非接触式温度监测系统设计
- 格式:doc
- 大小:25.50 KB
- 文档页数:4
基于STM32红外非接触体温仪毕业设计一、概述随着全球疫情的爆发,人们对于体温监测的需求日益增加。
在这样的大背景下,红外非接触体温仪成为了一种非常重要的工具。
而在这个毕业设计中,我们将结合STM32芯片,设计一款红外非接触体温仪,并将其加以实践。
二、设计思路1. 红外测温原理在设计红外非接触体温仪前,我们首先需要理解红外测温的原理。
红外测温利用红外线能量与物体表面产生的热量之间的关系,通过检测物体的表面温度来确定物体的温度。
我们将通过研究这些原理,来确定我们的测温方案。
2. STM32芯片的选择在选择芯片时,我们需要考虑到性能、功耗、成本等方面的因素。
经过调研和比较,我们最终选择了STM32作为我们的芯片。
因为它具有性能强劲、低功耗等特点,非常适合用于这样的应用场景。
3. 软件设计在软件设计方面,我们将使用C语言来编写嵌入式程序。
我们需要设计一个用户界面,用于显示测量得到的温度数据,并且需要设计相应的算法,用于对红外信号进行处理,最终得到准确的温度值。
4. 硬件设计在硬件设计方面,我们将搭建红外传感器、显示屏、按钮等硬件模块,并且需要设计相应的电路进行连接。
我们也需要考虑到电源管理、EMI等问题,以确保产品的安全可靠。
三、实施步骤1. 系统框图设计先前设计的理念已经明确,我们需要通过系统框图来具体的描述各个模块之间的关系以及通信方式。
2. 红外传感器选型及连接我们需要选择适合的红外传感器,并且设计相应的电路来进行连接。
在连接的过程中,我们需要注意信号的稳定性、传输速率等问题,以保证数据的准确性。
3. 软件开发从STM32的数据手册以及相应的参考设计中,我们可以获得一些基础的代码框架来开始我们的开发工作。
我们需要编写测温算法、UI设计、以及异常处理等功能。
4. 硬件搭建在硬件搭建阶段,我们需要进行电路的焊接、模块的搭建等工作。
在这个过程中,我们需要注意安全问题,并且需要进行相应的测试。
四、成果展示在毕业设计结束后,我们获得了一款基于STM32的红外非接触体温仪。
基于FDC2214的非接触式液位检测系统的设计
徐振宇;吴建锋;刘伟
【期刊名称】《传感技术学报》
【年(卷),期】2024(37)4
【摘要】为解决有腐蚀性、易气化、易固化等特殊液体液位测量的问题,提出了一种基于FDC2214电容式传感器的非接触式液位测量系统。
设计了由STM32F103主控芯片、FDC2214电容传感器等组成的非接触式液位测量硬件系统,通过对电容值变化量与温度的变化曲线进行数据分析,搭建了对应的温度补偿系统。
此外,系统采用卡尔曼滤波算法对测量数据进行滤波处理,有效地提高了系统的测量精度和稳定性。
实验测试结果表明:液位测量系统对10组不同的液位进行测量,液位计灵敏度为190.5 pF/m;液位测量系统可以在不改变液体容器结构的情况下完成液位测量;卡尔曼滤波算法可以有效提高液位计的测量精度和稳定性。
【总页数】6页(P597-602)
【作者】徐振宇;吴建锋;刘伟
【作者单位】浙江树人学院信息科技学院;杭州电子科技大学新型电子器件与应用研究所
【正文语种】中文
【中图分类】TM936
【相关文献】
1.非接触式超声波液位检测仪系统中的单片机应用
2.非接触式液位检测仪的设计与实现
3.一种非接触式液位检测控制系统的设计与分析
4.基于图像视觉的非接触式液位自动检测系统
5.基于电容式传感器的非接触式液位测量系统
因版权原因,仅展示原文概要,查看原文内容请购买。
本科毕业论文非接触式红外体温计的设计Design of Contactless Infrared ThermometerSystem学院名称:专业班级:学生姓名:学号:指导教师姓名:指导教师职称:年月毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得安阳工学院及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解安阳工学院关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:目录92结论 (18)91非接触式红外体温计的设计摘要:本文针对传统的测温仪器自身存在的诸多缺点以及在现实生活中所暴露的使用不便,缺少安全性等缺陷,提出了一种非接触式红外测温系统设计方案。
该系统是以STC89C52作为红外测温传感器数据传输和控制核心。
此外,还设计了报警模块、显示电路、功能按键等外围模块。
本系统实现了对实时温度的显示,以及对后者过限时报警,同时还能对温度测量报警的上下限进行调节。
它的最大的创新不仅仅是因为可以测量基本的温度,更在于它可以控制继电器电路使温度在测量范围内。
它的安全性,方便性更有利于普通百姓的使用。
本次红外测温系统的设计简化了电路结构,提高了测温的稳定性及可靠性。
该系统具有反应速度快、传输效率高、测量精度高、可靠性高等优点。
关键字:STC89C52;报警;红外测温Design of Contactless Infrared Thermometer System Abstract:In view of the traditional temperature measuring instrument , there are many shortcomings, And in real life it exposes much inconvenience,lacks of safety ,so i put forward this design of contactless infrared temperature measurement system .The system is based on single chip microcomputer STC89C52 that as being the center of infrared measuring temperature sensor data’s transmission and regulation.In addition, it is also equipped with alarm circuits,key switch, liquid crystal display output andkey circuits.This system realize real-time temperature display, and give an alarm when the temperature beyond limitation configured, surely the limitation can be changed else.The system's biggest innovation not only in the realization of basic functions temperature measurement,but also can control a relay circuit to get the temperature in measuring range.Its safety, convenienceare more helpful of the use of the common people.The designof infrared temperature measurement system simplifythe circuit structure, improve the stability and reliability of measuring temperature.The great reactionspeed, high transmission efficiency, high accuracy and high reliability is also its advantage.Key words:STC89C52; alarm; infrared temperature measurement引言随着经济的发展,社会生活水平的提高,人们对自身身体情况愈来愈重视。
基于红外线测温技术的电力设备温度监测方案介绍:红外线测温技术是一种非接触式测温技术,它通过检测物体的红外辐射来确定其温度。
在电力设备温度监测方面,红外线测温技术具有准确、高效、远距离测温等优点,被广泛应用于电力设备的温度监测和故障预警。
1. 红外线测温原理红外线测温技术基于物体的热辐射现象。
每个物体都会以一定的辐射能量发射热辐射,其强度与温度成正比。
红外线测温设备通过接收物体发射的红外辐射,并转换为温度数值,实现对物体温度的监测和测量。
2. 电力设备温度监测方案(1)设备选择:选择合适的红外线测温设备,根据需求选择不同型号和规格,确保测温设备的准确度和可靠性。
(2)设备部署:根据电力设备的特点和布局,合理安排红外线测温设备的布置位置。
可以选择固定或可移动式设备,确保能够有效覆盖设备的各个部位。
(3)测温点位设置:根据电力设备的热点分布和重要部位,设置合理的测温点位。
重要的设备部位和连接口,如变压器、断路器、接线端子等,应设置独立的测温点位进行监测。
(4)测温数据采集:使用红外线测温设备对设备进行定期测量,采集温度数据。
可以根据需要设置自动化测温或手动测温模式,确保数据的及时性和准确性。
(5)数据分析与处理:对采集到的温度数据进行分析和处理,识别潜在的异常温度和故障预警信号。
结合设备历史数据和温度曲线变化,进行数据比对和趋势分析,发现设备的异常情况。
(6)故障预警与报警:根据设定的温度阈值和故障预警规则,当监测到异常温度时,自动触发报警机制,及时通知相关人员,以便进行故障排查和处理。
(7)维护与保养:定期对红外线测温设备进行维护和保养,检查设备的正常运行和准确性。
同时对设备的电源供应进行监测和保护,确保设备的稳定运行。
3. 红外线测温技术的优势(1)非接触式测温:红外线测温技术无需与被测物体接触,避免了传统测温方法中可能存在的安全隐患和设备损坏的风险。
(2)准确度高:红外线测温设备能够快速、准确地实时测量温度,并将结果以数值显示。
基于单片机的智能体温检测系统设计摘要:由于新冠疫情的爆发给大众的生活带来了巨大变化,为了满足疫情条件下对温度快速测量的需求,采用无接触式测温既有效规避病毒传染风险,又可以第一时间检测疑似病例。
在此基础上添加口罩识别功能极大减轻了工作人员人工识别的负担,为防疫工作提供保障。
目前市场现有系统存在价格高以及不易携带的问题,并且目前市场应用的大部分装置都是单独的口罩识别或是无接触测温系统。
与之相比该系统将两种功能结合在同一系统中,具有体积小、便携、易操作等优点,为操作人员提供了极大便利。
此装置适用于学校、工厂、商场等人流密集场所,可以为进出人员提供检测服务。
人机交互式装置在疫情防控中发挥重要作用,节省人力物力,并且其效率远高于人工检测。
关键词:单片机;智能体温;检测系统;设计引言患新冠肺炎的主要症状是发热,因此体温检测是疫情防控的第一道防线。
以当今人流密集场所疫情防控情况为背景,设计并实现了一款基于STM32单片机的非接触式体温测量与身份识别系统。
该系统利用OPENMV对目标人脸进行快速检测,精准识别目标身份信息和口罩佩戴情况,利用MLX90614准确测量目标体表温度,实时将测量信息通过显示屏直观地展示并通过蓝牙发送到手机App上,实现系统逻辑结构的完整性与任务完成的效率最优解。
1系统的组成及其工作原理1.1系统的组成以单片机作为系统控制基础,利用传感器测量温度,通过通信和控制技术,形成温度测量控制系统。
具体可分为基于MLX90614红外测温传感器的温度检测模块、LCD12864液晶屏显示模块、4X4矩阵键盘模块、电源模块、复位模块、晶振模块、报警模块、继电器控制模块和震动传感器模块。
1.2系统工作原理该系统基于STC12C5A60S2单片机进行设计,包括电源电路、复位电路、晶振电路、红外测温传感器、震动传感器、LCD显示电路、蜂鸣器报警电路、键盘输入电路和继电器控制电路,通过MLX90614红外温度传感器实现温度数据的处理。
目录第一章方案设计与论证 (2)第一节传感器的选择 (2)第二节方案论证 (3)第三节系统的工作原理 (3)第四节系统框图 (4)第二章硬件设计 (4)第一节 PT100传感器特性和测温原理 (5)第二节信号调理电路 (6)第三节恒流源电路的设计 (6)第四节 TL431简介 (8)第三章软件设计 (9)第一节软件的流程图 (9)第二节部分设计模块 (10)总结 (11)参考文献 (11)第一章方案设计与论证第一节传感器的选择温度传感器从使用的角度大致可分为接触式和非接触式两大类,前者是让温度传感器直接与待测物体接触,而后者是使温度传感器与待测物体离开一定的距离,检测从待测物体放射出的红外线,达到测温的目的.在接触式和非接触式两大类温度传感器中,相比运用多的是接触式传感器,非接触式传感器一般在比较特殊的场合才使用,目前得到广泛使用的接触式温度传感器主要有热电式传感器,其中将温度变化转换为电阻变化的称为热电阻传感器,将温度变化转换为热电势变化的称为热电偶传感器。
热电阻传感器可分为金属热电阻式和半导体热电阻式两大类,前者简称热电阻,后者简称热敏电阻。
常用的热电阻材料有铂、铜、镍、铁等,它具有高温度系数、高电阻率、化学、物理性能稳定、良好的线性输出特性等,常用的热电阻如PT100、PT1000等.近年来各半导体厂商陆续开发了数字式的温度传感器,如DALLAS公司DS18B20,MAXIM公司的MAX6576、MAX6577,ADI公司的AD7416等,这些芯片的显著优点是与单片机的接口简单,如DS18B20该温度传感器为单总线技术,MAXIM公司的2种温度传感器一个为频率输出,一个为周期输出,其本质均为数字输出,而ADI公司的AD7416的数字接口则为近年也比较流行的I2C总线,这些本身都带数字接口的温度传感器芯片给用户带来了极大的方便,但这类器件的最大缺点是测温的范围太窄,一般只有-55~+125℃,而且温度的测量精度都不高,好的才±0.5℃,一般有±2℃左右,因此在高精度的场合不太满足用户的需要.热电偶是目前接触式测温中应用也十分广泛的热电式传感器,它具有结构简单、制造方便、测温范围宽、热惯性小、准确度高、输出信号便于远传等优点。
基于红外成像技术的人体非接触式生命体征监测系统研究随着科技不断的发展,人们对于医疗技术的要求越来越高。
在当今全球爆发的新冠病毒疫情背景下,人体生命体征监测的重要性更加彰显。
传统的体温难以满足非接触式监测的需求,因此基于红外成像技术的人体非接触式生命体征监测系统得到广泛的应用,本文将对该技术进行深入剖析。
一、红外成像技术简介红外辐射是指波长在0.75~1000微米范围内的电磁波辐射,属于热辐射的一种。
红外成像技术正是利用了人体的红外辐射,其基本原理是:红外辐射能够较快传递到人体表面上,然后人体再向外发射发热辐射。
将产生的红外光线放大后进行采集,通过对被采集的图像进行处理,从而提取出体表的温度信息。
二、红外成像技术在人体生命体征监测中的应用由于新冠病毒疫情的爆发,红外成像技术逐渐成为了非接触式人体生命体征监测的主流方案。
其优点主要有以下几个方面:1.非接触式:传统的体温计需要直接接触人体,使用比较不方便且卫生问题十分严峻,而红外成像技术可以通过无线信号来接收,不会产生安全隐患。
2.高效性:红外热像仪可以在很短的时间内扫描一大批人群,所用时间比传统测量方式更短,能够节约更多的时间。
3.可靠性:体温计准确性并不高,而红外成像技术能够监测人体的温度分布,更具精度和可靠性。
红外成像技术在体温检测上发挥着重要作用,尤其在机场、车站等高人流量场景下,可有效地防控疫情的传播。
同时,该技术也广泛应用于医疗领域,比如老年病房、产房、儿科等,不用接触直接测温更加安全卫生,且能够追踪对比体温变化情况,为医生提供更加精准、高效、可靠的参考数据,运用范围广泛。
三、技术的发展和趋势现有的红外成像技术主要分为两类:活体红外头疗法和红外热像仪。
1.活体红外头疗法是将几个红外探头放在患者头部和脖子上进行测量,检测时需要将探头与体表接触,监测范围较为局限性,且会产生接触感,有可能破坏皮肤屏障,增加感染的风险。
2.红外热像仪是目前应用最广的体温监测设备,也是非接触式的人体生命体征监测技术之一。
一种工业用红外温度测量系统模型设计工业用红外温度测量系统是一种非接触式测量温度的技术。
其模型设计可以包括以下几个主要组成部分:1. 红外传感器:选择具有高灵敏度和精度的红外传感器,以便准确地感知目标物体的红外辐射。
2. 红外光学系统:包括透镜、滤光片和反射镜等光学元件,用于聚焦和收集目标物体发出的红外辐射。
3. 信号处理器:将从红外传感器接收到的红外辐射信号转换为数字信号,并对其进行滤波、放大和修正等处理,以提供准确的温度测量结果。
4. 显示与控制单元:将处理后的温度信号进行数字信号转换,并将结果显示在液晶显示屏或其他界面上。
同时,还可以设置报警阈值和控制输出信号,以实现温度控制和报警功能。
5. 供电与接口模块:提供系统所需的电源供应,并与其他设备或系统进行通信,如使用RS485、MODBUS等现场总线协议实现远程监控和控制。
在设计工业用红外温度测量系统时,需要考虑以下几个关键点:1. 测量范围:根据应用需求确定温度测量范围,选择合适的红外传感器和信号处理器,以确保系统能够准确测量目标物体的温度。
2. 测量精度:根据应用需求,选择具有较高精度的红外传感器和信号处理器,以提供准确的温度测量结果。
3. 抗干扰性能:考虑到工业环境中可能存在的干扰源,如电磁干扰、振动等,采取相应的防护措施,如使用屏蔽材料、增加滤波电路等,以保证系统的稳定性和可靠性。
4. 反应时间:根据应用需求确定系统的响应时间,选择合适的红外传感器和信号处理器,以提供满足要求的测量速度。
5. 防护等级:根据工业环境的要求,选择合适的防护等级和材料,以确保系统能够在恶劣的环境条件下正常工作。
总之,工业用红外温度测量系统模型设计需要考虑测量范围、测量精度、抗干扰性能、反应时间和防护等级等因素,以满足工业生产过程中的温度测量需求。
非接触式温度监测系统设计
摘要本文介绍的温度测量系统是由TN-9红外温度探测模组、315发送接收模块和AT89S51低功耗8位单片机组合而成的测量距离能够达30m的非接触式的温度测量计,其精度达±1度,可用在机床轴瓦温度、配电箱内部温度及其它危险又无法接触的设备及环境的温度测量。
关键词TN-9;无线传输;监测
0引言
我们在实际生产过程及现实生活中,需要测量很多设备及实物的温度,但有些却无法或不容易进行接触式的温度测量,如测量运行中的机床轴瓦温度、用电设备配电箱中各电器的温度、或其它特殊设备的温度等等。
在这里介绍了一种基于TN-9的红外温度监测系统的设计,该系统利用红外辐射测温的原理,采用红外模组阵列实现了非接触式测温,这种非接触式的测温方式具有无需对测量对象进行改造、不易损毁、易于维护等优点,其测量的精度也能满足±监测设备工作状态的需要。
无线传输是该系统的又一特点,有效的避免了由于添加传输介质而引起的系统成本上升问题,非常适合于生活和工业现场使用。
1 机床温度监测系统设计方案
热误差成为影响机床加工精度的最重要的因素,为寻找可靠的的办法评估热误差,设计的温度监测系统必须具有高精度,实时性,能够及时了解部件的温度情况,以保证机械加工的质量。
因此,本设计采用了具有高精度的TN9系列红外温度探测模组,该模块解决了传统测温中需接触的问题,并且具备回应速度快、测量精度高、测量范围广和可同时测量环境温度和目标温度的特点,配合单片机控制可成为一个测量距离达30米的非接触式的温度测量计。
同时也解决了在机床部件中安装接触式温度探头的不便,通过采集测控端的信号,经过主控端的处理,利用无线传输双向通信技术,在主控端显示模块显示出来,并经过设定一个高温报警限值,实现温度监测报警。
系统方框图如图1所示:
图1 系统方框图
各环节的功能:
1)TN-9模组数据处理是整个系统的重要组成部分,通过模组端口位寄存器的功能选择,软件设置,读取传感器的温度值;
2)单片机控制模块是系统的核心部分,通过单片机的按键动态扫描,判断模组测量环境温度或者目标温度,功能判断,设置中断程序读取温度值,以及数
据传输;
3)通信模块采用315发送接收模块,外配2262发射编码芯片和2272接收解码芯片,以实现数据的无线传送,并予以显示。
各环节的功能实现:
1)TN-9内部具有5位寄存器,其中Item 存放的的是目标和环境温度值,可通过功能口A端口来设定,MSB、LSB分别存放数据的高8位和低8位,Sum 则Item+MSB+LSB=SUM,CR 0DH,结束码,信号清零。
通过单片机读出TN9的温度值,软件实现在后面提到;
2)单片机选用AT89S51,低成本,功能足以实现;
3)通信模块选用315模块,编码译码简单,可靠性好。
2 系统硬件电路的分析与设计
2.1 TN-9红外传感器模组
TN9是国外生产的先进红外传感器模组,它的测温范围在-33℃~+220℃之间,而且精度高。
测温范围内非线性差为±0.6℃。
并且具备SPI通信接口,方便与单片机连接。
但是在设计时有一点需要注意的,单片机必须适应它发出的时钟信号,而与一般的从时钟信号适应主时钟有所区别。
2.2 控制单元
AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。
2.3无线模块
无线模块选用315发送接收模块,其性能简单可靠,并能够满足系统的功能要求。
该模块具备了系统要求的可靠性。
适用范围:用于数据传送及信号控制,工业控制防盗报警,无线摇控等。
2.4 显示电路
使用液晶显示屏显示转换结果。
液晶显示屏(LCD)具有轻薄短小,耗电量低,
无辐射危险,平面直角显示以及影像稳定不闪烁等优势,可视面积大,画面效果好,分辨率高,抗干扰能力强和显示形式灵活等优点。
3 系统软件电路的分析与设计
图2发射部分主要流程图
本系统的软件设计主要分为下位机机床部位红外温度数据采集、单片机的中断控制和无线传输。
每个功能模块对于整体设计都是非常重要的,通过软件编程与硬件电路的协调才能使系统真正的运行起来。
本系统的软件设计主要包括发射和接收两部分的程序设计[5]。
系统整体程序设计发射/接收部分主要流程图如图2所示。
4结论
本文介绍了利用单片机STC89S51和传感器模组TN-9来实现红外温度监测,本设计的温度控制精度为±1℃,将温度采集与单片机控制紧密结合实现机床温度监测,结果令人满意。
在取得结果的同时,系统还有待改进和扩展的地方,如进行与计算机上位通信扩展,该系统不仅可用于机床温度监控,还可适用于其它工业现场的高温监控,这将有利于提高工业水平,提高生产效率和经济效益。
参考文献
[1]徐翔,杨建国.一种基于AT89S51微处理器的智能温度测控系统.制造业自动化,2006(2).
[2]沈德金,陈粤初.MCS-51系列单片机接口电路与应用程序实例[M].北京:北京航天航空大学出版社,1990:35-42.
[3]何立民.单片机应用技术选编[M].北京,北京航空航天大学出版社,2002,1:232-235
[4]谢自美.电子线路设计实验测试[M].华中科技大学出版社,2002,7:300-304.
[5]周文举.基于单片机红外无线通信的抄表系统.南华大学学报:自然科学版,2006(5).。