高中数学必修三统计知识整理2
- 格式:doc
- 大小:203.14 KB
- 文档页数:6
高中数学统计与概率知识点归纳高中数学中的统计与概率是两个非常重要的知识点,它们在日常生活和工作中也具有广泛的应用价值。
本文将对这些知识点进行归纳和总结,以便读者更好地理解和掌握。
首先,让我们来看看统计。
统计是研究如何从数据中获取有用信息的学科。
在高中数学中,统计的主要内容包括以下三个方面:1、概率分布:这是统计的基础知识,它描述了各种可能结果出现的概率。
例如,投掷一枚硬币,正面朝上的概率为0.5,反面朝上的概率为0.5。
2、参数估计:参数估计是通过样本数据来估计总体参数的方法。
例如,通过样本的平均值来估计总体的平均值。
3、假设检验:假设检验是用来检验一个假设是否成立的统计学方法。
例如,我们想要检验某种新药的疗效是否优于安慰剂,可以通过比较实验组和对照组的数据来进行假设检验。
接下来,让我们来看看概率。
概率是描述事件发生可能性大小的数学工具。
在高中数学中,概率的主要内容包括以下三个方面:1、事件的关系和运算:事件的关系包括互斥、独立、不独立等,事件之间的运算包括并、交、差等。
2、概率的性质和计算:概率的性质包括加法定理、乘法定理、全概率公式等,概率的计算方法包括直接计算、利用公式计算等。
3、概率分布:概率分布描述了随机变量的取值概率,例如伯努利分布、二项分布、正态分布等。
在应用方面,统计与概率的知识点可以应用于很多领域,例如金融、医学、工业、农业等。
例如,在金融领域,可以通过统计方法来分析股票数据的规律和趋势;在医学领域,可以通过概率方法来预测疾病的发病率和死亡率。
总之,统计与概率是高中数学中非常重要的知识点,它们在日常生活和工作中也具有广泛的应用价值。
通过对这些知识点的归纳和总结,我们可以更好地理解和掌握它们,从而更好地应用于实际问题的解决中。
高中数学概率与统计知识点总结高中数学:概率与统计知识点总结一、前言在现实生活中,我们经常需要处理各种与概率和统计相关的问题。
例如,在掷骰子时计算点数、在班级中选取学生、或者在评估天气预报的准确性。
高中数学统计与概率知识点一、统计学基础1. 数据收集- 普查与抽样调查- 数据的类型(定量数据与定性数据)2. 数据整理与展示- 频数分布表- 直方图- 饼图- 条形图3. 中心趋势的度量- 平均数(算术平均数)- 中位数- 众数4. 离散程度的度量- 极差- 四分位距- 方差与标准差5. 相关性分析- 相关系数- 散点图二、概率论基础1. 随机事件- 事件的定义- 必然事件与不可能事件- 互斥事件与独立事件2. 概率的计算- 单次试验的概率- 多次试验的概率- 条件概率- 贝叶斯定理3. 随机变量- 离散随机变量与连续随机变量 - 概率分布- 概率密度函数与概率分布函数4. 期望值与方差- 随机变量的期望值- 随机变量的方差5. 常见概率分布- 二项分布- 泊松分布- 正态分布三、统计与概率的应用1. 假设检验- 零假设与备择假设- 显著性水平- 第一类错误与第二类错误 - t检验与卡方检验2. 回归分析- 线性回归- 相关系数与决定系数3. 抽样与估计- 抽样误差- 置信区间- 最大似然估计四、综合练习题1. 选择题- 统计图表解读- 概率计算- 假设检验2. 填空题- 计算平均数、中位数、众数 - 计算方差、标准差- 概率分布的应用3. 解答题- 解释统计概念- 概率问题的求解- 应用统计方法解决实际问题五、附录1. 公式汇总- 统计学公式- 概率论公式2. 重要概念索引- 术语解释- 概念间的关系3. 参考资料- 推荐阅读书籍- 在线资源链接请根据需要对上述内容进行编辑和调整。
这篇文章是为了提供一个关于高中数学统计与概率的知识点概览,适用于教育目的。
每个部分都包含了关键的子标题和简短的描述,以便于理解和使用。
高中数学必修三第13章:统计-知识点1、在统计问题中,研究对象的全体叫做总体,总体中的每一个对象叫做个体,总体中所含个体的数量称为总体的容量。
总体中抽取一部分个体叫做总体的一个样本,样本所含个体的数量叫做样本容量。
2、按照收集数据的不同方法,可以将数据分为观测数据和实验数据。
3、普查是大规模的全面调查,对总体的每个个体分别进行调查,优点是能准确反应总体的情况,缺点是调查范围大,耗时耗力,有时候还会破坏调查对象。
抽样调查,是从总体中抽取样本进行调查的方法,优点是省时省力,缺点是数据的精确性较差。
4、简单随机抽样:逐个抽取的方法,总体中每一个个体都有同样的概率被抽中,适用于个体之间差异较小和数目较少时,包括抽签法和随机数法。
5、分层随机抽样:当总体由差异明显的几个部分组成时,先把总体分成若干部分,然后从不同的部分中独立、随机地抽取样本。
适用于总体情况复杂,各单位之间差异较大,单位较多的情况。
6、系统抽样:先编号,然后分成若干段,在第一段中用简单随机抽样抽出一个编号,然后依次加上间隔数,直到获取整个样本。
该方法操作简便,不易出错。
7、一组数据的最大值和最小值的差称为极差,又称全距,每个小组的区间端点之间的距离叫做组距,组距的选取决定了组数的多少,极差=组距×组数。
将样本分组后,每个小组内的数据个数称为频数,频率=频数/样本容量。
8、在频率分布直方图中,纵坐标是频率/组距,所以,计算某一组的频率时,一定要记住用纵坐标去乘以组距,频率分布直方图中所有矩形的面积之和为 1 。
9、在频率分布直方图中,从左到右依次连接各矩形上底边的中点,就得到频率分布折线图。
10、茎叶图:适用于数据不多的时候,先把数据分成“茎”和“叶”两部分,然后把“茎”由小到大,由上往下写成一列,并在其左边和右边画一条竖直的线,最后把“叶”写在它所属的“茎”的同一侧,由小到大排成一行。
12 11、散点图:适用于 有相关性 的数据,比如身高和体重,将身高作为横坐标,体重作为 纵坐标 ,在平面直角坐标系中绘制出相应的 点,就得到了身高和体重的散点图。
高中数学统计知识梳理统计是指收集、整理、分析和解释数据的过程。
在高中数学中,统计是一个重要的内容领域,它既与数学基础知识有关,又与实际生活紧密相关。
本文将详细介绍高中数学统计知识的主要内容。
一、数据的收集和整理数据的收集和整理是统计的第一步。
数据可以通过调查、实验和观察等方式获得。
在高中数学中,学生通常使用问卷调查和实验方法来收集数据。
1.1 问卷调查问卷调查是收集大量数据的常用方法之一。
它可以用于调查人们的意见、喜好、习惯等。
在进行问卷调查时,需要设计合适的问题,并确定被调查人群。
收集到的数据可以通过表格和图表的形式进行整理和展示。
1.2 实验方法实验方法是一种通过对现象进行人为干预,观察结果并收集数据的方法。
在实验中,需要确定控制变量和操作变量,并设计实验方案。
收集到的数据可以通过表格、图表和统计分析等方式进行整理和展示。
二、描述性统计描述性统计是指使用各种图表和数值指标来对数据进行整理和描述的方法。
它可以帮助人们更好地理解和分析数据。
2.1 分类数据的整理与描述分类数据是指按照某种特征或属性进行分类的数据。
整理分类数据可以使用频数表和频率表。
频数表是将各个类别的频数列成一张表,而频率表是将频数转化为频率(频数除以总数)列成的表。
通过频数表和频率表可以直观地看出各个类别的数量比例。
2.2 数值数据的整理与描述数值数据是指具有数值特征的数据。
整理数值数据可以使用统计图和数值指标。
常见的统计图包括条形图、折线图、饼图和箱线图等。
数值指标有均值、中位数、众数、极差、方差和标准差等。
统计图和数值指标可以帮助人们更好地了解数据的分布和变化。
三、概率与统计推断概率与统计推断是指在统计学中利用概率理论和统计方法对数据进行推断和预测的过程。
它可以通过对样本数据进行分析来得出总体数据的结论。
3.1 概率的基本概念概率是指一个事件发生的可能性大小。
在高中数学中,学生主要学习了样本空间、事件、概率的基本概念和性质。
人教版高中数学必修三 第二章 统计2.1《随机抽样》知识梳理知识点一:简单随机抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧随机数法抽签法 3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.知识点二:系统抽样1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n(n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l(l ≤k);(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k),再加k 得到第3个个体编号(l +2k),依次进行下去,直到获取整个样本.知识点三:简单随机抽样1.分层抽样的概念 在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.人教版高中数学必修三第二章统计2.1《随机抽样》跟踪检测一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是1 5B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .126.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,87.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A. 22,100x s +B. 22100,100x s ++C. 2,x sD. 2100,x s +9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A.①②③B.①②④C.①③④D.①②③④10.下列抽样实验中,最适宜用系统抽样的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.16712.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为()A.2个B.3个C.5个D.13个13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,614.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,5315.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,916.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. 18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.人.三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:60人进行更为详细的调查,应当怎样进行抽样?23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?2.1《随机抽样》跟踪检测解答一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况[答案] D2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量[答案] C3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对[答案] C[解析]按照一定的规律进行抽取为系统抽样.4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此 C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同[答案] A[解析] 无论采用哪种抽样,每个个体被抽到的概率相等.5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .12[答案] A[解析] 运动员共计98人,抽取比例为2898=27,因此男运动员56人中抽取16人.6.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,8[答案] C[解析] 由题意得x =15,16.8=51(9+15+10+y +18+24) y =8,选C. 7.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A. 22,100x s + B. 22100,100x s ++ C. 2,x s D. 2100,x s +[答案] D[解析] 设增加工资后10位员工下月工资均值为'x ,方差为2's , 则平均数()()()12101'10010010010x x x x =++++⋅⋅⋅++⎡⎤⎣⎦ ()1210110010010x x x x =++++=+; ()()()222212101'100'100'100'10s x x x x x x ⎡⎤=+-++-+⋅⋅⋅++-⎣⎦ ()()()22221210110x x x x x x s ⎡⎤=-+-+⋅⋅⋅+-=⎣⎦.故选D . 9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A .①②③B .①②④C .①③④D .①②③④[答案] D10.下列抽样实验中,最适宜用系统抽样的是( )A .某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B .某厂生产的2 000个电子元件中随机抽取5个入样C .从某厂生产的2 000个电子元件中随机抽取200个入样D .从某厂生产的20个电子元件中随机抽取5个入样[答案] C[解析] A 中总体有明显层次,不适用系统抽样法;B 中样本容量很小,适宜用简单随机抽样法中的随机数法;D 中总体数很小,故适宜用抽签法,只有C 比较适用系统抽样法.11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167[答案] C[解析] 由图可知该校女教师的人数为()11070%150160%7760137⨯+⨯-=+= 故选C12.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为( )A .2个B .3个C .5个D .13个[答案] A[考点]分层抽样方法[分析]由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x ,即可得出结论.解:由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x , ∴x=2,故选A .[点评]本题考查分层抽样,抽样过程中每个个体被抽到的可能性相同,这是解决抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以做到知二求一.13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,6[答案] D[解析]由题意,各种职称的人数比为160∶320∶200∶120=4∶8∶5∶3,所以抽取的具有高、中、初级职称的人数和其他人员的人数分别为40×4 20=8,40×820=16,40×520=10,40×320=6.14.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,53[答案] A[解析]样本中共有30个数据,中位数为4547462+=;显然样本中数据出现次数最多的为45,故众数为45;极差为68-12=56,故选A.15.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,9[答案] B[解析]各年龄段所选分别为20100×45=9,20100×25=5,20100×30=6.16.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36[答案] B[解析]设该单位老年职工有x人,从中抽取y人.则160+3x=430⇒x=90,即老年职工有90人,则90160=y32⇒y=18.故选B.二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. [答案]30[解析]由题意,知22+3+5×n=6,∴n=30.18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.[答案]760[解析]设该校女生人数为x,则男生人数为(1 600-x).由已知,2001 600×(1 600-x)-2001 600·x=10,解得x=760.故该校的女生人数是760人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.[答案] 5.7%[解析]∵990∶99 000=1∶100,∴普通家庭中拥有3套或3套以上住房的大约为50×100=5 000(户).又∵100∶1 000=1∶10,∴高收入家庭中拥有3套或3套以上住房的大约为70×10=700(户).∴3套或3套以上住房的家庭约有5 000+700=5 700(户).故5 700100 000=5.7%.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.[答案]3720[解析]由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20(人).21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.生活能否自理人数性别男女能178 278不能23 21人.[答案]60[解析]由表知500人中生活不能自理的男性比女性多2人,所以该地区15 000位老人生活不能自理的男性比女性多2×15 000500=60(人).三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:很喜爱喜爱一般不喜爱2 435 4 5673 926 1 07260人进行更为详细的调查,应当怎样进行抽样?解:可用分层抽样方法,其总体容量为12 000.“很喜爱”占2 43512 000,应取60×2 43512 000≈12(人);“喜爱”占4 56712 000,应取60×4 56712 000≈23(人);“一般”占3 92612 000,应取60×3 92612 000≈20(人);“不喜爱”占1 07212 000,应取60×1 07212 000≈5(人).因此采用分层抽样在“很喜爱”、“喜爱”、“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人.23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?解:(1)将624名职工用随机方式编号由000至623.(2)利用随机数法从总体中剔除4人.(3)将剩下的620名职工重新编号由000至619.(4)分段,取间隔k=62062=10,将总体分成62组,每组含10人.(5)从第一段,即为000到009号随机抽取一个号l.(6)按编号将l,10+l,20+l,…,610+l,共62个号码选出,这62个号码所对应的职工组成样本.24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?解:学生A的方法得到的样本不能够反映不上网的居民情况,是一种方便样本,所得的结果代表性差,不能很准确地获得平均每户居民的月用水量;学生B 的方法实际上是普查,花费的人力物力要多一些,但是如果统计过程不出错,可以准确地得到平均每户居民的月用水量;在小区的每户居民都装有电话的情况下,学生C的方法是一种随机抽样方法,所得的样本具有代表性,可以比较准确地获得平均每户居民的月用水量.在小区的每户居民都装有电话的情况下,建议用随机抽样的方法获取数据,即用学生C的方法,以节省人力物力,并且可以得到比较精确的结果.5、已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能为( )A. 0.4.3ˆ2yx =+ B. 2 2.4ˆy x =- C. 9ˆ2.5yx =-+ D. 0.3 4.4ˆy x =-+ [答案] A[解析] 变量x 与y 正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.∵变量x 与y 正相关,∴可以排除C,D;样本平均数3x =, 3.5y =,代入A 符合,B 不符合,故选A.。
高一数学必修三统计知识点统计学是数学的一个重要分支,主要研究数据的收集、整理、分析和解释等问题。
在高中数学的学习中,统计学也是一个重要的内容。
本文将介绍高一数学必修三中的一些统计知识点,帮助同学们更好地理解和掌握相关知识。
一、数据的整理和描述在统计学中,数据的整理和描述是最基本也是最重要的工作。
通过整理和描述数据,可以直观地了解数据的分布和特征。
1. 数据的收集数据的收集可以通过观察、实验、调查等方式进行。
在收集数据的过程中,需要注意数据的真实性和可靠性,避免出现误差。
2. 数据的整理在获得一组数据后,需要对数据进行整理。
可以通过制表、绘图等方式将数据进行整理和归纳,以便更好地进行分析和描述。
3. 数据的描述数据的描述可以从集中趋势和离散程度两个方面进行。
常见的描述方法有平均数、中位数、众数、极差、四分位数等。
二、频数分布和频率分布频数分布和频率分布是对数据进行分类、整理和统计的方法,可以直观地展示数据的分布情况。
1. 频数分布频数分布是指将一组数据按照不同数值进行分类,并统计每个类别中数据出现的次数。
通过频数分布表或频数分布图可以清晰地看出数据的分布情况。
2. 频率分布频率分布是指将频数转化为频率,即将每个类别中数据出现的次数除以总数据量得到的比率。
频率分布可以更好地比较不同数据集之间的差异。
三、概率统计概率统计是统计学的重要分支之一,主要研究随机事件的概率和随机变量的分布。
1. 随机事件的概率随机事件的概率可以通过理论计算和实验估计两种方法得到。
在计算概率时,需要考虑事件的互斥性和独立性等性质。
2. 随机变量的分布随机变量的分布决定了其取值的概率分布情况。
常见的随机变量分布有离散型和连续型两种,如二项分布、正态分布等。
四、抽样调查抽样调查是统计学中常用的一种方法,通过选取样本进行统计分析,从而推断总体的特征和规律。
1. 简单随机抽样简单随机抽样是指从总体中随机选择样本的方法,每个样本具有相同的概率被选中。
1、简单随机抽样:包括抽签法和随机数表法
简单随机抽样的特点是:不放回、等可能.
○1抽签法步骤
(1)先将总体中的所有个体(共有N个)编号(号码可从1到N);
(2)把号码写在形状、大小相同的号签上,号签可用小球、卡片、纸条等制作;
(3)将这些号签放在同一个箱子里,进行均匀搅拌;
(4)抽签时,每次从中抽出一个号签,连续抽取n次;
(5)抽出样本。
○2随机数表法步骤
(1)将总体中的个体编号(编号时位数要统一);
(2)选定开始的数字;
(3)按照一定的规则读取号码;
(4)取出样本。
2、系统抽样
系统抽样特点:容量大、等距、等可能.
步骤:
○1编号,随机剔除多余个体(若k=N/n不为整数,则需从总体中剔除几个个体),重新编号;○2分段 (段数等于样本容量),确定间隔长度k=N/n(其中N为总容量,n为样本容量);○3抽取第一个个体编号为i ;
○
4依预定的规则抽取余下的个体编号为i+k, i+2k, …
3、分层抽样
分层抽样特点:总体差异明显、按所占比例抽取、等可能.
步骤:
○1将总体按一定标准分层;
○2计算各层的个体数与总体的个体数的比;
○3按比例确定各层应抽取的样本数目;
○4在每一层进行抽样 (可用简单随机抽样或系统抽样)。
三种抽样方法的比较:
(简单随机抽样)
(1)为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是
A .总体是240
B 、个体是每一个学生
C 、样本是40名学生
D 、样本容量是40 (2)一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体
被抽到的可能性是 。
(系统抽样)
(
1)从2005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为( )
A .99
B 、99.5
C .100
D 、100.5
(2)采用系统抽样从个体数为83的总体中抽取一个样本容量为10的样本,那么每个个体人样的可能性为
( )
A .8 B.8,3 C .8.5 D.9
(3) 某单位的在岗工作为624人,为了调查工作上班时,从家到单位的路上平均所用的时间,决定抽取10%
的工作调查这一情况,如何采用系统抽样的方法完成这一抽样?
(分层抽样)
(1)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人, 为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年 职工为7人,则样本容量为
(A )7 (B )15 (C )25 (D )35
(2)某中学高一年级有学生600人,高二年级有学生450人,高三年级有学生750人,每个学生被抽到的可能
性均为0.2,若该校取一个容量为n 的样本,则n= 。
1、频率分布的概念:
频率分布是指一个样本数据在各个小范围内所占比例的大小。
一般用频率分布直方图反映样本的频率分布。
其一般步骤为:
(1)计算一组数据中最大值与最小值的差,即求极差 (2)决定组距与组数 (3)将数据分组 (4)列频率分布表 (5)画频率分布直方图
说明□
1:频率分布直方图的特征: (1)从频率分布直方图可以清楚的看出数据分布的总体趋势。
(2)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了。
□
2:在频率分布直方图中,各小长方形的面积等于相应各组的频率(s= 组距
频率
组距 ),小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1。
2、频率分布折线图、总体密度曲线 (1)频率分布折线图的定义:
连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图。
(2)总体密度曲线的定义:
在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线。
它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息。
实际上,尽管有些总体密度曲线是饿、客观存在的,但一般很难想函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确. 3、茎叶图
(1)茎叶图的概念:
当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶,因此通常把这样的图叫做茎叶图。
(2)茎叶图的特征:
○
1用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶
图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示。
○
2茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰。
4、用样本的数据特征估计总体的数据特征 (1)、在频率直方图中计算众数、平均数、中位数
○
1众数 在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。
○
2中位数 在频率分布直方图中,中位数左边和右边的直方图的面积应该相等 ○
3平均数 频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和 (2)、标准差和方差:描述了数据的波动范围,离散程度
○
1标准差s =○2方差2222
121
[()()()]n s x x x x x x n
=-+-+-
(频率分布直方图)
1、为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12. (1) 第二小组的频率是多少?样本容量是多少?
(2) 若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少? (3) 在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。
2、一个容量100的样本,其数据的分组与各组的频数如下表 则样本数据落在上的频率为( )
A. 0.13
B. 0.39
C. 0.52
D. 0.64
用分层抽样方法抽出200人作进一步调查,则在[1500,3000](元)月收入段应抽出 人.
(茎叶图)
(1)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示, 则这数据的中位数和平均数分别是
A.91.5和91.5
B.91.5和92
C.91和91.5
D.92和92 (2)为从甲乙两运动员中选拔一人,参加2010年广州亚运会体操项
目,对甲、乙两运动员进行培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得出茎叶图
如下:
○
1现要从中选拔一人参加亚运会,从平均成绩及发挥稳定性的角度考虑,你认为选派哪位学生参加合适? ○
2从甲运动员预赛成绩中任取一次记为a ,从乙运动员预赛成绩中任取一次记为b ,求a b >的概率. (数字特征)
(1)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习, 每人投则以上两组数据的方差中较小的一个为s
=
(2)一组数据的方差为2
s ,将这组数据中的每个数据都扩大2倍,所得一组新数据的方差为( )
A.2s
B.221s
C.22s
D.2
4s
(3)甲乙两位同学进行投篮比赛,每人玩5局.每局在指定线外投篮,若第一次不进,再投第二次,依此类推,但最多只能投6次.当投进时,该局结束,并记下投篮次数.当6投不进,该局也结束,记为“×”.当第一次投进得6分,第二次投进得5分,第三次投进得4分,依此类推.第6次不投进,得0分.两人投篮情况如下: 请通过计算,判断那个投篮的水平高?
(4)某个容量为100的样本的频率分布直方图如下,则在区间[4,5)上的数据的频数为 .其中平均数为 ;众数为 ;中位数为 。
789甲
乙9841535
03525。