2011年文科数学
- 格式:doc
- 大小:647.00 KB
- 文档页数:12
2011 年普通高等学校招生全国统一考试(新课标全国卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24 题为选考题,其他题为必考题第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M {0,1,2,3,4} ,N {1,3,5} ,P M N ,则P 的子集共有A.2 个B.4 个C.6 个D.8 个【答案】 B【解析】P M N ={ 1,3} ,故P 的子集有22 4个.2.复数5i 1 2iA.2 i B.1 2i C. 2 i D. 1 2i 【答案】 C【解析】5i 5i(1 2i)1 2i (1 2i)(1 2i)2 i .3.下列函数中,既是偶函数又在(0, ) 单调递增的函数是A. 3y x B.y | x | 1 C. 2 1y x D.y 2|x| 【答案】 B【解析】 3y x 为奇函数, 2 1y x 在(0, ) 上为减函数,|x|y 2 在(0, ) 上为减函数,故选B.4.椭圆2 2x y16 81的离心率为A.13B.12C.33D.22【答案】 D第1页—共12页【解析】由2 2x y16 81可知2 16a ,2 8b ,∴2 2 2 8c a b ,∴2e22ca12,∴2e .25.执行右面的程序框图,如果输入的N 是6,那么输出的p 是A.120 B.720 C.1440 D.5040【答案】 B【解析】由程序框图可得,输出的p 1 2 3 4 5 6 720 ,选 B6.有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.13B.12C.23D.34【答案】 A【解析】记三个兴趣小组分别为1、2、3,甲参加 1 组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9 个.记事件 A 为“甲、乙两位同学参加同一个兴趣小组”,其中事件 A 有“甲1,乙1;甲2,乙2;甲3,乙3”,共 3 个.因此3 1 P(A) .9 37.已知角的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y 2x上,则cos 2=A.45B.35C.35D.45【答案】 B第2页—共12页【解析】由题知tan 2 ,cos22 2 2cos sin 1 tan 32 2 2cos sin 1 tan 5,选B.8.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为正视图D B CA 俯视图【答案】 D【解析】通过正视图及俯视图可看出该几何体为半个圆锥和一个三棱锥组合在一起,故侧视图为D.9.已知直线l 过抛物线 C 的焦点,且与C 的对称轴垂直,l 与C 交于A, B 两点,| AB |=12,P 为C 的准线上一点,则ABP 的面积为_____.A.18 B.24 C.36 D.48【答案】 C【解析】设抛物线方程为 2 2py px ( , 0)2 ,将px 代入22 2y px可得2 2y p ,| AB |=12,即2p=12,∴p =6.点P 在准线上,到AB 的距离为p =6,所以ABP面积为12 6 12 36.x10.在下列区间中,函数 f ( x) e 4x 3的零点所在的区间为_____.A .1( ,0)4B.1(0, )4C.1 1( , )4 2D.1 3( , )2 4【答案】 C【解析】因为1 11 14 4f ( ) e 4 3 e 2 0 ,4 41 11 12 2f ( ) e 4 3 e 1 0 ,所2 2x以f (x) e 4x 3的零点所在的区间为1 1 ( , ).4 2第3页—共12页11.设函数 f (x) sin(2 x ) cos(2 x) ,则4 4A.y f (x) 在(0, )2 单调递增,其图象关于直线x对称4B.y f (x) 在(0, )2 单调递增,其图象关于直线x对称2C.y f (x) 在(0, )2 单调递减,其图象关于直线x对称4D.y f (x) 在(0, )2 单调递减,其图象关于直线x对称2【答案】 D【解析】因为( ) sin(2 ) cos(2 ) x = 2 cos2x,f x x x = 2 sin(2 )4 4 2所以y 2 cos2x,在(0, )2 单调递减,对称轴为2x k ,即kx ( k Z).212.已知函数y f ( x) 的周期为2,当x [ 1, 1] 时 2f ( x) x ,那么函数y f (x) 的图象与函数y |lg x |的图象的交点共有_____.A.10 个B.9 个C.8 个D.1 个【答案】 A【解析】画出两个函数图象可看出交点有10 个.第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.已知a与b为两个不共线的单位向量,k 为实数,若向量a b与向量k a b垂直,则k = .【答案】 1【解析】∵a b与k a b垂直,∴( a b) ·( k a b) =0,第4页—共12页化简得(k1)(a b1)0,根据a、b向量不共线,且均为单位向量得a b10,得k10,即k1.14.若变量x,y满足约束条件32x y96x y9,则z x2y的最小值是_________.【答案】-6【解析】画出区域图知,当直线z x2y过2x y3x y9的交点(4,-5)时,z min6.15.ABC中,B120,AC7,AB5,则ABC的面积为_________.【答案】1534【解析】根据AB ACsin C sin B 得ABsin C sin BAC53537214,53112cosC1(),1414所以sin A sin[(B C)]sin B cosC sin C cos B3111533321421414.因此S ABC=1133153 AB AC sin A75.2214416.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________.【答案】13【解析】设球心为O,半径为1r,圆锥底面圆圆心为1O,半径为2r,2第5页—共12页则有316422r r,即123r r,所以212r221O O r r,12122设两个圆锥中,体积较小者的高与体积较大者的高分别为h、h2,则1rh11h r21r12r1213.三、解答题:解答应写文字说明,证明过程或演算步骤.17.(本小题满分12分)1已知等比数列{a}中,1a,公比n31 q.3(Ⅰ)S n为{a n}的前n项和,证明:1an S;n2(Ⅱ)设b n log3a1log3a2log3a n,求数列{b n}的通项公式.1111n【解析】(Ⅰ)因为.a()nn333Sn 13(111n313)11n32, 1a n所以,Sn2(Ⅱ)b n log3a1log3a2log3a n (12n)n(n1)2n(n1)所以{b n}的通项公式为.b n218.(本小题满分12分)如图,四棱锥P ABCD中,底面ABCD为平行四边形,DAB60,AB2AD,PD底面ABCD.第6页—共12页(Ⅰ)证明:PA BD;(Ⅱ)若PD AD1,求棱锥D PBC的高.【解析】(Ⅰ)因为DAB60,AB2AD,由余弦定理得BD3AD从而222BD AD AB,故BD AD又PD底面ABCD,可得BD PD所以BD平面PAD.故PA BD(Ⅱ)如图,作DE PB,垂足为E.已知PD底面ABCD,则PD BC.由(Ⅰ)知BD AD,又BC//AD,所以BC BD.故BC平面PBD,BC DE.则DE平面PBC.由题设知,PD=1,则BD=3,PB=2,3根据BE·PB=PD·BD,得DE=,23即棱锥D—PBC的高为.219.(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到时下面试验结果:A配方的频数分布表第7页—共12页[90,94) [94,98) [98,102) [102,106) [106,110] 指标值分组频数8 20 42 22 8B 配方的频数分布表[90,94) [94,98) [98,102) [102,106) [106,110] 指标值分组频数 4 12 42 32 10 (Ⅰ)分别估计用 A 配方,B 配方生产的产品的优质品率;(Ⅱ)已知用 B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,t 94y 2,94 t 102,估计用 B 配方生产的一件产品的利润大于0 的概率,并求用 B 4,t 102配方生产的上述100 件产品平均一件的利润.22 8【解析】(Ⅰ)由试验结果知,用 A 配方生产的产品中优质品的频率为0.3,所以用 A100 配方生产的产品的优质品率的估计值为0.3 .32 10由试验结果知,用 B 配方生产的产品中优质品的频率为0.42,所以用 B 配方100生产的产品的优质品率的估计值为0.42.(Ⅱ)由条件知,用 B 配方生产的一件产品的利润大于0 当且仅当其质量指标值t≥94,由试验结果知,质量指标值t ≥94的频率为0.96.所以用 B 配方生产的一件产品的利润大于0 的概率估计值为0.96.1[4 ( 2) 54 2 42 4] 2.68 (元).用B 配方生产的产品平均一件的利润为10020.(本小题满分12 分)2 6 1在平面直角坐标系xOy 中,曲线y x x 与坐标轴的交点都在圆 C 上.(Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线x y a 0交于A,B 两点,且OA OB ,求a的值.2 x【解析】(Ⅰ)曲线y x 6 1与y 轴的交点为(0,1),与x轴的交点为(3 2 2,0), (3 2 2 ,0).2 t 2 t2 解得t =1.2C的圆心为(3,t ),则有3( 1) (2 2) ,故可设—共12页第8页2t2则圆C的半径为3(1) 3.2y 2 所以圆C的方程为(x3)(1)9.(Ⅱ)设A(x1,y),B(x2,y2),其坐标满足方程组:1x y a0,(x3)2y(21)0.4消去y,得到方程2a x a a22x(28)210.2 由已知可得,判别式5616a4a0.2 (82a)5616a4a 因此,,x从而1,242a02a1x x4a,x x①12122由于OA OB,可得x1x y y0,212又y1x1a,y2x2a,所以22x1x a(x x)a0.②212由①,②得a1,满足0,故a 1. 21.(本小题满分12分)已知函数f(x)a ln x bx1x,曲线y f(x)在点(1,f(1处)的切线方程为x2y30.(Ⅰ)求a,b的值;(Ⅱ)证明:当x0,且x1时,f(x)l nxx1.【解析】(Ⅰ)f'(x)x1(ln)x bx22(x1)x第9页—共12页1 2,且过点(1,1),故ff(1)1,1'(1),2由于直线x2y30的斜率为即b1,a1b22,解得a1,b1.(Ⅱ)由(Ⅰ)知f(x)ln x1x1x,所以f(x)lnxx111x2x(2ln x2x1)考虑函数h(x)2ln x2x1x(x0),则h(x)2x22x(2x2x1)(x1)2x2所以当x1时,h(x)0,而h(1)0,故1当x(0,1)时,(x2h(x)0;h)0,可得1x1当x(1,)时,h(x0,可得2h(x)0;)1xln x ln x从而当.x0,且x1,f(x)0,即f(x)x1x1请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,D,E分别为ABC的边AB,AC上的点,且不与ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程2140x x mn的两个根.第10页—共12页CEBAD(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若A90,且m4,n6,求C,B,D,E所在圆的半径.【解析】(Ⅰ)连结DE,根据题意在ADE和ACB中,AD AB mn AE AC,即A D AEAC AB.又DAE CAB,从而ADE∽ACB.因此ADE ACB.所以C,B,D,E四点共圆.CG MEA D B(Ⅱ)m4,n6时,方程2140x x mn的两根为x12,x212.故AD2,AB12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连结D H.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.由于A90,故GH//AB,HF//AC,从而HF AG5,1DF1225.2故C,B,D,E四点所在圆的半径为52.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线C的参数方程为1xy2cos22sin(为参数),M为C上1的动点,P点满足O P2OM,点P的轨迹为曲线C.2 (Ⅰ)求C2的方程;—共12页第11页(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线与C1 的异于极点3 的交点为 A ,与C 的异于极点的交点为B,求| AB | .2x y【解析】(Ⅰ)设P x, y ,则由条件知M , ,由于M 点在2 2 C 上,所以1x2y22cos22sin,即x y 4cos4 4sin.从而C 的参数方程为2 xy4cos4 4sin( 为参数).(Ⅱ)曲线C1 的极坐标方程为4sin ,曲线C2 的极坐标方程为8sin .射线与C1 的交点 A 的极径为 1 4sin, 3 3射线与C2 的交点 B 的极径为 2 8sin,3 3所以A B1 2 2 3 .24.(本小题满分10 分)选修4-5:不等式选讲设函数 f (x) | x a | 3x,其中a 0.(Ⅰ)当a 1时,求不等式 f (x) 3x 2 的解集.(Ⅱ)若不等式 f (x) 0的解集为{x| x 1},求a 的值.【解析】(Ⅰ)当 a 1时, f x 3x 2 可化为x 1 2由此可得x 3 或x 1,故不等式 f x 3x 2 的解集为x x 3 或x 1 .(Ⅱ)由 f x 0 得x a 3x 0,此不等式化为不等式组x ax a 3x 0 或x a即a x 3x 0x aax4或x ax.a2由于a 0 ,所以不等式组的解集为ax x .2a由题设可得 12,故a 2 .WORD文档第12页—共12页专业资料。
2011年普通高等学校招生全国统一考试一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )I ð (A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4【答案】D【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N M N =∴=ðQ I I(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥【答案】B【命题意图】本题主要考查反函数的求法. 【解析】由原函数反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥. (3)设向量,a b 满足||||1a b ==,12a b ⋅=-r r ,则2a b += (A(B(C(D【答案】B 【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=r r r r r u r ,所以2a b +=r r (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =(A )8 (B )7 (C )6 (D )5【答案】D【命题意图】本题主要考查等差数列的基本公式的应用.【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =. 解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂 足,若2,1AB AC BD ===,则CD =(A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, AC l ⊥,∴AC ⊥平面β,AC BC ∴⊥BC ∴=又BD l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A) 12种 (B) 24种 (C) 30种 (D)36种【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -= (A) -12 (B)1 4- (C)14 (D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值. 【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111()(2)()()2(1)2222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离OM =,在Rt OMN ∆中,30OMN ︒∠=, ∴12ON OM ==故圆N 的半径r ==,∴圆N 的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年普通高等学校招生全国统一考试(新课标全国卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其他题为必考题第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{0,1,2,3,4}M =,{1,3,5}N =,P MN =,则P 的子集共有A .2个B .4个C .6个D .8个 【答案】B 【解析】P M N =={1,3},故P 的子集有224=个.2.复数5i12i=- A .2i - B .12i - C .2i -+ D .12i -+ 【答案】C 【解析】5i 5i(12i)2i 12i (12i)(12i)+==-+--+. 3.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是A .3y x =B .||1y x =+C .21y x =-+ D .||2x y -=【答案】B【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .4.椭圆221168x y +=的离心率为A .13 B .12C D .2【答案】D【解析】由221168x y +=可知216a =,28b =,∴2228c a b =-=,∴22212c e a ==,∴22e =. 5.执行右面的程序框图,如果输入的N 是6,那么输出的p 是A .120B .720C .1440D .5040 【答案】B【解析】由程序框图可得,输出的123456720p =⨯⨯⨯⨯⨯=,选B6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .13 B .12 C .23 D .34【答案】A【解析】记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,其中事件A 有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此31()93P A ==. 7.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45【答案】B【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .8.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A【答案】D【解析】通过正视图及俯视图可看出该几何体为半个圆锥和一个三棱锥组合在一起,故侧视图为D .9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于,A B 两点,||AB =12,P 为C 的准线上一点,则ABP ∆的面积为_____.A .18B .24C .36D .48 【答案】C【解析】设抛物线方程为22y px =,则焦点坐标为(,0)2p ,将2px =代入22y px =可得22y p =,||AB =12,即2p =12,∴p =6.点P 在准线上,到AB 的距离为p =6,所以ABP ∆面积为1612362⨯⨯=. 10.在下列区间中,函数()43xf x e x =+-的零点所在的区间为_____. A .1(,0)4- B .1(0,)4 C .11(,)42 D .13(,)24【答案】C【解析】因为114411()432044f e e =+⨯-=-<,112211()431022f e e =+⨯-=->,所以()43xf x e x =+-的零点所在的区间为11(,)42.11.设函数()sin(2)cos(2)44f x x x ππ=+++,则 A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称 B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称 C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称 D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称【答案】D【解析】因为()sin(2)cos(2)44f x x x ππ=+++=2sin(2)2x π+=2cos 2x , 所以2cos 2y x =,在(0,)2π单调递减,对称轴为2x k π=,即2k x π=(k ∈Z ).12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有_____.A .10个B .9个C .8个D .1个 【答案】A【解析】画出两个函数图象可看出交点有10个.第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知a 与b 为两个不共线的单位向量,k 为实数,若向量+a b 与向量k -a b 垂直,则k = .【答案】1【解析】∵+a b 与k -a b 垂直,∴(+a b )·(k -a b ) =0,化简得(1)(1)0k -⋅+=a b ,根据a 、b 向量不共线,且均为单位向量得10⋅+≠a b ,得10k -=,即1k =. 14.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.【答案】-6【解析】画出区域图知,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-.15.ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_________.153【解析】根据sin sin AB ACC B=得5353sin sin 7AB C B AC === 25311cos 1()1414C =-=, 所以sin sin[()]sin cos sin cos A B C B C C B π=-+=+3111533321421414=⨯-⨯=. 因此ABC S ∆=1133153sin 7522144AB AC A ⨯⨯⨯=⨯⨯⨯= 16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________. 【答案】13【解析】设球心为1O ,半径为1r ,圆锥底面圆圆心为2O ,半径为2r ,则有22123416r r ππ⨯=,即212r r =,所以1122r O O ==, 设两个圆锥中,体积较小者的高与体积较大者的高分别为1h 、2h ,则1111211232r r h r h r -==+.三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等比数列{}n a 中,113a =,公比13q =.(Ⅰ)n S 为{}n a 的前n 项和,证明:12nn a S -=;(Ⅱ)设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.【解析】(Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31nn n S -=--= 所以,21nn a S --(Ⅱ)n n a a a b 32313log log log +++=)21(n +++-=2)1(+-=n n 所以}{n b 的通项公式为.2)1(+-=n n b n18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;(Ⅱ)若1PD AD ==,求棱锥D PBC -的高.【解析】(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而222BD AD AB +=,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD. 故 P A ⊥BD(Ⅱ)如图,作DE ⊥PB ,垂足为E .已知PD ⊥底面ABCD ,则PD ⊥BC .由(Ⅰ)知BD ⊥AD ,又BC //AD ,所以BC ⊥BD . 故BC ⊥平面PBD ,BC ⊥DE . 则DE ⊥平面PBC .由题设知,PD =1,则BD =3,PB =2,根据BE ·PB =PD ·BD ,得DE =23, 即棱锥D —PBC 的高为.2319.(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到时下面试验结果:A 配方的频数分布表B 配方的频数分布表(Ⅰ)分别估计用A 配方,B 配方生产的产品的优质品率;(Ⅱ)已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩,估计用B 配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.【解析】(Ⅰ)由试验结果知,用A 配方生产的产品中优质品的频率为2280.3100+=,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32100.42100+=,所以用B 配方生产的产品的优质品率的估计值为0.42.(Ⅱ)由条件知,用B 配方生产的一件产品的利润大于0当且仅当其质量指标值94t ≥,由试验结果知,质量指标值94t ≥的频率为0.96.所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96. 用B 配方生产的产品平均一件的利润为1[4(2)542424] 2.68100⨯⨯-+⨯+⨯=(元).20.(本小题满分12分)在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上. (Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线0x y a -+=交于,A B 两点,且OA OB ⊥,求a 的值. 【解析】(Ⅰ)曲线162+-=x x y 与y 轴的交点为(0,1),与x 轴的交点为().0,223(),0,223-+故可设C 的圆心为(3,t ),则有,)22()1(32222t t +=-+解得t =1.则圆C 的半径为.3)1(322=-+t 所以圆C 的方程为.9)1()3(22=-+-y x(Ⅱ)设A (11,y x ),B (22,y x ),其坐标满足方程组:⎪⎩⎪⎨⎧=-+-=+-.9)1()3(,022y x a y x 消去y ,得到方程.012)82(222=+-+-+a a x a x由已知可得,判别式.0416562>--=∆a a因此,,441656)28(22,1a a a x --±-=从而2120,422121+-=-=+a a x x a x x①由于OA ⊥OB ,可得,02121=+y y x x 又,,2211a x y a x y +=+=所以.0)(222121=+++a x x a x x②由①,②得1-=a ,满足,0>∆故.1-=a21.(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a ,b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1xf x x >-. 【解析】(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =.(Ⅱ)由(Ⅰ)知ln 1f ()1x x x x=++,所以 )1ln 2(111ln )(22xx x x x x x f -+-=-=考虑函数()2ln h x x =+xx 12-(0)x >,则22222)1()1(22)(xx x x x x x h --=---=' 所以当1≠x 时,,0)1(,0)(=<'h x h 而故 当)1,0(∈x 时,;0)(11,0)(2>->x h x x h 可得当),1(+∞∈x 时,;0)(11,0)(2>-<x h xx h 可得从而当.1ln )(,01ln )(,1,0->>--≠>x xx f x x x f x x 即且请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.EB(Ⅰ)证明:,,,C B D E 四点共圆;(Ⅱ)若90A ∠=︒,且4,6,m n ==求,,,C B D E 所在圆的半径.【解析】(Ⅰ)连结DE ,根据题意在ADE ∆和ACB ∆中,AD AB mn AE AC ⨯==⨯,即AD AEAC AB=. 又DAE CAB ∠=∠,从而ADE ∆∽ACB ∆. 因此ADE ACB ∠=∠. 所以C ,B ,D ,E 四点共圆.(Ⅱ)4m =,6n =时,方程2140x x mn -+=的两根为12x =,212x =. 故2AD =,12AB =.取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连结DH . 因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH .由于90A ∠=︒,故//GH AB ,//HF AC ,从而5HF AG ==,()112252DF =-=. 故C ,B ,D ,E 四点所在圆的半径为23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C . (Ⅰ)求2C 的方程;ADB C GEM(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .【解析】(Ⅰ)设(),P x y ,则由条件知,22x y M ⎛⎫⎪⎝⎭,由于M 点在1C 上,所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩,即4cos 44sin x y αα=⎧⎨=+⎩. 从而2C 的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数).(Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=. 射线3πθ=与1C 的交点A 的极径为14sin 3πρ=, 射线3πθ=与2C 的交点B 的极径为28sin3πρ=,所以12AB ρρ=-=24.(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >. (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集.(Ⅱ)若不等式()0f x ≤的解集为{x |1}x ≤-,求a 的值. 【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为12x -≥由此可得3x ≥或1x ≤-,故不等式()32f x x ≥+的解集为{3x x ≥或}1x ≤-. (Ⅱ)由()0f x ≤得30x a x -+≤,此不等式化为不等式组 30x a x a x ≥⎧⎨-+≤⎩或30x a a x x ≤⎧⎨-+≤⎩即4x a a x ≥⎧⎪⎨≤⎪⎩或2x aa x ≤⎧⎪⎨≤-⎪⎩.由于0a >,所以不等式组的解集为2a x x ⎧⎫≤-⎨⎬⎭⎩.由题设可得12a-=-,故2a =.。
2011年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.N1.已知集合M={0,1,2,3,4},N={1,3,5},P=M,则P的子集共有A.2个 B.4个 C.6个 D.8个.复数A. B. C. D..下列函数中,既是偶函数又在单调递增的函数是A. B. C. D. 22的离心率为 4.椭圆16811 A. B.3223 C. D.325.执行右面的程序框图,如果输入的N是6,那么输出的p是A.120 B. 720 C. 1440 D. 5040 6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为11 A.B.3223 C. D.347.已知角的顶点与原点重合,始边与x轴的正半轴重合,终边在直线上,则= 4334A. B. C. D.5555 8.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为9.已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,,P为C的准线上一点,则的面积为A.18 B.24 C.36 D.4810.在下列区间中,函数的零点所在的区间为A. B. C. D.11.设函数,则 A.在单调递增,其图象关于直线对称B.在单调递增,其图象关于直线对称C.在单调递减,其图象关于直线对称D.在单调递减,其图象关于直线对称12.已知函数的周期为2,当时,那么函数的图象与函数的图象的交点共有 A.10个 B.9个 C.8个 D.1个第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.已知a与b为两个不共线的单位向量,k为实数,若向量a+b与向量ka-b垂直,则k=_____________.14.若变量x,y满足约束条件,则的最小值是_________.15.中,,则的面积为_________.16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面3积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为16______________.三、解答题:解答应写文字说明,证明过程或演算步骤.17.(本小题满分12分)1,公比.已知等比数列中,S(I)为的前n项和,证明:(II)设,求数列的通项公式.n31323nn18.(本小题满分12分)如图,四棱锥中,底面ABCD为平行四边形,,,底面ABCD.(I)证明:;(II)设PD=AD=1,求棱锥D-PBC的高. 19.(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表指标值分组 [90,94) [94,98) [98,102)[102,106) [106,110] 8 20 42 22 8 频数 B配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]4 12 42 32 10 频数(I)分别估计用A配方,B配方生产的产品的优质品率;(II)已知用B配方生产的一种产品利润y (单位:元)与其质量指标值t的关系式为估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润. 20.(本小题满分12分)2在平面直角坐标系xOy中,曲线与坐标轴的交点都在圆C上.(I)求圆C的方程;(II)若圆C与直线交于A,B两点,且求a的值.21.(本小题满分12分)已知函数,曲线在点处的切线方程为.(I)求a,b的值;.(II)证明:当x>0,且时,请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,D,E分别为的边AB,AC上的点,且不与的顶点重合.已知AE的长为2m,AC的长为n,AD,AB的长是关于x的方程的两个根.(I)证明:C,B,D,E四点共圆;(II)若,且求C,B,D,E所在圆的半径.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线的参数方程为,M为上的动点,为参数)P点满足,点P的轨迹为曲线.2C(I)求的方程;(II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与的异于极点的交13C点为A,与的异于极点的交点为B,求|AB|.2 24.(本小题满分10分)选修4-5:不等式选讲设函数,其中.(I)当a=1时,求不等式的解集.(II)若不等式的解集为{x|,求a的值.参考答案一、选择题(1)B (2)C (3)B (4)D (5)B (6)A (7)B (8)D (9)C (10)C (11)D (12)A 二、填空题1153(13)1 (14)-6 (15)(16)34三、解答题(17)解:111n(Ⅰ)因为,所以(Ⅱ)所以的通项公式为nn2 (18)解:(Ⅰ)因为,由余弦定理得从而BD+AD= AB,故又PD底面ABCD,可得所以BD平面PAD. 故PABD (Ⅱ)如图,作DEPB,垂足为E。
2011年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题1.设集合U= U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则=⋂(M N )ð , 则A .{}12,B .{}23,C .{}2,4D .{}1,42.函数0)y x =≥的反函数为的反函数为A .2()4x y x R =∈B .2(0)4x y x =≥C .24y x =()x R ∈ D .24(0)y x x =≥3.权向量a,b 满足 ,则1||||1,2a b a b ==⋅=-,则2a b +=ABCD4.若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y -+的最小值为A .17B .14C .5D .3 5.下面四个条件中,使 成立的充分而不必要的条件是 A .1a b >+ B .1a b >-C .22a b >D .33a b >6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差为22,24k k d S S +=-=,则k=A .8B .7C .6D .57.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .98.已知二面角l αβ--,点,,A AC l α∈⊥C 为垂足,点,B BD l β∈⊥,D 为垂足,若AB=2,AC=BD=1,则CD=A .2 BCD .19.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 A .12种 B .24种C .30种D .36种 10.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .14-C .14D .1211.11.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =A .4 B.C .8D.12.已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N的面积为A .7πB .9πC .11πD .13π第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上(注意:在试卷上作答无效)13.(10的二项展开式中,x 的系数与x 9的系数之差为: .14.已知a ∈(3,2ππ),t a n 2,c o s αα=则=15.已知正方体ABCD —A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE与BC 所成角的余弦值为 。
绝密 ★ 启用前2011年普通高等学校招生全国统一考试文科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试..题.卷上作答无效....... 3.第Ⅰ卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.一 选择题(1)设集合U={ 1,2,3,4 },M={ 1,2,3 },N={ 2,3,4 }, 则()Cu M N = ( )(A ){1,2} (B ){2,3} (C ){2,4} (D) {1,4}(2)函数(0)y x =≥的反函数是( )(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24()y x x R =∈ (D )24(0)y x x =≥(3)设向量,a b 满足||||1a b ==,12a b ∙=-,则|2|a b +=( ) (A(B(C(D) (4)若变量,x y 满足约束条件6321x y x y x +≤⎧⎪-≤-⎨⎪≥⎩,则23z x y =+的最小值为( )(A )17 (B )14 (C )5 ( D ) 3(5)下列四个条件中,使a b >成立的充分不必要的条件是( )(A )1a b >+ (B )1a b >- (C )22a b > (D) 3a b >(6)设n S 为等差数列的前n 项和,若11a =,公差2,d =,224,k k S S +-=则k=( )(A )8 (B )7 (C )6 (D)5(7)设函数()cos (0),f x wx w =>将()y f x =的图像向右平移3π个单位长度后的图像与原图像重合,则w 的最小值等于( )(A )13(B )3 (C )6 (D) 9 (8)已知二面角,l αβ--点,,A AC l C α∈⊥为垂足,点,,B BD l D β∈⊥为垂足,若AB=2,AC=BD=1,则CD=( )(A )2 (B (C (D) 1(9)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法有多少种( )(A )12 (B )24 (C )30 (D) 36(10)设()f x 是周期为2的奇函数,当01x ≤≤时,()2(1)f x x x =-则5()2f -=( ) (A )12-(B )14- (C )12 (D) 14 (11)设两圆12C C 都和两坐标轴相切,且都过(4,1)则两个圆心的距离12||C C =( )(A )4 (B ) (C )8 (D) (12)已知平面α截一球面得圆M ,过圆心M 且α与成60二面角的平面β截该球面得圆N ,若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为( )(A )4π (B )9π (C )11π (D) 13π绝密 ★ 启用前2011年普通高等学校招生全国统一考试文科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域 内作答,在试题卷上作答无效.......... 3.第Ⅱ卷共10小题,共90分.二、填空题(13)10(1)x -的二项展开式中,x 的系数与9x 的系数之差为____________(14)已知:3(,),tan 2,2παπα∈=则cos α=____________ (15)已知:正方体1111ABCD A BC D -中,E 是11C D 的中点,则异面直线AE 与BC 所成角的余弦值为____________(16)已知:12,F F 分别是双曲线C :221927x y -=的左右焦点,点A C ∈,点M 的坐标为(2,0),AM 为-12F AF ∠的平分线,则2||AF ____________三、解答题.(17)(本小题满分10分)设等比数列{}n a 的前n 项和为n S ,已知26a =,13630a a +=,求n a 和n S(18)(本小题满分12分)ABC ∆的内角,,A B C 的对边分别为,,a b c ,sin sin sin sin a A c C C b B +=(1)求B ; (2) 若75A ︒=,2b =,求,a c .(19)(本小题满分12分)根据以往统计资料,某地车主购买甲种保险的概率是0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地一位车主至少购买甲乙两种保险中的1中的概率.(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.(20)(本小题满分12分)如图,四棱锥S-ABCD 中,AB //CD ,BC ⊥CD ,侧面SAB 为等边三角形,AB=BC=2,CD=SD=1(1) 证明:SD ⊥平面SAB(2) 求AB 与平面SBC 所成角的大小.(21)(本小题满分12分)已知函数:32()3(36)124f x x ax a x a =++-+-(a R ∈)(1)证明:曲线()y f x =在0x =出的切线过点(2,2) (2)若()f x 在0x x =处取得极小值,0(1,3)x ∈,求a 的求值范围(22)(本小题满分12分)已知O 为坐标原点,F 为椭圆C :2212y x +=在y 轴正半轴上的焦点,过F 且斜率为l 与C 交与A ,B 两点,点P 满足0OA OB OP ++=(1) 证明:点P 在C 上设点P 关于O 的对称点为Q(2) ,证明:A 、P 、B 、Q 四点在同一个圆上.。
2011年全国高考卷II 数学试题·文科一、选择题(1)设集合{}1,2,3,4U =,{}1,2,3,M ={}2,3,4,N =则U=⋂ð(M N )( )(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4【思路点拨】解决本题的关键是掌握集合交并补的计算方法,易求{2,3}M N = ,进而补集为{}1,4.【精讲精析】选D. {2,3},(){1,4}U MN M N =∴= ð. (2)函数0)y x =≥的反函数为( )(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥ 【思路点拨】先反解用y 表示x,注意要求出y 的取值范围,它是反函数的定义域。
【精讲精析】选B .在函数0)y x =≥中,0y ≥且反解x得24y x =,所以0)y x =≥的反函数为2(0)4x y x =≥.(3)设向量,a b 满足||||1a b ==,则2a b += ( )(A(B(C(D【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a>b ,而由a>b 推不出选项的选项. 【精讲精析】选A .即寻找命题P 使P ,ab a b ⇒>>推不出P ,逐项验证可选A 。
(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为( )(A )17 (B )14 (C )5 (D )3【思路点拨】解决本题的关键是作出如右图所示的可行域。
然后要把握住线性目标函数=23z x y +的z 的取值也其在y 轴的截距是正相关关系,进而确定过直线x=1与x-3y=-2的交点时取得最小值。
【精讲精析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是( )(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a>b ,而由a>b 推不出选项的选项. 【精讲精析】选A .即寻找命题P 使P ,ab a b ⇒>>推不出P ,逐项验证可选A 。
2011年普通高等学校招生全国统一考试一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U=(M N ) (A){}12, (B){}23, (C){}2,4 (D){}1,4 【答案】D【命题意图】本题主要考查集合交并补运算。
【解析】{2,3},(){1,4}U M N M N =∴=(2)函数2(0)y x x =≥的反函数为 (A)2()4x y x R =∈ (B)2(0)4x y x =≥ (C)24y x =()x R ∈ (D)24(0)y x x =≥【答案】B【命题意图】本题主要考查反函数的求法. 【解析】由原函数反解得24y x =,又原函数的值域为0y ≥,所以函数2(0)y x x =≥的反函数为2(0)4x y x =≥。
(3)设向量,a b 满足||||1a b ==,12a b ⋅=-,则2a b += (A)2 (B)3 (C)5 (D)7【答案】B【命题意图】本题主要考查平面向量的数量积与长度的计算方法。
【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=,所以23a b += (4)若变量x,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A)17 (B)14 (C)5 (D)3【答案】CCβα l AB D 【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x—3y=—2的交点(1,1)时取得最小值,所以最小值为5。
(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A)1a b +> (B)1a b -> (C)22a b > (D)33a b >【答案】A【命题意图】本题主要考查充要条件及不等式的性质。
【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k kS S +-=,则k = (A)8 (B)7 (C)6 (D)5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用.【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =. 解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =。
2011年普通高等学校招生全国统一考试·陕西卷(文科)全解全析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分).1.设a ,b 是向量,命题“若a b =-,则||||a b = ”的逆命题是 ( ) (A )若a b ≠- ,则||||a b ≠ (B )若a b =-,则||||a b ≠ (C )若||||a b ≠ ,则a b ≠- (D )若||||a b = ,则a b =-【分析】首先确定原命题的条件和结论,然后交换条件和结论的位置即可得到逆命题。
【解】选D 原命题的条件是a b =-,作为逆命题的结论;原命题的结论是||||a b = ,作为逆命题的条件,即得逆命题“若||||a b = ,则a b =- ”,故选D .2.设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是 ( ) (A )28y x =- (B )24y x =- (C )28y x = (D )24y x = 【分析】由准线确定抛物线的位置和开口方向是判断的关键.【解】选 C 由准线方程2x =-得22p-=-,且抛物线的开口向右(或焦点在x 轴的正半轴),所以228y px x ==.3.设0a b <<,则下列不等式中正确的是 ( )(A )2a b a b +<<<(B )2a b a b+<<<(c )2a ba b +<<<(D)2a ba b +<<<【分析】根据不等式的性质,结合作差法,放缩法,基本不等式或特殊值法等进行比较.【解】选B (方法一)已知a b <2a b+,比较a 22()0a a a b -=-<,所以a <,同理由22()0b b b a -=->得b <;作差法:022a b b ab +--=>,所以2a b b +<,综上可得2a b a b +<<<;故选B .(方法二)取2a =,8b =,4=,52a b+=,所以2a ba b +<<<.4. 函数13y x =的图像是 ( )【分析】已知函数解析式和图像,可以用取点验证的方法判断.【解】选B 取18x =,18-,则12y =,12-,选项B ,D 符合;取1x =,则1y =,选项B 符合题意.某几何体的三视图如图所示,则它的体积是( )283π-83π-8-2π23π【分析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算. 【解】选A 由几何体的三视图可知几何体为一个组合体, 即一个正方体中间去掉一个圆锥体,所以它的体积是3218222833V ππ=-⨯⨯⨯=-.6.方程cos x x=在(),-∞+∞内 ( )(A)没有根 (B)有且仅有一个根(C) 有且仅有两个根 (D )有无穷多个根【分析】数形结合法,构造函数并画出函数的图象,观察直观判断. 【解】选C 构造两个函数||y x =和cos y x =,在同一个坐标系内画出它们的图像,如图所示,观察知图像有两个公共点,所以已知方程有且仅有两个根.7.如右框图,当126,9,x x ==8.5p =时,3x 等于( )(A) 7 (B) 8 (C)10 (D )11【分析】按照程序框图的逻辑顺序进行计算. 【解】选B ∵126,9,x x ==∴3|9|3x ->;又8.5p =,127.52x x +=,显然3|9|3x ->不成立,即为“否”,∴有3|9|3x -…,即3612x 剟,此时有398.52x +=,解得38x =,符合题意,故选B .8.设集合22{||cos sin |,}M y y x x x R ==-∈,{|||1xN x i =<,i 为虚数单位,x ∈R },则M N 为( )(A)(0,1) (B)(0,1] (C)[0,1) (D)[0,1]【分析】确定出集合的元素是关键。
本题综合了三角函数、复数的模,不等式等知识点。
【解】选C22|cos sin ||cos2|[0,1]y x x x =-=∈,所以[0,1]M =; 因为||1xi <,即||1xi -<,所以||1x <,又因为x ∈R ,所以11x -<<,即(,1)N =-;所以[0,1)M N = ,故选C. 9.设1122(,),(,),x y x y ··· ,(,)n n x y 是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是( ) (A) 直线l 过点(,)x y(B )x 和y 的相关系数为直线l 的斜率 (C )x 和y 的相关系数在0到1之间(D)当n为偶数时,分布在l两侧的样本点的个数一定相同【分析】根据最小二乘法的有关概念:样本点的中心,相关系数线,性回归方程的意义等进行判断.【解】选A10.植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为()(A)①和(B)⑨和⑩(C) ⑨和(D) ⑩和【分析】根据选项分别计算四种情形的路程和;或根据路程和的变化规律直接得出结论.::10(129)10(1210)2⨯++++⨯+++⨯=2000 :路程和都是(方法二)根据图形的对称性,树苗放在两端的树坑旁边,所得路程总和相同,取得一个最值;所以从两端的树坑向中间移动时,所得路程总和的变化相同,最后移到第10个和第11个树坑旁时,所得的路程总和达到另一个最值,所以计算两个路程和进行比较即可。
树苗放在第一个树坑旁,则有路程总和是10(1219)2⨯+++⨯19(119)10238002+=⨯⨯=;树苗放在第10个(或第11个)树坑旁边时,路程总和是10(129)10(1210)2⨯++++⨯+++⨯ 9(19)10(110)10210222⨯+⨯+=⨯⨯+⨯⨯90011002000=+=,所以路程总和最小为2000米.填空题:把答案填在答题卡相应题号后的横线上( 本大题共5小题,每小题5分,共25分)11.设lg ,0()10,0xx x f x x >⎧=⎨⎩…,则((2))f f -=______. 【分析】由2x =-算起,先判断x 的范围,是大于0,还是不大于0,;再判断(2)f -作为自变量的值时的范围,最后即可计算出结果.【解】∵20x =-<,∴21(2)100100f --==>,所以22(10)lg102f --==-,即((2))2f f -=-. 【答案】2-12.如图,点(,)x y 在四边形ABCD 内部和边界上运动,那么2x y -的最小值为________. 【分析】本题为线性规划问题,采用数形结合法解答,解答本题的关键是确定目标函数过哪一个点时取得最小值. 【解】目标函数2z x y =-,当0x =时,z y =-,所以当y 取得最大值时,z 的值最小;移动直线20x y -=,当直线移动到过点A 时,y 最大,即z的值最小,此时2111z =⨯-=.【答案】113.观察下列等式 1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第五个等式应为__________________.【分析】归纳总结时,看等号左边是子的变化规律,右边结果的特点,根据以上规律写出第五个等式,注意行数、项数及其变化规律是解答本题的关键.【解】把已知等式与行数对应起来,则每一个等式的左边的式子的第一个数是行数n ,加数的个数是21n -;等式右边都是完全平方数,行数 等号左边的项数 1=1 1 1 2+3+4=9 2 3 3+4+5+6+7=25 354+5+6+7+8+9+10=49 4 7则第5行等号的左边有9项,右边是9的平方,所以256[5(251)1]9++++⨯--= ,即561381+++= .【答案】567891011121381++++++++=(或561381+++= ) 14.设n N +∈,一元二次方程240x x n -+=有整数根的充要条件是n = .【分析】直接利用求根公式进行计算,然后用完全平方数、整除等进行判断计算.【解】x=2=因为x 是整数,即2且4n …,又因为n N +∈,取1,2,3,4n =验证可知3,4n =符合题意;反之3,4n =时,可推出一元二次方程240x x n -+=有整数根.【答案】3或415.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A .(不等式选做题)若不等式|1||2|x x a ++-…对任意x ∈R 恒成立,则a 的取值范围是 . 【分析】先确定|1||2|x x ++-的取值范围,则只要a 不大于|1||2|x x ++-的最小值即可. 【解】当1x -…时,|1||2|12213x x x x x ++-=---+=-+…; 当12x -<…时,|1||2|123x x x x ++-=+-+=; 当2x >时,|1||2|12213x x x x x ++-=++-=->; 综上可得|1||2|3x x ++-…,所以只要3a …, 即实数a 的取值范围是(,3]-∞. 【答案】(,3]-∞B .(几何证明选做题)如图,∠B=∠D ,AE BC ⊥,90ACD ∠= ,且AB=6,AC=4,AD=12,则AE= .【分析】寻找两个三角形相似的条件,再根据相似三角形的对应边成比例求解. 【解】因为AE BC ⊥,所以∠AEB=90ACD ∠=,又因为∠B=∠D ,所以△AEB ∽△ACD ,所以AC ADAE AB =,所以64212AB AC AE AD ⋅⨯===.【答案】2C .(坐标系与参数方程选做题)直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线1C :3cos sin x y θθ=+⎧⎨=⎩(θ为参数)和曲线2C :1ρ=上,则||AB 的最小值为 .【分析】利用化归思想和数形结合法,把两条曲线转化为直角坐标系下的方程.【解】曲线1C 的方程是22(3)1x y -+=,曲线2C 的方程是221x y +=,两圆外离,所以||AB 的最小值111-=. 【答案】1解答题:接答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分) (本小题满分12分) 如图,在△ABC 中,∠ABC=45°,∠BAC=90°,AD 是BC 上的高,沿AD 把△ABD 折起,使∠BDC=90°。