲜、日本并被译成日、俄、德、法等多种文字版本.书中有如下问题:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?大意是:有几个人一起去买一件物品,如果每人出8元,则多了3元;如果每人出7元,则少了4元钱,问有多少人?该物品价值多少元?24.对于同一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到222()2a b a ab b +=++,请解答下列问题:图1 图2 图3(1)写出图2中所表示的数学等式________.(2)根据整式乘法的运算法则,通过计算验证(1)中的等式.(3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++=________.(4)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张边长分别为a 、b 的长方形纸片拼出一个面积为()()5794a b a b ++长方形,则x y z ++=__________. 2018—2019学年第二学期七年级期中测试数学试题卷参考答案及评分建议一、选择题(本题有10小题,每小题3分,共30分)1-5:CBACD 6-10:CBDBA二、填空题(本题有8小题,每小题3分,共24分)11.348x y 12.250325x y x y +=⎧⎨=+⎩ 13.88 14.5±15.58 16.64 17.210abm 18.6三、解答题(本题有6小题,共46分)19.解://AB CD ,60A ∠=︒,60DOE A ∴∠=∠=︒,180DOE COE ∠+∠=︒,180C E COE ∠+∠+∠=︒,DOE C E ∴∠=∠+∠,又C E ∠=∠,1302E DOE ∴∠=∠=︒.20.解:(1)421x y y x +=⎧⎨=+⎩①② 把②代入①得:()214x x ++=,解得:1x =,把1x =代入②得:213y =+=,即原方程组的解为:13x y =⎧⎨=⎩ (2)原方程组可整理得:3283210x y x y −=⎧⎨+=⎩①②①+②得:618x =,解得:3x =,把3x =代入①得:928y −=,解得:12y =, 即原方程组的解为:312x y =⎧⎪⎨=⎪⎩. 21.解:(1)222222()2()222x y x x y x xy y x xy y x +−+=++−−=−;(2)()222(1)(1)(1)12122a a a a a a a +−−−=−−−+=−;(3)()3222222(2)(2)2424242x y x y x y x y xy xy x xy y xy +−−−÷=−−+=−+ 当3x =−,12y =时,原式21142(3)13422⎛⎫⎛⎫=−⨯+⨯−⨯=−−=− ⎪ ⎪⎝⎭⎝⎭. 22.解:(1)原式1()1ab a b ab a b =−−+=−++, 当2a b +=,12ab =时, 原式112122=−+=−; (2)当2a b +=,12ab =时, 2221()()4244222a b a b ab −=+−=−⨯=−=,则211()2122a b −=⨯=. 23.解:设有x 人,该物品价值y 元,根据题意得:8374x y y x −=⎧⎨−=⎩解得:753x y =⎧⎨=⎩.答:有7人,该物品价值53元.24.解:(1)大正方形的面积()2a b c =++;大正方形的面积222222a b c ab ac bc =+++++. 2222()222a b c a b c ab ac bc ∴++=+++++.故答案为:2222()222a b c a b c ab ac bc ++=+++++.(2)证明:()()a b c a b c ++++, 222a ab ac ab b bc ac bc c =++++++++,222222a b c ab ac bc =+++++.(3)2222()222a b c a b c ab ac bc ++=++−−−, 2102()ab ac bc =−++100235=−⨯,30=.故答案为:30;(4)由题可知,所拼图形的面积为:22xa yb zab ++, (57)(94)a b a b ++,2245206328a ab ab b =+++,22452883a b ab =++,45x ∴=,28y =,83z =.452883156x y z ∴++=++=.故答案为:156.。
浙江省衢州市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·融安期中) 在有理数(-1)2、-()、-|-2|、(-2)3中负数有()个A . 4B . 3C . 2D . 12. (2分)实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是()A . ab>0B . a+b<0C .D . a-b<03. (2分)(2017·乌鲁木齐模拟) 新疆近年旅游业发展快速,每年都吸引众多海内外游客前来观光、旅游,据有关部门统计报道:2016年全疆共接待游客3354万人次,将3354万用科学记数法表示为()A . 3.354×106B . 3.354×107C . 3.354×108D . 33.54×1064. (2分) (2017七上·江门月考) 下列各组数中,相等的一组是()A . 和B . 和C . 和D . 和5. (2分)下列各式结果等于3的是()A . (﹣2)﹣(﹣9)+(+3)﹣(﹣1)B . 0﹣1+2﹣3+4﹣5C . 4.5﹣2.3+2.5﹣3.7+2D . ﹣2﹣(﹣7)+(﹣6)+0+(+3)6. (2分) (2018七上·湖州月考) 如图,数轴上 A,B 两点分别对应实数 a,b,则下列结论正确的是()A . a+b>0B . ab>0C . a-b>0D . a -b>07. (2分) (2016七上·抚顺期中) 下列几种说法中,正确的是()A . 0是最小的数B . 最大的负有理数是﹣1C . 任何有理数的绝对值都是正数D . 平方等于本身的数只有0和18. (2分)下列说法中正确的有()①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.A . 1个B . 2个C . 3个D . 4个9. (2分)(2011·华罗庚金杯竞赛) 船在江中顺水航行与逆水航行的速度之比为7:2,那么它在两港间往返一次的平均速度与顺水速度之比为()。
2018-2019学年七年级(上)期中数学试卷一、选择题(本大题共有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.若|x|=2016,则x等于()A.﹣2016 B.2016 C.D.±20162.比较﹣3,2,﹣2的大小,正确的是()A.﹣3<2<﹣2 B.﹣2<﹣3<2 C.2<﹣2<﹣3 D.﹣3<﹣2<23.从国家旅游局获悉,今年国庆期间全国共接待游客5.93亿人次,将5.93亿用科学记数法表示正确的是()A.5.93×107B.5.93×108C.5.93×109D.5.93×10104.有理数m、n在数轴上所对应的点的位置如图所示,则m+n的值()A.大于0 B.小于0 C.等于0 D.大于n5.某洗衣机厂原来库存洗衣机m台,现每天又生产n台存入库内,x天后该厂库存洗衣机的台数是()A.(m+nx)台B.(mx+n)台C.x(m+n)台D.(mn+x)台6.单项式﹣xy2的系数是()A.﹣1 B.3 C.D.﹣7.下列各组中是同类项的是()A.x与y B.3ab与3abc C.2mn与﹣2mn D.4x2y与4xy28.计算2x2﹣3x2的结果是()A.5x2B.﹣5x2C.x2D.﹣x29.下列方程中是一元一次方程的是()A.xy=2 B.2x2﹣x﹣1=0 C.x﹣2y=4 D.3(2x﹣7)=4(x﹣5)10.下列方程的变形中,正确的是()A.若y﹣4=8,则y=8﹣4B.若2(2x﹣3)=2,则4x﹣6=2C.若﹣x=4,则x=﹣2D.若﹣=1,则去分母得2﹣3(t﹣1)=1二.填空题(本大题共有8个小题,每小题3分,共24分)11.﹣的相反数是.12.计算:(﹣6)÷(﹣)= .13.按如图所示的程序计算.若输入x的值为3,则输出的值为.14.多项式5x4﹣3x3y2+2x2y+1的次数是.15.若x=﹣2是关于x的方程2x﹣5=3m的解,则m的值为.16.某种篮球打7折后每个篮球售价为140元,若设该篮球每个原价为x元,则可建立方程模型为.17.已知a2﹣2a=﹣1,则2016﹣3a2+6a= .18.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为.三、解答题(本大题共有7个小题,19、20、21题每小题8分,22、23、24题每小题8分,25题12分,共66分)19.计算:(﹣2)3+×[1﹣(﹣3)2].20.先化简,再求值:5xy﹣(2x2﹣xy)+2(x2+3),其中x=1,y=﹣2.21.解方程:.22.已知多项式A,B,其中A=x2﹣2x+1,小马在计算A+B时,由于粗心把A+B看成了A﹣B,求得结果为x2﹣4x,请你帮助小马算出A+B的正确结果.23.兴旺肉联厂的冷藏库能使冷藏食品每小时降温3℃,每开库一次,库内温度上升4℃,现有12℃的肉放入冷藏库,2小时后开了一次库,再过3小时后又开了一次库,再关上库门4小时后,肉的温度是多少摄氏度?24.当x=2时,代数式x 2+(t ﹣1)x ﹣3t 的值是1,求当x=﹣2时,该代数式的值.四、探究题(本大题共12分)25.已知x 1,x 2,x 3,…x 2016都是不等于0的有理数,若y 1=,求y 1的值.当x 1>0时,y 1===1;当x 1<0时,y 1===﹣1,所以y 1=±1(1)若y 2=+,求y 2的值(2)若y 3=++,则y 3的值为 ;(3)由以上探究猜想,y 2016=+++…+共有 个不同的值,在y 2016这些不同的值中,最大的值和最小的值的差等于 .参考答案与试题解析一、选择题(本大题共有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.若|x|=2016,则x等于()A.﹣2016 B.2016 C.D.±2016【考点】绝对值.【分析】根据绝对值的性质可得结果.【解答】解:∵|x|=2016,∴x=±2016,故选D.【点评】本题主要考查了绝对值的定义及性质,熟记数轴上某个数与原点的距离叫做这个数的绝对值;互为相反数的两个数绝对值相等是解答此题的关键.2.比较﹣3,2,﹣2的大小,正确的是()A.﹣3<2<﹣2 B.﹣2<﹣3<2 C.2<﹣2<﹣3 D.﹣3<﹣2<2【考点】有理数大小比较.【分析】若是两个负数,先比较绝对值,再比较原数的大小;若是两个正数,绝对值大的数就大;一个正数一个负数,正数大于一切负数.【解答】解:比较﹣3,2,﹣2的大小为:﹣3<﹣2<2,故选D【点评】本题考查有理数的大小比较,有理数的比较方法为:两个负数,绝对值大的反而小;正数大于一切负数;两个正数,绝对值大的数就大.3.从国家旅游局获悉,今年国庆期间全国共接待游客5.93亿人次,将5.93亿用科学记数法表示正确的是()A.5.93×107B.5.93×108C.5.93×109D.5.93×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5.93亿=5 9300 0000=5.93×108,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.有理数m、n在数轴上所对应的点的位置如图所示,则m+n的值()A.大于0 B.小于0 C.等于0 D.大于n【考点】数轴.【专题】计算题;实数.【分析】根据数轴上点的位置,利用有理数的加法法则判断即可.【解答】解:根据题意得:﹣1<m<0<1<n,则m+n的值大于0,故选A【点评】此题考查了数轴,熟练掌握数轴上点的特点是解本题的关键.5.某洗衣机厂原来库存洗衣机m台,现每天又生产n台存入库内,x天后该厂库存洗衣机的台数是()A.(m+nx)台B.(mx+n)台C.x(m+n)台D.(mn+x)台【考点】列代数式.【分析】先求出x天后生产的台数,再加上原先的台数,从而得出答案.【解答】解:∵每天生产n台存入库内,∴x天后生产nx台存入库内,∵原来库存洗衣机m台,∴x天后该厂库存洗衣机的台数是(m+nx)台.故选A.【点评】此题考查了列代数式,关键是读懂题意,求出x天后生产的台数.6.单项式﹣xy2的系数是()A.﹣1 B.3 C.D.﹣【考点】单项式.【分析】根据单项式的定义进行选择即可.【解答】解:单项式﹣xy2的系数是﹣,故选D.【点评】本题考查了单项式的定义,掌握单项式的系数、次数是解题的关键.7.下列各组中是同类项的是()A.x与y B.3ab与3abc C.2mn与﹣2mn D.4x2y与4xy2【考点】同类项.【分析】根据同类项的定义:所含字母相同,相同字母的次数相同,依据定义即可判断.【解答】解:A、所含字母不同,不是同类项,选项错误;B、所含字母不同,不是同类项,选项错误;C、是同类项,选项正确;D、所含字母不同,不是同类项,选项错误.故选C.【点评】本题考查了同类项的定义,所含字母相同,相同字母的次数相同,正确理解定义是关键.8.计算2x2﹣3x2的结果是()A.5x2B.﹣5x2C.x2D.﹣x2【考点】合并同类项.【分析】依据合并同类项法则求解即可.【解答】解:2x2﹣3x2=(2﹣3)x2=﹣x2.故选:D.【点评】本题主要考查的是合并同类项,掌握合并同类项法则是解题的关键.9.下列方程中是一元一次方程的是()A.xy=2 B.2x2﹣x﹣1=0 C.x﹣2y=4 D.3(2x﹣7)=4(x﹣5)【考点】一元一次方程的定义.【专题】计算题;一次方程(组)及应用.【分析】利用一元一次方程的定义判断即可.【解答】解:是一元一次方程的是3(2x﹣7)=4(x﹣5),故选D【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.10.下列方程的变形中,正确的是()A.若y﹣4=8,则y=8﹣4B.若2(2x﹣3)=2,则4x﹣6=2C.若﹣x=4,则x=﹣2D.若﹣=1,则去分母得2﹣3(t﹣1)=1【考点】解一元一次方程;等式的性质.【专题】计算题;一次方程(组)及应用.【分析】各项中方程变形得到结果,即可作出判断.【解答】解:A、若y﹣4=8,则y=8+4,错误;B、若2(2x﹣3)=2,则4x﹣6=2,正确;C、若﹣x=4,则x=﹣8,错误;D、若﹣=1,则去分母得:2﹣3(t﹣1)=6,错误,故选B【点评】此题考查了解一元一次方程,以及等式的性质,熟练掌握运算法则是解本题的关键.二.填空题(本大题共有8个小题,每小题3分,共24分)11.﹣的相反数是.【考点】相反数.【分析】求一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣的相反数是﹣(﹣)=.故答案为:.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.12.计算:(﹣6)÷(﹣)= 18 .【考点】有理数的除法.【分析】有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,依此即可求解.【解答】解:(﹣6)÷(﹣)=18.故答案为:18.【点评】此题考查了有理数的除法,有理数的除法要分情况灵活选择法则,若是整数与整数相除一般采用“同号得正,异号得负,并把绝对值相除”.如果有了分数,则采用“除以一个不等于0的数,等于乘这个数的倒数”,再约分.乘除混合运算时一定注意两个原则:①变除为乘,②从左到右.13.按如图所示的程序计算.若输入x的值为3,则输出的值为﹣9 .【考点】代数式求值.【分析】先依据3为奇数,选择所输入的代数式,然后进行计算即可.【解答】解:∵3为奇数,∴输出=﹣32=﹣9.故答案为:﹣9.【点评】本题主要考查的是求代数式的值,选择适当的计算程序是解题的关键.14.多项式5x4﹣3x3y2+2x2y+1的次数是 5 .【考点】多项式.【分析】根据多项式的次数进行填空即可.【解答】解:∵多项式5x4﹣3x3y2+2x2y+1的最高此项是﹣3x3y2,∴多项式5x4﹣3x3y2+2x2y+1的次数是5,故答案为5.【点评】本题考查了多项式,掌握多项式的次数是解题的关键.15.若x=﹣2是关于x的方程2x﹣5=3m的解,则m的值为﹣3 .【考点】一元一次方程的解.【分析】把x=﹣2代入方程,即可得出一个关于m的方程,求出方程的解即可.【解答】解:∵x=﹣2是关于x的方程2x﹣5=3m的解,∴﹣4﹣5=3m,解得:m=﹣3,故答案为:﹣3.【点评】本题考查了一元一次方程的解的应用,能得出一个关于m的方程是解此题的关键.16.某种篮球打7折后每个篮球售价为140元,若设该篮球每个原价为x元,则可建立方程模型为0.7x=140 .【考点】由实际问题抽象出一元一次方程.【分析】直接利用原价×=售价,进而得出答案.【解答】解:设该篮球每个原价为x元,则可建立方程模型为:0.7x=140.故答案为:0.7x=140.【点评】此题主要考查了由实际问题抽象出一元一次方程,正确表示出售价是解题关键.17.已知a2﹣2a=﹣1,则2016﹣3a2+6a= 2019 .【考点】代数式求值.【分析】等式a2﹣2a=﹣1的两边同时乘以﹣3可求得﹣3a2+6a的值,然后整体代入即可.【解答】解:∵a2﹣2a=﹣1,∴﹣3a2+6a=3.∴原式=2016+3=2019.故答案为:2019.【点评】本题主要考查的是求代数式的值,整体代入是解题的关键.18.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为﹣9 .【考点】规律型:数字的变化类.【分析】根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.【解答】解:解法一:常规解法∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴2×3﹣x=7∴x=﹣1则2×(﹣1)﹣7=y解得y=﹣9.解法二:技巧型∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴7×2﹣y=23∴y=﹣9故答案为:﹣9.【点评】此题考查数字的变化规律,注意利用定义新运算方法列方程解决问题.三、解答题(本大题共有7个小题,19、20、21题每小题8分,22、23、24题每小题8分,25题12分,共66分)19.计算:(﹣2)3+×[1﹣(﹣3)2].【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:(﹣2)3+×[1﹣(﹣3)2]=(﹣8)+×[﹣8]=(﹣8)+(﹣2)=﹣10【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.先化简,再求值:5xy﹣(2x2﹣xy)+2(x2+3),其中x=1,y=﹣2.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=5xy﹣2x2+xy+2x2+6=6xy+6,当x=1,y=﹣2时,原式=﹣12+6=﹣6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.解方程:.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母,得3x﹣2(2x﹣1)=4,去括号,得3x﹣4x+2=4,移项,得3x﹣4x=4﹣2,合并同类项,得﹣x=2,两边除以﹣1,得x=﹣2.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.已知多项式A,B,其中A=x2﹣2x+1,小马在计算A+B时,由于粗心把A+B看成了A﹣B,求得结果为x2﹣4x,请你帮助小马算出A+B的正确结果.【考点】整式的加减.【分析】根据题意可求出多项式B,然后代入A+B即可求出答案.【解答】解:由题意可知:A﹣B=x2﹣4x,∴B=A﹣(x2﹣4x)=x2﹣2x+1﹣(x2﹣4x)=2x+1,∴A+B=x2﹣2x+1+2x+1=x2+2.【点评】本题考查多项式的加减运算,要注意加减法是互逆运算.23.兴旺肉联厂的冷藏库能使冷藏食品每小时降温3℃,每开库一次,库内温度上升4℃,现有12℃的肉放入冷藏库,2小时后开了一次库,再过3小时后又开了一次库,再关上库门4小时后,肉的温度是多少摄氏度?【考点】有理数的混合运算.【专题】计算题.【分析】根据题意列出算式计算即可得到结果.【解答】解:根据题意,得:12﹣3×(2+3+4)+4×2=12﹣3×9+8=12﹣27+8=﹣7(℃)答:肉的温度是﹣7摄氏度.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.当x=2时,代数式x2+(t﹣1)x﹣3t的值是1,求当x=﹣2时,该代数式的值.【考点】代数式求值.【分析】把x=2代入代数式,得到关于t的一元一次方程,求出t的值,然后把t的值代入代数式,再把x=﹣2代入求出代数式的值.【解答】解:把x=2代入代数式得:4+(t﹣1)×2﹣3t=1,解得:t=1,把t=1代入得:x2﹣3.把x=﹣2代入得:(﹣2)2﹣3=1.∴当x=﹣2时,代数式的值为1.【点评】本题考查的是代数式求值,先把x=2代入代数式,求出字母系数t 的值,然后把x=﹣2和t 的值代入代数式可以求出代数式的值.四、探究题(本大题共12分)25.已知x 1,x 2,x 3,…x 2016都是不等于0的有理数,若y 1=,求y 1的值.当x 1>0时,y 1===1;当x 1<0时,y 1===﹣1,所以y 1=±1(1)若y 2=+,求y 2的值(2)若y 3=++,则y 3的值为 ±1或±3 ;(3)由以上探究猜想,y 2016=+++…+共有 2017 个不同的值,在y 2016这些不同的值中,最大的值和最小的值的差等于 4032 .【考点】规律型:数字的变化类;绝对值.【分析】(1)根据=±1, =±1,讨论计算即可.(2)方法同上.(3)探究规律后,利用规律解决问题即可.【解答】解:(1)∵=±1, =±1,∴y 2=+=±2或0.(2)∵=±1=±1, =±1,∴y 3=++=±1或±3.故答案为±1或±3,(3)由(1)(2)可知,y 1有两个值,y 2有三个值,y 3有四个值,…,由此规律可知,y 2016有2017个值,最大值为2016,最小值为﹣2016,最大值与最小值的差为4032.故答案分别为2017,4032.【点评】本题考查规律题、绝对值等知识,解题的关键是学会分类讨论的思想思考问题,属于中考常考题型.。
七年级上学期期中考试数学试题(答案)一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2018的绝对值是()A.2018B.﹣2018C.D.﹣2.下列运算中,正确的是()A.(﹣3)2=﹣9B.﹣(+3)=3C.2(3x+2)=6x+2D.3a﹣2a=a3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108 4.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.D.5.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣16.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b2 7.三个连续的奇数中,最大的一个是2n+3,那么最小的一个是()A.2n﹣1B.2n+1C.2(n﹣1)D.2(n﹣2)8.若a,b互为相反数,c,d互为倒数,m的绝对值是2,则+m2﹣cd的值是()A.2B.3C.4D.5二、填空题(本大题共6小题,每小题3分,共18分)9.将2.95用四舍五入法精确到十分位,其近似值为.10.比较大小:﹣(﹣3.14)﹣|﹣π|.11.已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|c﹣b|的结果是.12.若代数式x2+2x﹣1的值为0,则2x2+4x﹣1的值为.13.数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)的和等于.14.若规定运算符号“★”具有性质:a★b=a2﹣ab.例如(﹣1)★2=(﹣1)2﹣(﹣1)×2=3,则1★(﹣2)=.三、解答题(本大题共10小题,共78分)15.(6分)计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96).16.(6分)计算:(﹣+﹣)×(﹣24).17.(6分)计算.18.(7分)画出数轴,然后在数轴上标出下列各数,并用“>”把这些数连接起来.﹣3,+1,2,﹣1.5,﹣|﹣2.5|,﹣(+6)19.(7分)先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+7x2],其中.20.(7分)已知x,y互为相反数,且|y﹣3|=0,求2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)的值.21.(8分)用代数式表示:(1)a的5倍与b的平方的差.(2)m的平方与n的平方的和.(3)x、y两数的平方和减去它们积的2倍.(4)表示出这个三位数,它的百位数字是a,十位数字是b,个位数字是c.22.(9分)下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有个★,第六个图形共有个★;(2)第n个图形中有★个;(3)根据(2)中的结论,第几个图形中有2020个★?23.(10分)长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站四哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?24.(12分)某校餐厅计划购买12张餐桌和若干把餐椅,先从甲、乙两个商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为70元,甲商场规定:购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八折销售.(1)若学校计划购买x(x>12)把餐椅,则到甲商场购买所需的费用为;到乙商场购买所需的费用为;(2)若学校计划购进15张餐桌和30把餐椅,请通过计算说明,到哪个商场购买合算?2018-2019学年吉林省长春市长春新区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2018的绝对值是()A.2018B.﹣2018C.D.﹣【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故选:A.【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.2.下列运算中,正确的是()A.(﹣3)2=﹣9B.﹣(+3)=3C.2(3x+2)=6x+2D.3a﹣2a=a【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=9,不符合题意;B、原式=﹣3,不符合题意;C、原式=6x+4,不符合题意;D、原式=a,符合题意,故选:D.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108【分析】先确定出a和n的值,然后再用科学记数法的性质表示即可.【解答】解:30000000=3×107.故选:A.【点评】本题主要考查的是科学记数法,熟练掌握用科学记数法表示较大数的方法是解题的关键.4.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.D.【分析】根据多项式的次数和项数,同类项,单项式及单项式的系数的定义作答.【解答】解:A、1﹣a﹣ab是二次三项式,正确;B、符合同类项的定义,故是同类项,正确;C、不符合单项式的定义,错误;D、,正确.故选:C.【点评】单项式的系数应包含完整的数字因数,多项式里次数最高项的次数叫做这个多项式的次数,单项式中,所有字母的指数和叫做这个单项式的次数.同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.5.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣1【分析】直接利用同类项的概念得出n,m的值,再利用绝对值的性质求出答案.【解答】解:∵2x2m y3与﹣5xy2n是同类项,∴2m=1,2n=3,解得:m=,n=,∴|m﹣n|=|﹣|=1.故选:B.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.6.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b2【分析】根据题意列出代数式解答即可.【解答】解:能射进阳光部分的面积是2ab﹣b2,故选:D.【点评】此题考查了列代数式,弄清题意是解本题的关键.7.三个连续的奇数中,最大的一个是2n+3,那么最小的一个是()A.2n﹣1B.2n+1C.2(n﹣1)D.2(n﹣2)【分析】三个连续的奇数中,最大的一个是2n+3,由于奇数是不能被2除尽的整数,即连续奇数的相邻两项之间相差2,所以中间的那个奇数为2n+3﹣2=2n+1,那么最小的一个是2n+1﹣2=2n﹣1.【解答】解:由题意得:三个连续奇数中最小的一个为:2n+3﹣2﹣2=2n﹣1,故选:A.【点评】本题主要考查了代数式的求值,关键在于熟练掌握奇数的含义,明确相邻两个奇数之间的差为2,属于中考中的常考考点.8.若a,b互为相反数,c,d互为倒数,m的绝对值是2,则+m2﹣cd的值是()A.2B.3C.4D.5【分析】利用相反数,倒数,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=4﹣1=3;当m=﹣2时,原式=4﹣1=3,故选:B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)9.将2.95用四舍五入法精确到十分位,其近似值为 3.0.【分析】精确到哪位,就是对它后边的一位进行四舍五入.【解答】解:将这个结果精确到十分位,即对百分位的数字进行四舍五入,是3.0.故答案为3.0.【点评】本题考查了近似数和有效数字,精确到哪一位,即对下一位的数字进行四舍五入.这里对千分位的7入了后,百分位的是9,满了10后要进1.10.比较大小:﹣(﹣3.14)>﹣|﹣π|.【分析】根据相反数的性质,绝对值的性质把两个数化简,根据正数大于负数比较即可.【解答】解:﹣(﹣3.14)=3.14,﹣|﹣π|=﹣π.3.14>﹣π,则﹣(﹣3.14)>﹣|﹣π|,故答案为:>.【点评】本题考查的是相反数的概念,实数的大小比较,掌握正数大于负数是解题的关键.11.已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|c﹣b|的结果是c ﹣a.【分析】由数轴知c<a<0<b且|a|<|b|,据此得a﹣b>0、c+b<0,再根据绝对值性质去绝对值符号、合并即可得.【解答】解:由数轴知c<a<0<b,且|a|<|b|,则a﹣b>0、c﹣b<0,∴|a﹣b|﹣|c﹣b|=b﹣a+c﹣b=c﹣a,故答案为:c﹣a.【点评】此题考查了数轴,以及绝对值,熟练掌握各自的性质是解本题的关键.12.若代数式x2+2x﹣1的值为0,则2x2+4x﹣1的值为1.【分析】根据题意确定出x2+2x的值,原式变形后代入计算即可求出值.【解答】解:∵x2+2x﹣1=0,∴x2+2x=1,则2x2+4x﹣1=2(x2+2x)﹣1=2×1﹣1=2﹣1=1,故答案为:1.【点评】此题考查了代数式求值,解题的关键是熟练掌握整体代入思想的运用.13.数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)的和等于﹣3.【分析】先求出各个整数,再相加即可.【解答】解:数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)为﹣3,﹣2,﹣1,0,1,2,和为﹣3﹣2﹣1+0+1+2=﹣3,故答案为:﹣3.【点评】本题考查了有理数的大小比较,数轴的应用,能求出符合的所有整数是解此题的关键.14.若规定运算符号“★”具有性质:a★b=a2﹣ab.例如(﹣1)★2=(﹣1)2﹣(﹣1)×2=3,则1★(﹣2)=3.【分析】根据规定运算法则,分别把a、b换成1、(﹣2),然后进行计算即可求解.【解答】解:根据题意,1★(﹣2)=12﹣1×(﹣2)=1+2=3.故答案为:3.【点评】本题考查了有理数的混合运算问题,根据规定新运算代入进行计算即可,比较简单.三、解答题(本大题共10小题,共78分)15.(6分)计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96).【分析】先凑成整数,再相加即可求解.【解答】解:(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96)=(﹣3.14+2.14)+(4.96﹣7.96)=﹣1﹣3=﹣4.【点评】考查了有理数的加法,解题的关键是灵活运用运算律简便计算.16.(6分)计算:(﹣+﹣)×(﹣24).【分析】原式利用乘法分配律计算即可求出值.【解答】解:原式=4﹣18+2=﹣12.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(6分)计算.【分析】根据运算顺序,先计算乘方运算,(﹣3)2表示两个﹣3的乘积,22表示两个2的乘积,然后利用除以运算法则将除法运算化为乘法运算,约分后合并即可得到结果.【解答】解:原式=9﹣60÷4×+2=9﹣60××+2=9﹣1.5+2=9.5.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算.18.(7分)画出数轴,然后在数轴上标出下列各数,并用“>”把这些数连接起来.﹣3,+1,2,﹣1.5,﹣|﹣2.5|,﹣(+6)【分析】根据绝对值、相反数的意义得到﹣|﹣2.5|=﹣2.5,﹣(+6)=﹣6,再利用数轴表示出6个数,然后利用数轴上右边的数总比左边的数大确定它们的大小关系.【解答】解:﹣|﹣2.5|=﹣2.5,﹣(+6)=﹣6,用数轴表示为:用“>”把这些数连接起来:2>+1>﹣1.5>﹣|﹣2.5|>﹣3>﹣(+6).【点评】本题考查了有理数的大小比较:比较有理数的大小可以利用数轴,他们从左到右的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.19.(7分)先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+7x2],其中.【分析】先去括号,再合并,最后再把x的值代入计算即可.【解答】解:原式=5x2﹣3x+2(2x﹣3)﹣7x2=5x2﹣3x+4x﹣6﹣7x2=﹣2x2+x﹣6,当时,原式===﹣6.【点评】本题考查了整式的化简求值,解题的关键是去括号、合并同类项.20.(7分)已知x,y互为相反数,且|y﹣3|=0,求2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)的值.【分析】首先利用绝对值以及相反数的定义得出x,y的值,再去括号,利用整式加减运算法则合并同类项,将x,y的值代入求出答案.【解答】解:∵x,y互为相反数,且|y﹣3|=0,∴y=3,x=﹣3,2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)=2x3﹣4y2﹣x+3y﹣x+3y2﹣2x3=﹣y2﹣2x+3y,当x=﹣3,y=3时,原式=﹣32﹣2×(﹣3)+3×3=6.【点评】此题主要考查了绝对值的性质以及整式加减运算法则,正确求出x,y 的值是解题关键.21.(8分)用代数式表示:(1)a的5倍与b的平方的差.(2)m的平方与n的平方的和.(3)x、y两数的平方和减去它们积的2倍.(4)表示出这个三位数,它的百位数字是a,十位数字是b,个位数字是c.【分析】(1)a的5倍表示为5a,b的平方表示为b2,然后把它们相减即可;(2)m与n平方的和表示为m2+n2;(3)x、y两数的平方和表示为x2+y2,它们积的2倍表示为2xy,然后把两者相减即可;(4)百位数乘100,十位数乘10,个位数乘1,相加即可得.【解答】解:(1)a的5倍与b的平方的差可表示为5a﹣b2;(2)m的平方与n的平方的和可表示为m2+n2;(3)x、y两数的平方和减去它们积的2倍可表示为x2+y2﹣2xy;(4)此三位数为100a+10b+c.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.22.(9分)下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有13个★,第六个图形共有19个★;(2)第n个图形中有★3n+1个;(3)根据(2)中的结论,第几个图形中有2020个★?【分析】(1)根据题目中的图形,可以得到第四个图形和第六个图形中★的个数;(2)根据题目中的图形,可以得到第n个图形中有★的个数;(3)根据(2)中的结论,可以解答本题.【解答】解:(1)由图可知,第一个图形中有★:1+3×1=4,第二个图形中有★:1+3×2=7,第三个图形中有★:1+3×3=10,故第四个图形中有★:1+3×4=13,第六个图形中有★:1+3×6=19,故答案为:13,19;(2)第一个图形中有★:1+3×1=4,第二个图形中有★:1+3×2=7,第三个图形中有★:1+3×3=10,故第n个图形中有★:1+3×n=3n+1,故答案为:3n+1;(3)设第x个图形中有2020个★,3x+1=2020,解得,x=673,答:第673个图形中有2020个★.【点评】本题考查图形的变化类,解答本题的关键是明确图形中★的个数的变化规律,利用数形结合的思想解答.23.(10分)长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站四哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?【分析】(1)根据有理数的加法,可得答案;(2)根据绝对值的意义和有理数的加法可得一共的站数,再乘以1.3可得答案.【解答】解:(1)+5﹣2﹣6+8+3﹣4﹣9+8=3.答:A站是繁荣路站;(2)(5+2+6+8+3+4+9+8)×1.3=45×1.3=58.5(千米).答:这次王红志愿服务期间乘坐地铁行进的路程是58.5千米.【点评】本题考查了正数和负数,根据题意列出算式是解题的关键.24.(12分)某校餐厅计划购买12张餐桌和若干把餐椅,先从甲、乙两个商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为70元,甲商场规定:购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八折销售.(1)若学校计划购买x(x>12)把餐椅,则到甲商场购买所需的费用为(1560+70x)元;到乙商场购买所需的费用为(1920+56x)元;(2)若学校计划购进15张餐桌和30把餐椅,请通过计算说明,到哪个商场购买合算?【分析】(1)根据题意表示出甲乙两商场的费用即可;(2)计算出甲乙两个商场的费用,比较即可.【解答】解:(1)则到甲商场购买所需的费用为:12×200+70(x﹣12)=(1560+70x)元;到乙商场购买所需的费用为:(12×200+70x)×0.8=(1920+56x)元;故答案为:(1560+70x)元;(1920+56x)元;(2)到甲商场购买所需的费用为:15×200+70×(30﹣15)=4050(元),到乙商场购买所需的费用为:(15×200+70×30)×80%=4080(元),4050元<4080元答:到甲商场购买划算.【点评】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.七年级上学期期中考试数学试题(答案)一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2018的绝对值是()A.2018B.﹣2018C.D.﹣2.下列运算中,正确的是()A.(﹣3)2=﹣9B.﹣(+3)=3C.2(3x+2)=6x+2D.3a﹣2a=a3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108 4.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.D.5.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣16.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b27.三个连续的奇数中,最大的一个是2n+3,那么最小的一个是()A.2n﹣1B.2n+1C.2(n﹣1)D.2(n﹣2)8.若a,b互为相反数,c,d互为倒数,m的绝对值是2,则+m2﹣cd的值是()A.2B.3C.4D.5二、填空题(本大题共6小题,每小题3分,共18分)9.将2.95用四舍五入法精确到十分位,其近似值为.10.比较大小:﹣(﹣3.14)﹣|﹣π|.11.已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|c﹣b|的结果是.12.若代数式x2+2x﹣1的值为0,则2x2+4x﹣1的值为.13.数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)的和等于.14.若规定运算符号“★”具有性质:a★b=a2﹣ab.例如(﹣1)★2=(﹣1)2﹣(﹣1)×2=3,则1★(﹣2)=.三、解答题(本大题共10小题,共78分)15.(6分)计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96).16.(6分)计算:(﹣+﹣)×(﹣24).17.(6分)计算.18.(7分)画出数轴,然后在数轴上标出下列各数,并用“>”把这些数连接起来.﹣3,+1,2,﹣1.5,﹣|﹣2.5|,﹣(+6)19.(7分)先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+7x2],其中.20.(7分)已知x,y互为相反数,且|y﹣3|=0,求2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)的值.21.(8分)用代数式表示:(1)a的5倍与b的平方的差.(2)m的平方与n的平方的和.(3)x、y两数的平方和减去它们积的2倍.(4)表示出这个三位数,它的百位数字是a,十位数字是b,个位数字是c.22.(9分)下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有个★,第六个图形共有个★;(2)第n个图形中有★个;(3)根据(2)中的结论,第几个图形中有2020个★?23.(10分)长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站四哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?24.(12分)某校餐厅计划购买12张餐桌和若干把餐椅,先从甲、乙两个商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为70元,甲商场规定:购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八折销售.(1)若学校计划购买x(x>12)把餐椅,则到甲商场购买所需的费用为;到乙商场购买所需的费用为;(2)若学校计划购进15张餐桌和30把餐椅,请通过计算说明,到哪个商场购买合算?2018-2019学年吉林省长春市长春新区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2018的绝对值是()A.2018B.﹣2018C.D.﹣【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故选:A.【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.2.下列运算中,正确的是()A.(﹣3)2=﹣9B.﹣(+3)=3C.2(3x+2)=6x+2D.3a﹣2a=a【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=9,不符合题意;B、原式=﹣3,不符合题意;C、原式=6x+4,不符合题意;D、原式=a,符合题意,故选:D.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108【分析】先确定出a和n的值,然后再用科学记数法的性质表示即可.【解答】解:30000000=3×107.故选:A.【点评】本题主要考查的是科学记数法,熟练掌握用科学记数法表示较大数的方法是解题的关键.4.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.D.【分析】根据多项式的次数和项数,同类项,单项式及单项式的系数的定义作答.【解答】解:A、1﹣a﹣ab是二次三项式,正确;B、符合同类项的定义,故是同类项,正确;C、不符合单项式的定义,错误;D、,正确.故选:C.【点评】单项式的系数应包含完整的数字因数,多项式里次数最高项的次数叫做这个多项式的次数,单项式中,所有字母的指数和叫做这个单项式的次数.同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.5.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣1【分析】直接利用同类项的概念得出n,m的值,再利用绝对值的性质求出答案.【解答】解:∵2x2m y3与﹣5xy2n是同类项,∴2m=1,2n=3,解得:m=,n=,∴|m﹣n|=|﹣|=1.故选:B.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.6.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b2【分析】根据题意列出代数式解答即可.【解答】解:能射进阳光部分的面积是2ab﹣b2,故选:D.【点评】此题考查了列代数式,弄清题意是解本题的关键.7.三个连续的奇数中,最大的一个是2n+3,那么最小的一个是()A.2n﹣1B.2n+1C.2(n﹣1)D.2(n﹣2)【分析】三个连续的奇数中,最大的一个是2n+3,由于奇数是不能被2除尽的整数,即连续奇数的相邻两项之间相差2,所以中间的那个奇数为2n+3﹣2=2n+1,那么最小的一个是2n+1﹣2=2n﹣1.【解答】解:由题意得:三个连续奇数中最小的一个为:2n+3﹣2﹣2=2n﹣1,故选:A.【点评】本题主要考查了代数式的求值,关键在于熟练掌握奇数的含义,明确相邻两个奇数之间的差为2,属于中考中的常考考点.8.若a,b互为相反数,c,d互为倒数,m的绝对值是2,则+m2﹣cd的值是()A.2B.3C.4D.5【分析】利用相反数,倒数,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=4﹣1=3;当m=﹣2时,原式=4﹣1=3,故选:B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)9.将2.95用四舍五入法精确到十分位,其近似值为 3.0.【分析】精确到哪位,就是对它后边的一位进行四舍五入.【解答】解:将这个结果精确到十分位,即对百分位的数字进行四舍五入,是3.0.故答案为3.0.【点评】本题考查了近似数和有效数字,精确到哪一位,即对下一位的数字进行四舍五入.这里对千分位的7入了后,百分位的是9,满了10后要进1.10.比较大小:﹣(﹣3.14)>﹣|﹣π|.【分析】根据相反数的性质,绝对值的性质把两个数化简,根据正数大于负数比较即可.【解答】解:﹣(﹣3.14)=3.14,﹣|﹣π|=﹣π.3.14>﹣π,则﹣(﹣3.14)>﹣|﹣π|,故答案为:>.【点评】本题考查的是相反数的概念,实数的大小比较,掌握正数大于负数是解题的关键.11.已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|c﹣b|的结果是c ﹣a.【分析】由数轴知c<a<0<b且|a|<|b|,据此得a﹣b>0、c+b<0,再根据绝对值性质去绝对值符号、合并即可得.【解答】解:由数轴知c<a<0<b,且|a|<|b|,则a﹣b>0、c﹣b<0,∴|a﹣b|﹣|c﹣b|=b﹣a+c﹣b=c﹣a,故答案为:c﹣a.【点评】此题考查了数轴,以及绝对值,熟练掌握各自的性质是解本题的关键.12.若代数式x2+2x﹣1的值为0,则2x2+4x﹣1的值为1.【分析】根据题意确定出x2+2x的值,原式变形后代入计算即可求出值.【解答】解:∵x2+2x﹣1=0,∴x2+2x=1,则2x2+4x﹣1=2(x2+2x)﹣1=2×1﹣1=2﹣1=1,故答案为:1.【点评】此题考查了代数式求值,解题的关键是熟练掌握整体代入思想的运用.13.数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)的和等于﹣3.【分析】先求出各个整数,再相加即可.【解答】解:数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)为﹣3,﹣2,﹣1,0,1,2,和为﹣3﹣2﹣1+0+1+2=﹣3,故答案为:﹣3.【点评】本题考查了有理数的大小比较,数轴的应用,能求出符合的所有整数是解此题的关键.14.若规定运算符号“★”具有性质:a★b=a2﹣ab.例如(﹣1)★2=(﹣1)2﹣(﹣1)×2=3,则1★(﹣2)=3.【分析】根据规定运算法则,分别把a、b换成1、(﹣2),然后进行计算即可求解.【解答】解:根据题意,1★(﹣2)=12﹣1×(﹣2)=1+2=3.故答案为:3.【点评】本题考查了有理数的混合运算问题,根据规定新运算代入进行计算即可,比较简单.三、解答题(本大题共10小题,共78分)15.(6分)计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96).【分析】先凑成整数,再相加即可求解.【解答】解:(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96)=(﹣3.14+2.14)+(4.96﹣7.96)=﹣1﹣3=﹣4.【点评】考查了有理数的加法,解题的关键是灵活运用运算律简便计算.16.(6分)计算:(﹣+﹣)×(﹣24).【分析】原式利用乘法分配律计算即可求出值.【解答】解:原式=4﹣18+2=﹣12.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(6分)计算.【分析】根据运算顺序,先计算乘方运算,(﹣3)2表示两个﹣3的乘积,22表示两个2的乘积,然后利用除以运算法则将除法运算化为乘法运算,约分后合并即可得到结果.【解答】解:原式=9﹣60÷4×+2=9﹣60××+2=9﹣1.5+2=9.5.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算.18.(7分)画出数轴,然后在数轴上标出下列各数,并用“>”把这些数连接起来.﹣3,+1,2,﹣1.5,﹣|﹣2.5|,﹣(+6)【分析】根据绝对值、相反数的意义得到﹣|﹣2.5|=﹣2.5,﹣(+6)=﹣6,再利用数轴表示出6个数,然后利用数轴上右边的数总比左边的数大确定它们的大小关系.【解答】解:﹣|﹣2.5|=﹣2.5,﹣(+6)=﹣6,用数轴表示为:用“>”把这些数连接起来:2>+1>﹣1.5>﹣|﹣2.5|>﹣3>﹣(+6).【点评】本题考查了有理数的大小比较:比较有理数的大小可以利用数轴,他们从左到右的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.19.(7分)先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+7x2],其中.【分析】先去括号,再合并,最后再把x的值代入计算即可.【解答】解:原式=5x2﹣3x+2(2x﹣3)﹣7x2=5x2﹣3x+4x﹣6﹣7x2=﹣2x2+x﹣6,当时,原式===﹣6.【点评】本题考查了整式的化简求值,解题的关键是去括号、合并同类项.20.(7分)已知x,y互为相反数,且|y﹣3|=0,求2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)的值.【分析】首先利用绝对值以及相反数的定义得出x,y的值,再去括号,利用整式加减运算法则合并同类项,将x,y的值代入求出答案.【解答】解:∵x,y互为相反数,且|y﹣3|=0,∴y=3,x=﹣3,2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)=2x3﹣4y2﹣x+3y﹣x+3y2﹣2x3=﹣y2﹣2x+3y,当x=﹣3,y=3时,原式=﹣32﹣2×(﹣3)+3×3=6.【点评】此题主要考查了绝对值的性质以及整式加减运算法则,正确求出x,y 的值是解题关键.。
浙江省衢州市2018-2019学年七年级上学期数学期中考试试卷一、单选题1.在-2,0,,1,这四个数中,最大的数是( )A.-2B.0C.D.1【答案】D【考点】有理数大小比较【解析】【解答】解:∵1>>0>-2∴最大的数是1故答案为:D【分析】利用有理数的大小比较方法,可得出答案。
2.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A. 7.14×103m2B. 7.14×104m2C. 2.5×105m2D. 2.5×106m2【答案】C【考点】科学记数法—表示绝对值较大的数,有理数的乘法【解析】【解答】解:由题意得:7140×35=249900≈2.5×105m2故答案为:C【分析】根据题意列式计算可解答。
3.如图为张小亮的答卷,他的得分应是( )A.100分B.80分C.60分D.40分【答案】B【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,立方根及开立方,平均数及其计算【解析】【解答】解:①-1的绝对值是1,故①正确;②2的倒数是,故②错误;③-2的相反数是2,故③正确;④1的立方根是1,故④正确;⑤-1和7的平均数为:(-1+7)÷2=3,故⑤正确;小亮的得分为:4×20=80分故答案为:B【分析】利用绝对值、相反数、倒数、立方根的定义及平均数的计算方法,对各个小题逐一判断,就可得出小亮答对的题数,再计算出他的得分。
4.下列各数中,2.3,,3.141141114…,无理数的个数有( )A.2个B.3个C.4个D.5个【答案】B【考点】无理数的认识【解析】【解答】解:∵∴无理数有:、、3.141141114…一共3个故答案为:B【分析】根据无限不循环的小数是无理数;开方开不尽的数是无理数,含的数是无理数,就可得出答案。
5.若3x=4,9y=7,则3x-2y的值为( )A. B. C. -3 D.【答案】A【考点】代数式求值,同底数幂的除法【解析】【解答】解:∵3x=4,9y=7,∴32y=7∴3x-2y=故答案为:A【分析】先根据已知求出32y的值,再将3x-2y转化为,然后代入求值。
6.当x=1时,代数式的值是8,则当x=-1时,这个代数式的值是( )A.-8B.-4C.4D.8【答案】B【考点】代数式求值【解析】【解答】解:∵当x=1时,代数式ax3 −3bx+2的值是8,∴a-3b+2=8∴a-3b=6当x=-1时,a+3b+2=-(a-3b)+2=-6+2=-4故答案为:B【分析】由已知可得出a-3b=6,再将x=-1代入代数式,可得出-(a-3b)+2,然后整体代入计算,可得答案。
7.若2m-4与3m-1是同一个正数的平方根,则m为( )A. -3B. 1C. -1D. -3或1【答案】D【考点】平方根【解析】【解答】解:由题意得:2m-4=3m-1或2m-4=-(3m-1)解之:m=-3或m=1故答案为:D【分析】根据正数的平方根由两个,它们互为相反数,建立关于x的方程求解即可。
8.2017年双十一期间,某网店对一品牌服装进行优惠促销,将原价a元的服装以元售出,则以下四种说法中可以准确表达该商店促销方法的是( )A. 将原价降低20元之后,再打8折B.将原价降低20元之后,再打2折C.将原价打8折之后,再降低20元D.将原价打2折之后,再降低20元【答案】C【考点】列式表示数量关系【解析】【解答】解:∵将原价a元的服装以( a − 20 ) 元售出,a − 20=0.8a-20∴将原价打8折之后,再降低20元.故答案为:C【分析】根据售价可得出优惠促销方案。
9.某公司去年10月份的利润为a万元,11月份比10月份减少5%,12月份比11月份增加了9%,则该公司12月份的利润为( )A. (a-5%)(a+9%)万元B. (a-5%+9%)万元C. a(1-5%+9%)万元D. a(1-5%)(1+9%)万元【答案】D【考点】列式表示数量关系【解析】【解答】解:由题意得:12月份的利润为:a(1-5%)(1+9%)故答案为:D【分析】根据11月份比10月份减少5%,可得出11月份的利润,再求出12月份的利润。
10.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[ ]=1,[-2.5]=-3.现对82进行如下操作:这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )A.1B.2C.3D.4【答案】C【考点】估算无理数的大小【解析】【解答】解:∴对121只需进行3次操作后变为1,故答案为:C【分析】[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可。
二、填空题11.平方等于的数是________,-64的立方根是________【答案】;-4【考点】平方根,立方根及开立方【解析】【解答】解:∵(±)2=∴平方等于的数是±;-64的立方根是-4故答案为:±;-4【分析】根据平方根的定义及立方根的定义求解即可。
12.已知代数式2x-y的值是2,则代数式3+2y-4x的值是________【答案】-1【考点】代数式求值【解析】【解答】解:∵2x-y的值是2∴2x-y=2∴3+2y-4x=3-2(2x-y)=3-2×2=-1故答案为:-1【分析】将代数式转化为3-2(2x-y),再整体代入计算。
13.如图,在数轴上,点A表示的数为-1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为________.【答案】-6【考点】数轴及有理数在数轴上的表示【解析】【解答】解:∵点A表示的数为-1,点B表示的数为4,∴AB=|-1-4|=5,∵C是点B关于点A的对称点,∴AC=AB=5∵点A表示的数为-1∴点C表示的数为:-5+(-1)=-6故答案为:-6【分析】利用点A、B表示的数求出AB的长,再根据C是点B关于点A的对称点,就可求出AC的长,由点A在数轴上表示的数,就可得出答案。
14.“两个数和的平方等于这两个数积的两倍加上这两个数的平方和”,在学过用字母表示数后,请借助符号描述这句话:________.【答案】(a+b)2=2ab+a2+b2【考点】列式表示数量关系【解析】【解答】解:(a+b)2=2ab+a2+b2故答案为:(a+b)2=2ab+a2+b2【分析】根据题意列代数式即可。
15.对于任意实数对(a,b)和(c,d),规定运算“*”为(a,b)*(c,d)=(ac,bd);运算“⊕”为(a,b)⊕(c,d)=(a+c,b+d).若(1,2)*(p,q)=(2,-4),则(1,2)⊕(p,q)=________.【答案】(3,0)【考点】定义新运算【解析】【解答】解:∵(1,2)*(p,q)=(2,-4)∴p=2,2q=-4∴q=-2∴(1,2)⊕(p,q)=(1,2)⊕(2,-2)=(1+2,2-2)=(3,0)故答案为:(3,0)【分析】根据已知条件:若(1,2)*(p,q)=(2,-4),求出p、q的值,再根据新定义运算法则,就可求出答案。
16.煤气费的收费标准为每月用气若不超过60m3,按每立方米0.8元收费;如果超过60m3,超过部分按每立方米1.2元收费.已知某住户某个月用煤气xm3(x>60),则该住户应交煤气费________元.【答案】1.2x-24【考点】列式表示数量关系【解析】【解答】解:0.8×60+1.2(x-60)=1.2x-24故答案为:1.2x-24【分析】利用60m3的煤气费+超出60m3的煤气费,计算可求解。
17.如图,程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行程序框图,如果输入a,b的值分别为3,9,那么输出a的值为________.【答案】3【考点】有理数的加减混合运算【解析】【解答】解:当a=3、b=9时,b=9﹣3=6;此时a=3、b=6,b=6﹣3=3,则a=b=3,所以输出a的值为3,故答案为:3【分析】将a=3,b=9代入程序执行框图,根据运算程序,计算最终输出a的数值即可。
18.某公园划船项目收费标准如下:某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为________元.【答案】380【考点】二元一次方程的应用【解析】【解答】解:租用四人船、六人船、八人船各1艘,租船的总费用为(元)故答案为:380.【分析】根据表格获取信息,从表格来看,2人船的人均费用是45元,4人船的人均费用是25元,六人船的人均费用为元,8人船的人均费用为18.75元,此次租船,既要保证每个人有船坐,又要保证费用最低,故可以:租用四人船、六人船、八人船各1艘即可满足所有的要求。
三、解答题19.计算:圆圆同学的计算过程如下:原式=-6+6÷2=0÷2=0请你判断圆圆的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】解:圆圆的计算过程不正确,正确的计算过程为:原式=【考点】含乘方的有理数混合运算【解析】【分析】根据有理数的混合运算顺序,可判断出圆圆的解答过程是否正确;先算乘方运算,再算乘除法,然后算加减法。
-23≠-6。
20.计算:(1)16-(-18)+(-9)-15(2)(3)-32+(-2)2×(-5)-|-6|【答案】(1)解:原式=16+18﹣9﹣15=10(2)解:原式==-4+14-9-=8(3)解:原式=﹣9+4×(﹣5)﹣6=﹣9﹣20﹣6=﹣35【考点】含乘方的有理数混合运算【解析】【分析】(1)利用有理数的加减法法则直接计算。
(2)利用乘法分配律将24与括号里的每一项相乘,再利用有理数的加减法法则计算。
(3)先算乘方运算、化简绝对值,再算乘法运算,然后算加减法。
21.已知2a-1的平方根是±3,的算术平方根是b,求a+b的平方根【答案】解:∵2a﹣1的平方根是±3,∴2a﹣1=9,∴a=5,的算术平方根是b,即16的算术平方根是b,∴b=4,【考点】平方根,算术平方根【解析】【分析】根据已知2a-1的平方根是±3,可求出a的值,再求出b的值,然后代入求出a+b的平方根。
22.“囧”(jiong)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”的面积;(2)当时,求此时“囧”的面积.【答案】(1)解:由已知得“囧”的面积为:(2)解:当时,x=8,y=4,S=400-2×8×4=336,所以此时“囧”的面积为336.【考点】列式表示数量关系,代数式求值【解析】【分析】(1)根据图形,用正方形的面积减去两个直角三角形的面积再减去长方形的面积,列式化简即可。