利用“裂项法”求解 的数列的前n项和
- 格式:docx
- 大小:74.56 KB
- 文档页数:2
求数列前N 项和的七种方法1. 公式法等差数列前n 项和:11()(1)22n n n a a n n S na d ++==+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n kS nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.练习:求:S n =1+5x+9x 2+······+(4n-3)x n-13. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例5] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例6] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n练习:求数列•••+•••),21(,,813,412,211nn 的前n 项和。
专题数列前n 项和的求法知识点一.公式法求和公式法求和中的常用公式有:(1)等差、等比数列的前n 项和①等差数列:S n =na 1+n (n -1)2d (d 为公差)或S n =n (a 1+a n )2.②等比数列:S n ,=a 1-a n q 1-q,q ≠1,其中q 为公比.(2)四类特殊数列的前n 项和①1+2+3+…+n =12n (n +1).②1+3+5+…+(2n -1)=n 2.③12+22+32+…+n 2=16n (n +1)(2n +1).④13+23+33+…+n 3=14n 2(n +1)2.知识点二.分组转化法求和某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列的求和公式分别求和,从而得出原数列的和.知识点三.倒序相加法求和(1)倒序相加法类比推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个(a 1+a n ).(2)如果一个数列{a n },首末两端等“距离”的两项的和相等,那么求其和可以用倒序相加法.知识点四.裂项相消法求和(1)对于裂项后明显有能够相消的项的一类数列,在求和时常用“裂项法”,分式的求和多利用此法,可用待定系数法对通项公式拆项,相消时应注意消去项的规律,即消去哪些项,保留哪些项.(2)常见的拆项公式有①1n (n +1)=1n -1n +1.②1n (n +k )=③1(2n -1)(2n +1)=④1n +n +1=n +1-n .⑤1n (n +1)(n +2)=121n (n +1)-1(n +1)(n +2).知识点五.错位相减法求和一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便于下一步准确写出“S n -qS n ”的表达式.知识点六.并项求和法求和通项中含有(-1)n 的数列求前n 项和时可以考虑使用奇偶并项法,分项数为奇数和偶数分别进行求和.题型1裂项相消法形如1n(n+k)1k 1n 1n+k 考点1保留2项型【例题1-1】(2022·陕西·西安市鄠邑区第二中学高二阶段练习)已知数列a n 的通项公式为a n n ∈N *),数列的前2022项和为()A .20192020B .20222023C .20202021D .20212022【答案】B【分析】利用裂项相消法求和.【详解】a n 1n−1n +1,则数列的前2022项和为S 2022=1−12+12−13+⋯+12022−12023=1−12023=20222023.故选:B【变式1-1】1.(2022·重庆市广益中学校高二阶段练习)已知数列a n 的前n 项和为S n =(n −1)2−1.(1)求a n 的通项公式.(2)若数列b n =1a n a n+1,求数列b n 前n 项和T n .【答案】(1)a n =2n −3(n ∈N *)(2)T n =−n2n −1【分析】(1)根据a n =S 1,n =1S n −S n −1,n ≥2作差即可得解;(2)由(1)可得b n (1)解:数列a n 的前n 项和为S n =(n −1)2+1,当n ≥2时,S n −1=(n −2)2+1=n 2−4n +5,所以S n −S n −1=2n −3,即a n =2n −3(n ≥2),当n =1时,a 1=S 1=(1−1)2−1=−1符合上式,所以a n =2n −3(n ∈N *);(2)解:由(1)可得b n =1an a n +1T n =1a1a 2+1a2a 3+1a3a 4+⋯+1an a n +1=−1−1+⋯13+⋯+12n −3=−n2n −1.【变式1-1】2.(广东省湛江市2023届高三上学期调研测试数学试题)设数列a n 的前n项和为S n ,已知a 1=−3,2的等差数列.(1)求a n 的通项公式;(2)设b n =1a n a n +1,求数列b n 前n 项和T n .【答案】(1)a n =2n −5;(2)T n =−n6n −9.【分析】(1)利用等差数列通项公式求出S n ,再利用前n 项和求数列a n 的通项作答.(2)由(1)求出b n ,再利用裂相消法求解作答.(1)依题意,2S 11=2a 1=−6,因此2S nn=−6+2(n −1)=2n −8,即S n =n 2−4n ,当n ≥2时,a n =S n −S n −1=n 2−4n −[(n −1)2−4(n −1)]=2n −5,而a 1=−3满足上式,所以数列a n 的通项公式是a n =2n −5.(2)由(1)知,b n =1(2n −5)(2n −3)=12(12n −5−12n −3),因此(3)T n =12[(1−3−1−1)+(1−1−11)+(11−13)+(13−15)+⋯+(12n −5−12n −3)]=12(−13−12n −3)=−n6n −9,所以数列b n 前n 项和T n =−n6n −9.【变式1-1】3.(2022·甘肃·宁县第二中学高二阶段练习)已知在数列a n 中,其前n 项和为S n =2n 2−n .(1)求数列a n 的通项公式;(2)a n ⋅a n +1=1b n ,数列b n 的前n 项和为T n ,求T n 的取值范围.【答案】(1)a n =4n −3n ∈N ∗【分析】(1)利用前n 项和S n 与通项a n 的关系求解通项公式即可;(2)首先根据(1)的结果求解b n 的通项公式,然后利用裂项相消的方法求出T n ,最后结合数列的单调性求解T n 的取值范围.(1)当n ≥2时,a n =S n −S n −1=4n −3.当n =1时,a 1=1,适合上式.故a n =4n −3n ∈N ∗.(2)由a n a n +1=1bn 得b n =1a n a n +1,因此b n∴T n ++⋅⋅⋅+=n4n +1.∵T n =n 4n +1=n +14−144n +1=14∵T n =14n ∈1,+∞,n ∈N ∗上单调递增,∴当n =1时,T n 取得最小值T 1=15.又T n =1414,故15≤T n <14.考点2保留4项型【变式1-2】1.(2022·广东·华南师大附中高三阶段练习)已知等差数列{a n }中,S n +2=S n +2n +3(n ∈N *).(1)求a n ;(2)设b n =1an (a n +2),{b n }的前n 项和为T n ,证明:T n <34.【答案】(1)a n =n (2)证明见解析【分析】(1)根据S n +2=S n +2n +3(n ∈N *)可得a n +1+a n +2=2n +3以及a n +2+a n +3=2n +5,求得公差,继而求得数列通项公式;(2)由(1)可得b n =1n (n+2){b n }的和T n ,即可证明结论.(1)设等差数列{a n }的公差为d ,∵S n +2=S n +2n +3(n ∈N *),所以S n +2−S n =a n +1+a n +2=2n +3,可得a n +2+a n +3=2n +5,两式相减可得:2d =2,所以d =1,所以a n +1+a n +2=a n +1+a n +2=2n +3,可得:a n =n ;(2)由(1)知:a n =n ,所以b n =1n (n +2),T n =b 1+b 2+⋯+b n =11×3+12×4+13×5+⋯+1(n −1)(n +1)+1n (n +2)13+12−14+13−15+⋯+1n −1−1n +1+1n12−1n +11n +1∵n ∈N *,∴1n +1>0,1n+2>0,∴T n <12×32=34,即T n <34.【变式1-2】2.(2022·江苏·南京市秦淮中学高三阶段练习)已知数列a n 各项均为正数,且a 1=2,a n +12−2a n +1=a n 2+2a n .(1)求a n 的通项公式;(2)n 项的和S n ,证明:S n <316.【答案】(1)a n =2n ;(2)证明见解析.【分析】(1)化简已知得a n +1−a n =2,得到数列{a n }是以首项为2,公差为2的等差数列,即得解;(2)求出1an a n +2=18(1n−1n +2),再利用裂项相消化简证明.(1)因为a n +12−2a n +1=a n 2+2a n ,所以(a n +1−a n )(a n +1+a n )=2(a n +1+a n ),因为{a n }各项均为正数,a n >0,所以a n +1−a n =2,所以数列{a n }是以首项为2,公差为2的等差数列,a n =2+(n −1)×2所以a n =2n .(2)1an a n +2=12n ×2(n +2)=14×1n (n +2)=18(1n −1n +2),S n =18(1−13+12−14+13−15+……+1n −1−1n +1+1n −1n +2)=18(1+12−1n +1−1n +2)=316−18(1n +1+1n +2)因为n ∈N ∗,故1n +1+1n +2>0所以S n <316.【变式1-2】3.(2022·广东广州·高三阶段练习)已知正项数列a n ,a 1=1,a 2=2,a n +12−a n 2是公差为2的等差数列.(1)求a n 的通项公式;(2)设b n =a n +a n +1,记数列b n 的前n 项和为S n ,求1S 1+1S 2+1S 3+⋯+1Sn.【答案】(1)a n =n 1n +1【分析】(1)由题意可得a n +12−a n 2=2n +1,又a n 2=a n 2−a n −12+a n −12−a n −22+⋅⋅⋅+a 22−a 12+a 12,再结合等差数列的求和公式即可求出a n ;(2)由裂项相消法求解即可.(1)由题意,a 22−a 12=3,因为a n +12−a n 2是首项为3公差为2的等差数列,所以a n +12−a n 2=2n +1,当n ≥2时,a n 2=a n 2−a n −12+a n −12−a n −22+⋅⋅⋅+a 22−a 12+a 12=2n −1+2n −3+⋅⋅⋅+5+3+1=n 2,又因为a 12=1满足,所以a n 2=n 2,结合a n >0,所以a n =n .(2)由(1)和b n =a n +a n +1得b n =2n +1,所以b 1=3,又S n =n +2n ,故1Sn==−,1S1+1S 2+1S 3+⋅⋅⋅+1S n=−13+12−14+13⋅⋅⋅+1n =+12−1n +1−=−1n +1◆类型2=1k (n +k −n )型【例题1-3】已知数列{a n }的通项公式为a n =1n +n +1,若前n 项和为10,则项数n 为________.【答案】120【解析】∵a n =1n +n +1=n +1-n ,∴S n =a 1+a 2+…+a n=(2-1)+(3-2)+…+(n +1-n )=n +1-1.令n +1-1=10,得n =120.【变式1-3】已知函数f (x )=x a 的图象过点(4,2),令a n =1f(n+1)+f(n),n ∈N *.记数列{a n }的前n项和为S n ,则S 2017=________.【答案】2018-1【解析】由f(4)=2,可得4a=2,解得a=12,则f(x)=x12.∴a n=1f(n+1)+f(n)=1n+1+n=n+1-n,S2017=a1+a2+a3+…+a2017=(2-1)+(3-2)+(4-3)+…+(2017-2016)+(2018-2017)=2018-1.题型2错位相减法n是等比数列nS3=14,S6=126.(1)求数列a n的通项公式;(2)记b n=n+1a n,数列b n的前n项和为T n,求T n.【答案】(1)a n=2n;(2)T n=n⋅2n+1.【分析】(1)根据给定条件,求出等比数列a n公比及首项即可作答.(2)由(1)求出b n,再用错位相减法求解作答.(1)设等比数列a n的公比为q,因S3=14,S6=126,即a4+a5+a6=S6−S3=112,而a4+a5+a6=q3(a1+a2+a3)=14q3,于是得q3=8,解得q=2,显然S3=a1(1+q+q2)=7a1=14,解得a1=2,因此a n=a1q n−1=2n,所以数列a n的通项公式是a n=2n.(2)由(1)知,b n=(n+1)⋅2n,则T n=2×21+3×22+4×23+⋯+(n+1)×2n,于是得2T n=2×22+3×23+4×24+⋯+n×2n+(n+1)×2n+1,两式相减得:−T n=4+22+23+⋯+2n−(n+1)×2n+1=4+22(1−2n−1)1−2−(n+1)×2n+1=−n×2n+1,所以T n=n⋅2n+1.【变式2-1】1.(2022·福建省华安县第一中学高二阶段练习)正项数列a n的前n项和S n 满足:S n2−n2+n−1S n−n2+n=0.(1)求数列a n的通项公式a n;(2)令b n=3a n−2⋅2n,求数列b n的前n项和T n.【答案】(1)a n=2n(2)T n=(3n−4)2n+2+16【分析】(1)利用数列通项a n与前n项和S n的关系即可求得数列a n的通项公式a n;(2)利用错位相减法即可求得数列b n的前n项和T n.(1)当n=1时,S12−12+1−1S1−12+1=0,即S12−S1−2=0解得S1=2或S1=−1,因为数列a n为正项数列,所以S1=2,因为S n2−n2+n−1S n−n2+n=0,所以S n−n2+n S n+1=0,解得S n=n2+n或S n=−1,因为数列a n各项都是正数,所以S n=n2+n,当n≥2时,有a n=S n−S n−1,所以a n=n2+n−n−12+n−1,解得a n=2n,又当n=1时,a1=S1=2,符合a n=2n.所以数列a n的通项公式a n=2n(2)设数列b n的前n项和为T n,则b n=3a n−2⋅2n=6n−2⋅2n,T n=4×2+10×22+16×23+⋯+(6n−2)×2n2T n=4×22+10×23+16×24+⋯+(6n−8)×2n+(6n−2)×2n+1,上述两式相减,得−T n=4×2+6×22+6×23+⋯+6×2n−(6n−2)×2n+1n−2)×2n+1=−(3n−4)×2n+2−16.则T n=(3n−4)2n+2+16所以,数列b n的前n项和为(3n−4)2n+2+16.【变式2-1】2.(2022·江苏常州·高三阶段练习)已知各项均不为零的数列{a n}的前n项的和为S n,且满足a1=4,S n+1=4S n+4(n∈N∗).(1)求数列{a n}的通项公式;(2)设数列{b n}满足a n b n=log2a n,{b n}的前n项和为T n,证明T n<89.【答案】(1)a n=4n;(2)证明见解析.【分析】(1)利用给定的递推公式,探求数列{a n}相邻两项的关系,即可求解作答.(2)由(1)结合已知求出b n,再利用错位相减法求和推理作答.(1)n∈N∗,S n+1=4S n+4,当n≥2时,S n=4S n−1+4,两式相减得:a n+1=4a n,由S2=a1+a2=4a1+4得:a2=16,即a2=4a1,满足上式,因此∀n∈N∗,a n+1=4a n,于是得数列{a n}是首项为4,公比为4的等比数列,a n=a1×4n−1=4n,所以数列{a n}的通项公式是a n=4n.(2)由(1)知,a n=4n,而a n b n=log2a n,则4n⋅b n=2n,即b n=2n4n,则T n=24+442+643+⋯+2(n−1)4n−1+2n4n,于是得14T n=242+443+⋯+2(n−2)4n−1+2(n−1)4n+2n4n+1,两式相减得:34T n=24+242+243+⋯+24n−2n4n+1=24[1−(14)n]1−14−2n4n+1=23−8+6n3⋅4n+1,所以T n=89−8+6n9⋅4n<89.【变式2-1】3.(2022·陕西·乾县第一中学高三阶段练习(理))已知数列a n的前n项和为S n,且S n=4−2n+2,数列b n的前n项和B n=2n2−n.(1)求数列a n,b n的通项公式;(2)设c n=b n·a n,求数列c n的前n项和T n.【答案】(1)a n=−2n+1;b n=4n−3.(2)T n=(7−4n)⋅2n+2−28【分析】(1)根据S n与a n之间的关系即可推出a n=−2n+1,b n=4n−3;(2)利用乘公比错位相减法,即可解出:T n=7−4n⋅2n+2−28.(1)因为S n=4−2n+2,当n≥2时,S n−1=4−2n+1,两式相减得:a n=−2n+1n≥2,n∈N∗,当n=1时,a1=−4满足上式,所以a n=−2n+1;同理,当n≥2时,B n−1=2n−12−n−1,两式相减得:b n=4n−3n≥2,n∈N∗,当n=1时,b1=1满足上式,所以b n=4n−3(2)由(1),c n=−4n−3×2n+1,−T n=1×22+5×23+9×24+⋯+4n−32n+1−2T n=1×23+5×24+9×25+⋯+4n−32n+2两式相减得:T n=22+423+24+⋯+2n+1−4n−32n+2=4+4×23(1−2n−1)1−2−(4n−3)2n+2整理得:T n=7−4n⋅2n+2−28【变式2-1】4.(2022·云南·昆明一中高三阶段练习)己知数列a n满足,a1=1,且a n+1=n+1n a n+(n+1)⋅2n.(1)设b n=a n n,求数列b n的通项公式;(2)求数列a n的前n项和S n.【答案】(1)b n=2n−1(2)S n=n−12n+1【分析】(1)由题意可得a n+1n+1=a n n+2n,即b n+1−b n=2n,再利用累加法即可得出答案;(2)由(1)求出数列a n的通项公式,再利用错位相减法和分组求和法即可得出答案.(1)解:因为a n+1=n+1n a n+(n+1)⋅2n,所以a n+1n+1=a n n+2n,即b n+1−b n=2n,又a1=1,所以b1=1,所以b n=b n−b n−1+b n−1−b n−2+b n−2−b n−3+⋯+b2−b1+b1=2n−1+2n−2+2n−3+⋯+2+1 =1−2n1−2=2n−1,n=1也符合,所以b n=2n−1;(2)解:由(1)得a n=n⋅2n−n,设数列n⋅2n的前n项的和为T n,则T n=2+2×22+3×23+⋯+n⋅2n①,2T n=22+2×23+3×24+⋯+n−12n+n⋅2n+1②,由①−②得:−T n=2+22+23+⋯+2n−n⋅2n+1n⋅2n+1=1−n2n+1−2,所以T n=n−12n+1+2,所以S n=T n=n−12n+1题型3分组转化求和法数列a n的前n项和为S n,且a2=9,S3−a1=36.(1)求a n的通项公式;(2)若b n=a n+log3a n,求数列b n的前n项和T n.【答案】(1)a n=3n(2)3n+1+n2+n−32【分析】(1)结合题干条件求解基本量a1,q,利用等比数列的通项公式求解即可;(2)分组求和即可得解.(1)设数列a n的公比为q,则a2=a1q=9,S3-a1=a2+a3=a1q+a1q2=36,解得a1=3,q=3.故a n=a1q n−1=3×3n−1=3n.(2)由(1)可得b n =3n +log 33n =3n +n .则T n =(3+1)+32+2+⋯+3n +n =3+32+⋯+3n +(1+2+⋯+n (1+n )n 2=3n +1+n 2+n −32.【变式3-1】1.(2022·甘肃·宁县第二中学高二阶段练习)已知等差数列{a n }的前n 项和为S n ,a 3=6,S 8=72.(1)求数列{a n }的通项公式;(2)设b n =a n +3n ,求数列{b n }的前n 项和T n .【答案】(1)a n =2n (2)3n +12+n 2+n −32.【分析】(1)利用等差数列的通项公式和求和公式列方程解得a 1,d ,再写通项即可;(2)利用等差数列和等比数列的求和公式求和即可.(1)设{a n }的公差为d ,由已知得a 1+2d =68a 1+8⋅8−12d =72,解得a 1=2d =2,则a n =2n ;(2)∵b n =a n +3n =3n +2n,∴T n =21+2+3+⋅⋅⋅+n +3+32+33+⋅⋅⋅+3n =n n +1=3n +12+n 2+n −32.【变式3-1】2.(2022·四川省内江市第六中学高一阶段练习(理))数列a n 的前n 项和记为S n ,己知a n >0,a n 2+2a n =4S n +3.(1)求a n 的通项公式;(2)设b n =2a n ⋅a n +1+12a n ,T n 为数列b n 的前n 项和,证明:T n <12.【答案】(1)a n =2n +1(2)证明见解析【分析】(1)根据a n =S 1,n =1S n −S n −1,n ≥2,作差得到a n −a n −1=2,结合等差数列定义及通项公式,即可求解;(2)由(1)得到b n =12n +1−12n +3+122n +1,结合裂项相消法求和、分组求和法求和,即可得证.(1)解:因为a n >0,a n 2+2a n =4S n +3,令n=1可得,a12+2a1=4a1+3,解得a1=3或a1=−1(舍去).当n≥2时可得a n−12+ 2a n−1=4S n−1+3,两式相减得a n2−a n−12+2(a n−a n−1)=4a n,即(a n−a n−1)(a n+a n−1)= 2(a n+a n−1),因为a n>0,可得a n−a n−1=2,所以数列a n是以3为首项,以2为公差的等差数列,所以数列a n的通项公式为a n=3+(n−1)×2=2n+1.(2)解:由(1)知a n=2n+1,所以b n=2an⋅a n+1+12a n=2(2n+1)(2n+3)+122n+1=12n+1−12n+3+122n+1,所以数列b n的前n项和T n=15+15−17+⋯+12n+1++125+⋯+=13−12n+31−122=13−12n+3+16−16×22n<13+16=12【变式3-1】3.(2022·甘肃省临洮中学高二阶段练习)已知数列a n满足a2=1,1 a n+1=12+1an.等比数列b n的公比为3,且b2+b4=30.(1)求数列a n和b n的通项公式;(2)记数列c n=a n2n+2+b n,求数列c n的前n项和T n.【答案】(1)a n=2n,b n=3n−1(2)3n−12+n n+1【分析】(1)依题意可得1an+1−1an=12,是公差为12的等差数列,从而求出a n的通项公式,再根据等比数列的通项公式求出b1,即可求出b n的通项公式;(2)由(1)可得a n2n+2=1n−1n+1,利用裂项相消法和分组求和法计算可得.(1)解:由题可得1an+1−1an=12,故数列是公差为12的等差数列,故1a2−1a1=12,即1a1=12故1an=n2,故a n=2n.因为数列b n的公比为3,所以b2+b4=30b1=30,解得b1=1,故b n=3n−1.【变式3-1】4.(2022·江西·临川一中高三阶段练习(文))已知等差数列a n的前n项和为S n,且关于x的不等式a1x2−S2+2x+6<0的解集为(2,3).(1)求数列a n的通项公式;(2)若数列b n满足b n=a2n+2a n−1,求数列b n的前n项和T n.【答案】(1)a n=n(2)T n=n2+2n+1−2【分析】(1)先设等差数列a n的首项a1,公差为d,根据不等式a1x2−S2+2x+6<0的解集求出首项与公差,进而可求出通项公式;(2)由(1)得b n =2n +2a n −1=2n −1+2n ,再根据等差数列与等比数列的求和公式,即可求出结果.(1)设等差数列a n 的公差为d ,因为关于x 的不等式a 1x 2−S 2+2x +6<0的解集为(2,3),所以a 1x 2−S 2+2x +6=0的根为x 1=2,x 2=3,所以2+3=S 2+2a 12×3=6a 1,所以a 1=1,S 2=3又S 2=2a 1+d ,所以d =1,所以数列a n 的通项公式为a n =n ;(2)由(1)可得,a 2n =2n ,2a n =2n ,因为b n =a 2n +2a n −1,所以b n =2n −1+2n ,所以数列b n 的前n 项和T n =[1+3+5+⋯+(2n −1)]+2+22+23+⋯+2n =n (1+2n −1)2+=n 2+2n +1−2.◆类型1含有(−1)n型【例题4-1】已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln 2-ln 3)+(-1)n n ln 3,求其前n 项和S n .【解析】S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n ]·(ln 2-ln 3)+[-1+2-3+…+(-1)n n ]ln 3,所以当n 为偶数时,S n =2×1-3n 1-3+n 2ln 3=3n +n2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+(n -12-n )ln 3=3n -n -12ln 3-ln 2-1.综上所述,S n n +n2ln 3-1,n 为偶数,n -n -12ln 3-ln 2-1,n 为奇数.【变式4-1】1.(2022·江苏苏州·高三阶段练习)已知数列a n各项均为正数,且a1=2,a n+12−2a n+1=a n2+2a n(1)求a n的通项公式;(2)设b n=−1n a n,求b1+b2+b3+⋯+b20.【答案】(1)a n=2n;(2)20.【分析】(1)根据给定的递推公式,推得a n+1−a n=2,再利用等差数列通项求解作答.(2)由(1)求出b n,再利用并项求和法计算作答.(1)由a n+12−2a n+1=a n2+2a n得:(a n+1−a n)(a n+1+a n)=2(a n+1+a n),而n∈N∗,a n>0,因此a n+1−a n=2,即数列a n是首项a1=2,公差d=2的等差数列,a n=a1+(n−1)d=2n,所以数列a n的通项公式是a n=2n.(2)由(1)知,b n=(−1)n⋅2n,则有b2n−1+b2n=(−1)2n−1×2(2n−1)+(−1)2n×2×2n=2,所以b1+b2+b3+⋯+b20=(b1+b2)+(b3+b4)+⋯+(b19+b20)=2×10=20.【变式4-1】2.(2023·上海·高三专题练习)设数列a n的前n项和为S n,满足S n=1−na n n∈N∗.(1)求数列a n的通项公式;(2)n项和为T n,求T2n的表达式.【答案】(1)a n=1n(n+1)(2)T2n=2n(n+1)=≥2,再根据n n+1a n=n−【分析】(1)根据通项与前n项和的关系可得a na n−11na n−1求解即可;(2)先化简b n=a2n−1+a2n,再根据T2n=b1+b2+b3+…+b n求解即可.(1)当n=1时,a1=1−a1,所以a1=12.当n≥2时,S n=1−na n,S n−1=1−n−1a n−1.两式相减得:a n=n−1a n−1−na n,即a n a n−1=≥2.故n n+1a n=n−1na n−1= n−2n−1a n−2=...=1×2a1=1.故a n=(3=−1n n n+1,令b n=a2n−1+a2n=−2n−12n+2n2n+1=4n,则b n +1−b n =4n +1−4n =4,∴{bn}为等差数列.∴T 2n =b 1+b 2+b 3+…+b n =n (b 1+b n )2=n (4+4n )2=2n (n +1).【变式4-1】3.(2021·吉林吉林市)已知等比数列{}n a 的前n 项和为132n n S m +=-.(1)求m 的值,并求出数列{}n a 的通项公式;(2)令3(1)log nn n b a =-,设n T 为数列{}n b 的前n 项和,求2n T .【答案】(1)32m =,3nn a =;(2)2n T n =.【解析】(1)法一:当1n =时,1192a S m ==-当2n ≥时,1133()322n nnn n n a S S m m +-=-=---=∵{}n a 是等比数列,∴13a =,即932m -=,解得32m =综上,m 的值为32,数列{}n a 的通项公式为3nn a =.法二:∵1192a S m ==-,2219a S S =-=,33227a S S =-=∵{}n a 是等比数列,∴2213a a a =,即9()27812m -⨯=,解得32m =,设{}n a 的公比为q ,∴213a q a ==,11a =,则1333n n n a -=⨯=.(2)∵3(1)log (1)nnn n b a n =-=-⋅,∴21234212n n n T b b b b b b -=++++⋅⋅⋅++(1)2(3)4[(21)]2n n=-++-++⋅⋅⋅+--+(12)(34)[(21)2]n n =-++-++⋅⋅⋅+--+n =.◆类型2不含(−1)n型考点1两项并在一起型【例题4-2】(2021·江苏徐州市·高三三模)设各项均为正数的等差数列{a n }的前n 项和为S n ,S 7=35,且a 1,a 4-1,a 7成等比数列.(1)求数列{a n }的通项公式;(2)数列{b n }满足b n +b n +1=a n ,求数列{b n }的前2n 项的和T 2n .【答案】(1)1n a n =+;(2)2n n +.【解析】(1)设数列{a n }的公差为d (d ≥0),则747S a ==35,即4a =5,所以14353a a d d =-=-,74353a a d d =+=+.因为1a ,41a -,7a 成等比数列,所以()24171=a a a -,即42=(5-3d )(5+3d ),解得d =-1(舍去)或d =1,所以1n a n =+(2)因为1n n n b b a ++=,所以21234212...+-=+++++n n nT b b b b b b ()()()1234212...+n n b b b b b b -=+++++1321...n a a a -=+++2(22)2+==+n n n n 考点2前后相消型【例题4-3】(2021·简阳市阳安中学高三二模(理))记n S 为等比数列{}n a 的前n 项的和,且{}n a 为递增数列.已知24a =,314S =.(1)求数列{}n a 的通项公式;(2)设22121(1)log log nn n n n b a a ++=-⋅,求数列{}n b 的前n 项之和n T .【答案】(1)2nn a =;(2)(1)11nn T n -=-++.【解析】(1)设等比数列{}n a 的公比为q ,则212312322414a a q a S a a a a a q q ==⎧⎪⎨=++=++=⎪⎩,解得122a q =⎧⎨=⎩或1812a q =⎧⎪⎨=⎪⎩,因为{}n a 为递增数列,所以只有122a q =⎧⎨=⎩符合题意,故2nn a =;(2)由题意,1122212111(1)(1)(1)(1)(1))log 2log 2(11()1n n nn n n n n n n b n n n n n n ++++--=-=-=-+=-⋅⋅+++,∴12n nT b b b =++⋅⋅⋅+122311(1)(1)(1)(1)(1)(1)(1)(1)[][][]111223111n n n nn n n n ++--------=-+-++-=---++++.【变式4-3】(2021·广东揭阳市·高三其他模拟)已知正项等差数列{}n a 的前n 项和为n S ,满足()*162+⋅=+∈Nn n n n a S a ,12a<,(1)求数列{}n a 的通项公式;(2)若()()11lg +⋅=-nn n n a b a ,记数列{}n b 的前n 项和n T ,求33T .【答案】(1)32n a n =-;(2)2-.【解析】(1)当2n ≥时,由162+⋅=+n n n a a S ,得1162n n n S a a --⋅=+,两式相减可得62n n a a d ⋅=,从而可求出3d =,当1n =时,11262⋅=+S a a ,求出1a ,进而可出数列{}n a 的通项公式;(2)由(1)可得()()1l g 1g l nn n n b a a ++=-,从而可求出33T 【详解】解:(1)设等差数列{}n a 的公差为d ,则由162+⋅=+n n n a a S ,得()11622n n n S a n a --⋅=+≥相减得()()1116n n n n n a S a S a +----=即()622n n a a n d ⋅≥=,又0n a >,所以3d =,由11262⋅=+S a a ,得()111623a a a ⋅+=+,解得11a =,(12a =舍去)由()11n a a n d +-=,得32n a n =-;(2)()()()()111lg 1lg lg nnn n n n n a b a a a ++=-=+-⋅33T 12333b b b b +++⋅⋅⋅+=1223343334lg lg lg lg l lg lg g lg a a a a a a a a -++--+⋅--⋅⋅=-341lg lg lg1002a a =--=-=-.考点3分段函数型【例题4-4】(2020·全国高考真题(文))数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a =______________.【答案】7【解析】分析:对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论.详解:2(1)31nn n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-.设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++13515241416()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++11(102)(140)(5172941)a a ++++++++118392928484540a a =++=+=,17a ∴=.故答案为:7.【变式4-4】1.已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.【答案】(1)122,5b b ==;(2)300.【解析】(1)根据题设中的递推关系可得13n n b b +=+,从而可求{}n b 的通项.(2)根据题设中的递推关系可得{}n a 的前20项和为20S 可化为()2012910210S b b b b =++++-,利用(1)的结果可求20S .【详解】(1)由题设可得121243212,1215b a a b a a a ==+===+=++=又22211k k a a ++=+,2122k k a a +=+,*()k N ∈故2223k k a a +=+,即13n n b b +=+,即13n n b b +-=所以{}n b 为等差数列,故()21331n b n n =+-⨯=-.(2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++,因为123419201,1,,1a a a a a a =-=-=-,所以()20241820210S a a a a =++++-()1291091021021023103002b b b b ⨯⎛⎫=++++-=⨯⨯+⨯-= ⎪⎝⎭.【变式4-4】2.(2019·天津高考真题(文))设{}n a 是等差数列,{}n b 是等比数列,公比大于0,已知113a b ==,23b a =,3243b a =+.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足21,,,n n n c bn ⎧⎪=⎨⎪⎩为奇数为偶数求()*112222n na c a c a c n N ++⋅⋅⋅+∈.【答案】(I )3n a n =,3nn b =;(II )22(21)369()2n n n n N +*-++∈【解析】(I )解:设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,依题意,得23323154q d q d =+⎧⎨=+⎩,解得33d q =⎧⎨=⎩,故33(1)3n a n n =+-=,1333n n n b -=⨯=,所以,{}n a 的通项公式为3n a n =,{}n b 的通项公式为3nn b =;(II )112222n na c a c a c ++⋅⋅⋅+135212142632()()n n n a a a a ab a b a b a b -=+++++++++⋅⋅⋅⋅⋅⋅123(1)[36](6312318363)2n n n n n -=⨯+⨯+⨯+⨯+⨯+⋅⨯⋅+⋅21236(13233)n n n ⋅=+⨯⨯+⨯++⨯⋅⋅,记1213233nn T n ⋅=⨯+⨯++⨯⋅⋅①则231313233n n T n +=⨯+⨯++⨯⋅⋅⋅②②-①得,231233333nn n T n +⋅=-----+⨯⋅⋅113(13)(21)333132n n n n n ++--+=-+⨯=-,所以122112222(21)3336332n n n n n a c a c a c n T n +-++++=+=+⨯⋅⋅⋅22(21)369()2n n n n N +*-++=∈.【变式4-4】3.(2021·河北衡水中学高三其他模拟)已知正项数列{}n a ,其前n 项和为(),12n n n S a S n N *=-∈.(1)求数列{}n a 的通项公式:(2)设()112n n n b n a ⎛⎫=-+ ⎪⎝⎭,求数列{}n b 的前n 项和n T .【答案】(1)13n n a ⎛⎫= ⎪⎝⎭;(2)1173,4433,4n n n n n T n n ++⎧---⎪⎪=⎨+-⎪⎪⎩为奇数为偶数.【解析】1)由已知12n n a S =-,①所以有1112n n a S ++=-,②②-①,得112n n n a a a ++-=-,即13n n a a +=,∴113n n a a +=,所以数列{}n a 是公比为13的等比数列.又1111212a S a =-=-,∴113a =.所以1111333n nn a -⎛⎫⎛⎫=⋅= ⎪⎪⎝⎭⎝⎭(2)由(1)得()()()()1121312nn nn n n b n n a ⎛⎫=-+=-⋅+-⋅ ⎪⎝⎭,当n 为奇数时,()()2343333321234nn T n =-+-+-⋯-+-+-+-⋯-()()()3131121122132222nn n n n -----++--⎛⎫⎛⎫=+⋅+⋅ ⎪ ⎪--⎝⎭⎝⎭113373144n n n n++----=--=-当n 为偶数时,()()2343333321234nn T n =-+-+-⋯++-+-+-⋯+()()()()31311222132222nn n n n ----+-+⎛⎫+⎛⎫=+⋅+⋅ ⎪ ⎪--⎝⎭⎝⎭113343344n n n n ++-++-=+=综上所述,1173,4433,4n n n n n T n n ++⎧---⎪⎪=⎨+-⎪⎪⎩为奇数为偶数【变式4-4】4.(2021·宁波市北仑中学高三其他模拟)已知数列{}n a 满足1122,1,1,n n n a n n a a a n n ++⎧==⎨---⎩为奇数为偶数,记数列{}n a 的前n 项和为n S ,2,n n b a n N*=∈(1)求证:数列{}n b 为等比数列,并求其通项n b ;(2)求{}n nb 的前n 项和n T 及{}n a 的前n 项和为n S .【答案】(1)证明见解析;()12n n b +=-;(2)()2412939n n n T +⎛⎫=-+- ⎪⎝⎭;2212(1)2,42(2),4n n n n S n n +⎧+-⎪⎪=⎨⎪-+-⎪⎩为奇数为偶数.【解析】(1)因为11a =,122,1,n n n a n n a a n n ++⎧=⎨---⎩为奇数为偶数,2n n b a =,所以()()122212222212214222n n n n n n b a a n a n n a b +++==++=---++=-=-,又121224b a a ==+=,所以数列{}n b 是以4为首项,以2-为公比的等比数列,因此()()11422n n n b -+=⨯-=-;(2)由(1)可得()()()()234112323222322n n n T b b b nb n +=+++⋅⋅⋅+=-+⨯-+⨯-+⋅⋅⋅+⨯-①,则()()()()34522222322n n T n +-=-+⨯-+⨯-+⋅⋅⋅+⨯-②,①-②得()()()()()()()()()222345122223222222212n n n n n T n n ++++---=-+-+-+-+⋅⋅⋅+--⨯-=-⨯-+,则()2412939n n n T +⎛⎫=-+- ⎪⎝⎭;设()221n n n c a a n N*+=+∈,则()221222121n n n n n c a a a a n n +=+=+---=--,所以()()()2112345221112n n n nS a a a a a a a a c c c ++=+++++⋅⋅⋅++=+++⋅⋅⋅+()121212n n c c n n +=+=--+;2212121221n n n n n S S a S a n +++=-=+++()()11222212122n n n n n n ++=---++=--++++;因此()()()22221122111212,2242222,24n n nn n n n S n n n ++⎧+--⎛⎫--⨯+=-⎪ ⎪⎪⎝⎭=⎨⎪⎛⎫-+-+=-+- ⎪⎪⎝⎭⎩为奇数为偶数.题型5倒序相加法【例题5】(2022·北京市第十二中学高二阶段练习)已知正数数列a n 是公比不等于1的等比数列,且a 1a 2019=1,试用推导等差数列前n 项和的方法探求:若f (x )=41+x 2,则f a 1+f a 2+⋯+f a 2019=()A .2018B .4036C .2019D .4038【答案】D【分析】利用f(x)+f=4,再等差数列前n项和的方法倒序相加法求和即可.【详解】a1⋅a2019=1,∵函数f(x)=4 1+x2∴f(x)+f=41+x2+41+1x2=4+4x21+x2=4,令T=f(a1)+f(a2)+⋅⋅⋅+f(a2019),则T=f(a2019)+f(a2018)+⋅⋅⋅+f(a1),∴2T=f(a1)+f(a2019)+f(a2)+f(a2018)+⋅⋅⋅+f(a2019)+f(a1)=4×2019,∴T=4038.故选:D.【变式5-1】1.(2022·全国·高三专题练习)已知定义在R上的函数f(x)=(x−20233898)3+732022,则f(11949)+f(21949)+f(31949)+⋅⋅⋅+f(20221949)=___________.【答案】73【分析】根据已知条件得f(x)+f(20231949−x)=731011,再利用倒序相加法即可求解.【详解】由f(x)=(x−20233898)3+732022,得f(20231949−x)=(20231949−x−20233898)3+732022=(20233898−x)3+732022,所以f(x)+f(20231949−x)=(x−20233898)3+732022+(20233898−x)3+732022=731011,设S=f(11949)+f(21949)+f(31949)+⋅⋅⋅+f(20221949)①,S=f(20221949)+f(20211949)+f(20201949)+⋅⋅⋅+f(11949)②,由①+②,得2S=(f(11949)+f(20221949))+(f(21949)+f(20211949))+⋅⋅⋅+f(20221949)+f(11949)即2S=731011+731011+⋅⋅⋅+731011,于是有2S=731011×2022,解得S=73,所以f(11949)+f(21949)+f(31949)+⋅⋅⋅+f(20221949)=73.故答案为:73.【变式5-1】2.(2023·全国·高三专题练习)已知函数f x=x+1−1,数列a n是正项等比数列,且a1011=1,f a1+f a2+f a3+⋅⋅⋅+f a2020+f a2021=______.【答案】20212【分析】由题意可得f x+f=1,利用倒序相加法求和即可.【详解】解:由数列a n是正项等比数列,且a1011=1,可得a1a2021=a2a2020=⋅⋅⋅=a1011a1011=1,=1x+1+x1+x=1,因为f x+f=1x+1+11x+1可设S=f a1+f a2+f a3+⋅⋅⋅+f a2020+f a2021,又S=f a2021+f a2020+f a2019+⋅⋅⋅+f a2+f a1,两式相加可得2S=f a1+f a2021+f a2+f a2020+⋅⋅⋅+f a2021+f a1=1+1+⋅⋅⋅+1=2021,所以S=20212.故答案为:20212.【变式5-1】3.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)德国大数学家高斯年少成名,被誉为数学界的王子.在其年幼时,对1+2+3+⋯+100的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成;因此,此方法也称之为高斯算法.现有函数f(x)=4x4x+2,则f(12019)+f(22019)+f(32019)+⋯+f(20182019)等于()A.1008B.1009C.2018D.2019【答案】B【分析】根据f(x)+f(1−x)=1,利用倒序相加法求解.【详解】解:因为f(x)=4x4x+2,且f(x)+f(1−x)=4x4x+2+41−x41−x+2=4x4x+2+42×4x+4=1,令S=f(12019)+f(22019)+f(32019)+⋯+f(20182019),又S=f(20182019)+f(20172019)+f(20162019)+⋯+ f(12019),两式相加得:2S=1×2018,解得S=1009,故选:B∈R,等差数列a n【变式5-1】4.(2022·全国·高三专题练习)已知函数f x=满足a2022=0,则f a1+f a2+f(a3)+⋯+f a4043=__________.【答案】40432##2011.5【分析】利用倒序相加法求得正确答案.【详解】f(x)+f(−x)=2x2x+1+2−x2−x+1=2x2x+1+12x+1=1.依题意{a n}是等差数列,令S=f(a1)+f(a2)+f(a3)+⋯+f(a4043),S=f(a4043)+f(a4042)+f(a4041)+⋯+f(a1),结合等差数列的性质,两式相加得2S=1×4043,S=40432.故答案为:40432.。
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新 料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯求数列前 N 项和的七种方法点拨 :中心提示: 求数列的前 n 项和要借助于通项公式,即先有通项公式,再在剖析数列通项公式的基础上,或分解为基本数列乞降,或转变为基本数列乞降。
当碰到详细问题时,要注意察看数列的特色和规律,找到合适的方法解题。
1. 公式法等差数列前 n 项和:n(a 1 a n )n(n 1)S nna 1d22特其余, 目前 n 项的个数为奇数时, S 2 k 1 (2 k 1) a k 1 ,即前 n 项和为中间项乘以项数。
这个公式在好多时候能够简化运算。
等比数列前 n 项和: q=1 时, S nna 1a 1 qnq 1, S1,特别要注意对公比的议论。
n1 q其余公式:n 1、 S nk 11n(n 1) 2、 S nn1n(n 1)( 2n 1)kk 22 k 16n[ 1n(n 3、 S nk 3 1)] 2k 12[例 1] 已知 log 3 x1 ,求 x x2 x3 x n的前 n 项和 .log 2 3解:由 log 3 x1log 3 xlog 3 2x 12log 2 3由等比数列乞降公式得Sx x 2x 3x n(利n用常用公式)1(1 1)=1- 1= x(1 x n ) =2 2n1 x 1 1 2n2[例 2] S n= 1+2+3+ ⋯+n , n∈N * ,求f (n)(n S n 的最大 .32) S n 1解:由等差数列乞降公式得S n 1 n(n 1) ,S n 11( n 1)(n 2)(利2 2 用常用公式)∴ f ( n)S n =n2 34n 64( n 32)S n 1 n=1=1 164 8 50 n ( n ) 2 5034nn8,即 n= 8 ,f (n)max1∴ 当n50n2.错位相减法种方法是在推等比数列的前n 和公式所用的方法,种方法主要用于求数列{a n·b n} 的前 n 和,此中 { a n } 、 { b n } 分是等差数列和等比数列 .[例 3] 乞降: S n 1 3x 5x 2 7 x3 (2n 1) x n 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯①解:由可知, { (2n 1) x n 1 } 的通是等差数列{2n - 1} 的通与等比数列 { x n 1 } 的通之xS n 1x 3x2 5x3 7 x4 (2n 1) x n⋯⋯⋯⋯⋯⋯⋯⋯⋯. ②①-②得(1 x)S n 1 2x 2x 2 2x3 2x4 2x n 1 (2n 1)x n(错位相减)再利用等比数列的乞降公式得:(1 x)S n 11 x n 11) xn 2x 1 x (2n∴S n (2n 1)x n 1 (2n 1) x n (1 x)(1 x) 2[例 4] 求数列2,42 ,63, ,2nn , 前 n 的和 .2 2 2 2解:由 可知,2n1{} 的通 是等差数列 {2n} 的通 与等比数列 {2n } 的通 之2n S n2 4 6 2n⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ①2 2 2 232n12462n2Sn22 232 42n 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯②(设制错位)1 2 222 2 2n①-②得(1 ) S n2 2223242n2n 12(错位相减 )12n22n 12 n 1n2∴S n 4 2n 1:求: S n =1+5x+9x 2+······ +(4n-3)xn-1解:S n =1+5x+9x 2 +······+(4n-3)x n-1 ①①两边同乘以 x ,得x S n =x+5 x 2 +9x 3+······+(4n-3)x n②① - ②得,(1-x )S n =1+4(x+ x 2+x 3+······+ x n )- (4n-3)x n 当 x=1 时, S n =1+5+9+······+(4n-3) =2n 2 -n当 x ≠1 时, S n = 1 1-x [ 4x(1-xn) 1-x +1-(4n-3) x n ]3. 反序相加法乞降是推 等差数列的前 n 和公式 所用的方法, 就是将一个数列倒 来摆列 (反序),再把它与原数列相加,就能够获得n 个 (a 1 a n ) .[例 5] 求 sin 2 1sin 2 2 sin 2 3 sin 2 88 sin 2 89 的解: S sin 2 1 sin 2 2 sin 2 3sin 2 88 sin 2 89 ⋯⋯⋯⋯. ①将①式右 反序得S sin 289 sin 288222⋯⋯⋯⋯ .. ②s i n 3s i n 2 s i n 1(反序)又因 sin x cos(90x), sin 2 x cos 2 x 1①+②得(反序相加)2S (sin 2 1cos 2 1 ) (sin 2 2 cos 2 2 ) (sin 2 89 cos 2 89 ) = 89∴S =4. 分组法乞降有一类数列,既不是等差数列, 也不是等比数列, 若将这种数列合适打开, 可分为几个等差、等比或常有的数列,而后分别乞降,再将其归并即可 .[例 6] 求数列的前 n 项和: 11,14,17, , 13n 2 ,aa 2 a n 1解:设11132)(1 1) ( a4)(a 27)(a n 1nS n将其每一项打开再从头组合得S n(1 1 11 ) (1 4 73n2)a a 2a n 1(分组)当 a = 1 时,S nn(3n 1)n(3n 1)n(分2 =2组乞降)11(3n 1) na a 1 na n当 a1 时, S n2=11 1a a[例 7] 求数列 {n(n+1)(2n+1)} 的前 n 项和 .解:设 akk k k2 k3 k 2 k(1)( 2 1)3nn∴ S nk (k 1)(2k 1) = (2k 3 3k 2 k)k 1k 1将其每一项打开再从头组合得S n=(分组)= 2(1323n 3 ) 3(12 22 n 2 )n 2 (n 1)2=2(分组乞降)(3n 1)n2n n n2k 33k 2kk 1k1k 1(1 2n)n(n 1)(2n1) n( n 1)22= n(n 1) 2 (n 2)2练习:求数列 11 ,2 1 ,31,, (n1n),的前 n 项和。
求数列前N 项和的七种方法1. 公式法等差数列前n 项和:特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式: 1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n项和.[例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和.练习: 求:S n=1+5x+9x 2+······+(4n -3)xn-13. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例5] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例6] 求数列{n(n+1)(2n+1)}的前n 项和.解:设kk k k k k a k ++=++=2332)12)(1(∴∑=++=nk n k k k S 1)12)(1(=)32(231k k k n k ++∑=将其每一项拆开再重新组合得S n=kk k nk nk nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n(分组求和)=2)2()1(2++n n n练习:求数列∙∙∙+∙∙∙),21(,,813,412,211n n 的前n 项和。
裂项相消法前⾔概述⽤裂项相消法可以求数列的通项公式a n,也可以求数列的前n项的和S n。
常⽤公式常⽤式:1n(n+1)=1n−1n+1;推⼴式:1n(n+k)=1k(1n−1n+k);常⽤式:1√n+1+√n=√n+1−√n;推⼴式:1√n+k+√n=1k(√n+k−√n);不常⽤:1√2n−1+√2n+1=12(√2n+1−√2n−1);常⽤式:14n2−1=1(2n−1)(2n+1)=12(12n−1−12n+1);组合⽤:n24n2−1=14×4n2−1+14n2−1=14(1+14n2−1)=14+18(12n−1−12n+1);常⽤式:ln(1+1n)=lnn+1n=ln(n+1)−lnn;不常⽤:a n+1S n⋅S n+1=S n+1−S nS n⋅S n+1=1S n−1S n+1不常⽤:2n(2n−1)(2n+1−1)=12n−1−12n+1−1不常⽤:n+1(n+2)2⋅n2=14[1n2−1(n+2)2]不常⽤:1n(n+1)(n+2)=12[1n(n+1)−1(n+1)(n+2)],启迪思维的变形,两项到三项记忆⽅法【案例1】2(n−1)(n+1)=2⋅1(n−1)(n+1)=2⋅◻(1n−1−1n+1),那么⼩括号前⾯的系数到底该是多少才能使得原式保持恒等变形呢?我们只需要做通分的⼯作,将1n−1−1n+1=(n+1)−(n−1)(n−1)(n+1)=2(n−1)(n+1)故1(n−1)(n+1)=12(1n−1−1n+1),故上述◻位置应该为1 2,即2(n−1)(n+1)=2⋅12(1n−1−1n+1)=1n−1−1n+1,【案例2】(√n+1+√n)(√n+1−√n)=1,故1√n+1+√n=√n+1−√n关联表⽰①1n2+2n;②bn=1a n⋅a n+1;③a n+1S n⋅S n+1;④cn=1log3a n⋅log3a n+1;⑤1(n+2)2−4=1n2+4n=1n(n+4)=14(1n−1n+4);⑥bn=a n(a n+1)(a n+1+1);书写模式如数列a n=1n(n+2),求其前n项和S n。
裂项相消法利用列项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面剩两项,再就是通项公式列项后,有时需要调整前面的系数,使列项前后等式两边保持相等。
(1)若是{a n }等差数列,则)11.(1111++-=n n n n a a d a a ,)11.(21122n ++-=n n n a a d a a (2)11111+-=+n n n n )( (3))11(1)(1k n n k k n n +-=+ (4))121121(2112)121+--=+-n n n n )(( (5)])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n (6)n n n n -+=++111(7))(11n k n k k n n -+=++1.已知数列的前n 项和为, .(1)求数列的通项公式;(2)设,求数列的前n项和为.[解析] (1) ……………①时, ……………②①②得:即……………………………………3分在①中令, 有, 即,……………………………………5分故对2.已知{a n}是公差为d的等差数列,它的前n项和为S n,S4=2S2+8.(Ⅰ)求公差d的值;(Ⅱ)若a1=1,设T n是数列{}的前n项和,求使不等式T n≥对所有的n∈N*恒成立的最大正整数m的值;[解析](Ⅰ)设数列{a n}的公差为d,∵ S4=2S2+8,即4a1+6d=2(2a1+d) +8,化简得:4d=8,解得d=2.……………………………………………………………………4分(Ⅱ)由a1=1,d=2,得a n=2n-1,…………………………………………5分∴ =.…………………………………………6分∴ T n===≥,…………………………………………8分又∵ 不等式T n≥对所有的n∈N*恒成立,∴ ≥,…………………………………………10分化简得:m2-5m-6≤0,解得:-1≤m≤6.∴ m的最大正整数值为6.……………………………………………………12分3.)已知各项均不相同的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列. (Ⅰ)求数列{a n}的通项公式;(Ⅱ)设T n为数列的前n项和,求T2 012的值.[答案] (Ⅰ)设公差为d,由已知得(3分)解得d=1或d=0(舍去),∴a1=2. (5分)故a n=n+1. (6分)(Ⅱ)==-,(8分)∴T n=-+-+…+-=-=. (10分)∴T2 012=. (12分)4.)已知数列{a n}是等差数列,-=8n+4,设数列{|a n|}的前n项和为S n,数列的前n项和为T n.(1)求数列{a n}的通项公式;(2)求证:≤T n<1.[答案] (1)设等差数列{a n}的公差为d,则a n=a1+(n-1)d. (2分)∵-=8n+4,∴(a n+1+a n)(a n+1-a n)=d(2a1-d+2nd)=8n+4.当n=1时,d(2a1+d)=12;当n=2时,d(2a1+3d)=20.解方程组得或(4分)经检验知,a n=2n或a n=-2n都满足要求.∴a n=2n或a n=-2n. (6分)(2)证明:由(1)知:a n=2n或a n=-2n.∴|a n|=2n.∴S n=n(n+1). (8分)∴==-.∴T n=1-+-+…+-=1-. (10分)∴≤T n<1. (12分)5.已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列. (Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(-1)n-1,求数列{b n}的前n项和T n.[答案] 查看解析[解析] (Ⅰ)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n-1.(Ⅱ)b n=(-1)n-1=(-1)n-1=(-1)n-1.当n为偶数时,T n=-+…+-=1-=.当n为奇数时,T n=-+…-+++=1+= .所以T n=6. 已知点的图象上一点,等比数列的首项为,且前项和(Ⅰ) 求数列和的通项公式;(Ⅱ) 若数列的前项和为,问的最小正整数是多少?[解析]解:(Ⅰ) 因为,所以,所以,,,又数列是等比数列,所以,所以,又公比,所以,因为,又,所以,所以,所以数列构成一个首项为1,公差为1的等差数列,,所以,当时,,所以. (6分)(Ⅱ) 由(Ⅰ) 得,(10分)由得,满足的最小正整数为72. (12分)7. 在数列,中,,,且成等差数列,成等比数列().(Ⅰ)求,,及,,,由此归纳出,的通项公式,并证明你的结论;(Ⅱ)证明:.[解析] (Ⅰ)由条件得,由此可得.猜测. (4分)用数学归纳法证明:①当时,由上可得结论成立.②假设当时,结论成立,即,那么当时,.所以当时,结论也成立.由①②,可知对一切正整数都成立. (7分)(Ⅱ)因为.当时,由(Ⅰ)知.所以.综上所述,原不等式成立. (12分)8.已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求使成立的最小的正整数的值.[解析] (1)当时,,由, (1)分当时,∴是以为首项,为公比的等比数列.……………………4分故…………………6分(2)由(1)知,………………8分,故使成立的最小的正整数的值. ………………12分9. 己知各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(I)求数列{a n}的通项公式;(II)设T n为数列的前n项和,若T n≤¨对恒成立,求实数的最小值.[解析] 122. (Ⅰ)设公差为d. 由已知得……………………………3分解得,所以………………………………6分(Ⅱ),………………………………9分对恒成立,即对恒成立又∴的最小值为……………………………………………………………12分10. 已知数列前项和为,首项为,且,,成等差数列.(Ⅰ)求数列的通项公式;(II)数列满足,求证:,[解析] (Ⅰ)成等差数列, ∴,,当时,,两式相减得: .所以数列是首项为,公比为2的等比数列,. (6分)(Ⅱ) ,(8分),. (12分)11.等差数列{a n}各项均为正整数, a1=3, 前n项和为S n, 等比数列{b n}中, b1=1, 且b2S2=64, {}是公比为64的等比数列.(Ⅰ) 求a n与b n;(Ⅱ) 证明:++…+<.[答案] (Ⅰ) 设{a n}的公差为d, {b n}的公比为q, 则d为正整数,a n=3+(n-1) d,b n=q n-1.依题意有①由(6+d) q=64知q为正有理数, 又由q=知, d为6的因子1, 2, 3, 6之一, 解①得d=2, q=8.故a n=3+2(n-1) =2n+1, b n=8n-1.(Ⅱ) 证明:S n=3+5+…+(2n+1) =n(n+2) ,所以++…+=+++…+==<.12. 等比数列{a n}的各项均为正数, 且2a1+3a2=1, =9a2a6.(Ⅰ) 求数列{a n}的通项公式;(Ⅱ) 设b n=log3a1+log3a2+…+log3a n, 求数列的前n项和.[答案] (Ⅰ) 设数列{a n}的公比为q. 由=9a2a6得=9, 所以q2=.因为条件可知q>0, 故q=.由2a1+3a2=1得2a1+3a1q=1, 所以a1=.故数列{a n}的通项公式为a n=.(Ⅱ) b n=log3a1+log3a2+…+log3a n=-(1+2+…+n)=-,故=-=-2,++…+=-2++…+=-.所以数列的前n项和为-.13.等差数列{a n}的各项均为正数,a1=3,其前n项和为S n,{b n}为等比数列,b1=1,且b2S2=16,b3S3=60.(Ⅰ)求a n和b n;(Ⅱ)求++…+.[答案] (Ⅰ)设{a n}的公差为d,且d为正数,{b n}的公比为q,a n=3+(n-1)d,b n=q n-1,依题意有b2S2=q·(6+d)=16,b3S3=q2·(9+3d)=60,(2分)解得d=2,q=2.(4分)故a n=3+2(n-1)=2n+1,b n=2n-1.(6分)(Ⅱ)S n=3+5+…+(2n+1)=n(n+2),(8分)所以++…+=+++…+=(10分)==-.(12分)14.设数列{a n}的前n项和S n满足:S n=na n-2n(n-1). 等比数列{b n}的前n项和为T n,公比为a1,且T5=T3+2b5.(1)求数列{a n}的通项公式;(2)设数列的前n项和为M n,求证:≤M n<.[答案](1)∵T5=T3+2b5,∴b4+b5=2b5,即(a1-1)b4=0,又b4≠0,∴a1=1. n≥2时,a n=S n-S n-1=na n-(n-1)a n-1-4(n-1),即(n-1)a n-(n-1)a n-1=4(n-1).∵n-1≥1,∴a n-a n-1=4(n≥2),∴数列{a n}是以1为首项,4为公差的等差数列,∴a n=4n-3. (6分)(2)证明:∵==·,(8分)∴M n=++…+==<,(10分)又易知M n单调递增,故M n≥M1=.综上所述,≤M n<. (12分)。
求数列前n项和的七种方法-CAL-FENGHAI.-(YICAI)-Company One1求数列前N 项和的七种方法1. 公式法等差数列前n 项和:特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ……………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)∴ 1224-+-=n n n S练习:求:S n =1+5x+9x 2+······+(4n-3)x n-1 解:S n =1+5x+9x 2+······+(4n-3)x n-1 ① ①两边同乘以x ,得 x S n =x+5 x 2+9x 3+······+(4n-3)x n ②①-②得,(1-x )S n =1+4(x+ x 2+x 3+······+ nx )-(4n-3)x n当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n当x ≠1时,S n = 1 1-x [ 4x(1-x n ) 1-x +1-(4n-3)x n ] 3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x ①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S = 4. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,…解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+---[例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=nk n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得3211123nnnn k k k S k k k ====++∑∑∑ (分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++22(1)(1)(21)(1)222n n n n n n n ++++=++ (分组求和) =2)2()1(2++n n n练习:求数列•••+•••),21(,,813,412,211nn 的前n 项和。
裂项相消法求和附答案裂项相消法利用列项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面剩两项,再就是通项公式列项后,有时需要调整前面的系数,使列项前后等式两边保持相等。
(1)若是{a n }等差数列,则)11.(1111++-=n n n n a a d a a ,)11.(21122n ++-=n n n a a d a a (2)11111+-=+n n n n )( (3))11(1)(1k n n k k n n +-=+ (4))121121(2112)121+--=+-n n n n )(( (5)])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n (6)n n n n -+=++111(7))(11n k n k kn n -+=++1.已知数列的前n 项和为, .(1)求数列的通项公式;(2)设,求数列的前n 项和为.[解析] (1) ……………①时, ……………②①②得:即……………………………………3分在①中令, 有, 即, (5)分故对2.已知{a n}是公差为d的等差数列,它的前n项和为S n,S4=2S2+8.(Ⅰ)求公差d的值;(Ⅱ)若a1=1,设T n是数列{}的前n项和,求使不等式T n≥对所有的n∈N*恒成立的最大正整数m的值;[解析](Ⅰ)设数列{a n}的公差为d,∵ S4=2S2+8,即4a1+6d=2(2a1+d) +8,化简得:4d=8,解得d=2.……………………………………………………………………4分(Ⅱ)由a1=1,d=2,得a n=2n-1,…………………………………………5分∴=. (6)分∴ T n===≥,…………………………………………8分又∵不等式T n≥对所有的n∈N*恒成立,∴≥,…………………………………………10分化简得:m2-5m-6≤0,解得:-1≤m≤6.∴ m的最大正整数值为6.……………………………………………………12分3.)已知各项均不相同的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设T n为数列的前n项和,求T2 012的值.[答案] (Ⅰ)设公差为d,由已知得(3分)解得d=1或d=0(舍去),∴a1=2. (5分)故a n=n+1. (6分)(Ⅱ)==-,(8分)∴T n=-+-+…+-=-=. (10分)∴T2 012=. (12分)4.)已知数列{a n}是等差数列,-=8n+4,设数列{|a n|}的前n项和为S n,数列的前n项和为T n.(1)求数列{a n}的通项公式;(2)求证:≤T n<1.[答案] (1)设等差数列{a n}的公差为d,则a n=a1+(n-1)d. (2分)∵-=8n+4,∴(a n+1+a n)(a n+1-a n)=d(2a1-d+2nd)=8n+4.当n=1时,d(2a1+d)=12;当n=2时,d(2a1+3d)=20.解方程组得或(4分)经检验知,a n=2n或a n=-2n都满足要求.∴a n=2n或a n=-2n. (6分)(2)证明:由(1)知:a n=2n或a n=-2n.∴|a n|=2n.∴S n=n(n+1). (8分)∴==-.∴T n=1-+-+…+-=1-. (10分)∴≤T n<1. (12分)5.已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列. (Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(-1)n-1,求数列{b n}的前n项和T n.[答案] 查看解析[解析] (Ⅰ)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n-1.(Ⅱ)b n=(-1)n-1=(-1)n-1=(-1)n-1.当n为偶数时,T n=-+…+-=1-=.当n为奇数时,T n=-+…-+++=1+=. 所以T n=6. 已知点的图象上一点,等比数列的首项为,且前项和(Ⅰ) 求数列和的通项公式;(Ⅱ) 若数列的前项和为,问的最小正整数是多少?[解析]解:(Ⅰ) 因为,所以,所以,,,又数列是等比数列,所以,所以,又公比,所以,因为,又,所以,所以,所以数列构成一个首项为1,公差为1的等差数列,,所以,当时,,所以. (6分)(Ⅱ) 由(Ⅰ) 得,(10分)由得,满足的最小正整数为72. (12分)7. 在数列,中,,,且成等差数列,成等比数列().(Ⅰ)求,,及,,,由此归纳出,的通项公式,并证明你的结论;(Ⅱ)证明:.[解析] (Ⅰ)由条件得,由此可得.猜测. (4分)用数学归纳法证明:①当时,由上可得结论成立.②假设当时,结论成立,即,那么当时,. 所以当时,结论也成立.由①②,可知对一切正整数都成立. (7分)(Ⅱ)因为.当时,由(Ⅰ)知.所以.综上所述,原不等式成立. (12分)8.已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求使成立的最小的正整数的值.[解析] (1)当时,,由,……………………1分当时,∴是以为首项,为公比的等比数列. (4)分故…………………6分(2)由(1)知,………………8分,故使成立的最小的正整数的值 (12)分9. 己知各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(I)求数列{a n}的通项公式;(II)设T n为数列的前n项和,若T n≤¨对恒成立,求实数的最小值.[解析] 122. (Ⅰ)设公差为d. 由已知得……………………………3分解得,所以………………………………6分(Ⅱ),………………………………9分对恒成立,即对恒成立又∴的最小值为 (12)分10. 已知数列前项和为,首项为,且,,成等差数列.(Ⅰ)求数列的通项公式;(II)数列满足,求证:,[解析] (Ⅰ)成等差数列, ∴,,当时,,两式相减得: .所以数列是首项为,公比为2的等比数列,. (6分)(Ⅱ) ,(8分),. (12分)11.等差数列{a n}各项均为正整数, a1=3, 前n项和为S n, 等比数列{b n}中, b1=1, 且b2S2=64, {}是公比为64的等比数列.(Ⅰ) 求a n与b n;(Ⅱ) 证明:++…+<.[答案] (Ⅰ) 设{a n}的公差为d, {b n}的公比为q, 则d为正整数,a n=3+(n-1) d,b n=q n-1.依题意有①由(6+d) q=64知q为正有理数, 又由q=知, d为6的因子1, 2, 3, 6之一, 解①得d=2, q=8.故a n=3+2(n-1) =2n+1, b n=8n-1.(Ⅱ) 证明:S n=3+5+…+(2n+1) =n(n+2) ,所以++…+=+++…+==<.12. 等比数列{a n}的各项均为正数, 且2a1+3a2=1, =9a2a6.(Ⅰ) 求数列{a n}的通项公式;(Ⅱ) 设b n=log3a1+log3a2+…+log3a n, 求数列的前n项和.[答案] (Ⅰ) 设数列{a n}的公比为q. 由=9a2a6得=9, 所以q2=.因为条件可知q>0, 故q=.由2a1+3a2=1得2a1+3a1q=1, 所以a1=.故数列{a n}的通项公式为a n=.(Ⅱ) b n=log3a1+log3a2+…+log3a n=-(1+2+…+n)=-,故=-=-2,++…+=-2++…+=-.所以数列的前n项和为-.13.等差数列{a n}的各项均为正数,a1=3,其前n项和为S n,{b n}为等比数列,b1=1,且b2S2=16,b3S3=60.(Ⅰ)求a n和b n;(Ⅱ)求++…+.[答案] (Ⅰ)设{a n}的公差为d,且d为正数,{b n}的公比为q,a n=3+(n-1)d,b n=q n-1,依题意有b2S2=q·(6+d)=16,b3S3=q2·(9+3d)=60,(2分)解得d=2,q=2.(4分)故a n=3+2(n-1)=2n+1,b n=2n-1.(6分)(Ⅱ)S n=3+5+…+(2n+1)=n(n+2),(8分)所以++…+=+++…+=(10分)==-.(12分)14.设数列{a n}的前n项和S n满足:S n=na n-2n(n-1). 等比数列{b n}的前n项和为T n,公比为a1,且T5=T3+2b5.(1)求数列{a n}的通项公式;(2)设数列的前n项和为M n,求证:≤M n<.[答案](1)∵T5=T3+2b5,∴b4+b5=2b5,即(a1-1)b4=0,又b4≠0,∴a1=1.n≥2时,a n=S n-S n-1=na n-(n-1)a n-1-4(n-1),即(n-1)a n-(n-1)a n-1=4(n-1).∵n-1≥1,∴a n-a n-1=4(n≥2),∴数列{a n}是以1为首项,4为公差的等差数列,∴a n=4n-3. (6分)(2)证明:∵==·,(8分)∴M n=++…+==<,(10分)又易知M n单调递增,故M n≥M1=. 综上所述,≤M n<. (12分)。
求数列前n 项和的基本方法一、 利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 特别注意:在求等比数列前n 项和时,要特别注意公比q 是否为1。
当q 不确定时要对q 分q=1和q ≠1两种情况讨论求解。
3、)1n (n 21n 321+=++++ 4、)12n )(1n (n 61n 21222++=+++ 5、2333)]1n (n 21[n 21+=+++ 例1:9910023222026-4-94,b a b a b a a b a b a b a ++++=++ ,求:满足:若实数 例2:n aa a 11112++++ 求和: 二、 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.)212(1616814412S 11++++++=n n n :求例 n n n n a n a a S n }{2项和的前,求数列:已知例-=三、 裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的,通项分解(裂项)如:(1)111)1(1+-=+=n n n n a n (2))11(1)(1kn n k k n n a n +-=+= (3))121121(21)12)(12(1+--=+-=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (7)n n n n a n -+=++=111 (8)k k k 1n n n n a n -+=++=例3、求上述(1)—(5)n n a S n }{项和的前数列n)lg 3(1321412T n }{2}{11lg 1lg lg }{4项和的前,求)若(的通项)求(,的等差中项,且和是中,等比数列:已知在各项为正数的例n a n n n n b b a a a a a a a a n -==+ 四、 倒序相加法求和:课本中用来推导等差数列前n 项和的方法()的值求、设例⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=201120102011220111,2445f f f x f x x 。
利用“裂项法”求解形如n n q B An a )(+=的数列的前n 项和n S 求解形如n n q B An a )(+=的数列的前n 项和n S ,针对部分同学利用“错位相减法”运算经常出错的情况,在此特介绍---裂项法,希望对同学们有所帮助。
1、目的:将数列{}n a 的通项n a 分裂成某个数列{}n D 的第n+1项与第n 项的差1+n D -n D ,则有:n S =1a +2a +。
+n a =(2D -1D )+(3D -2D )+。
+(1+n D -n D )=1+n D -1D 如果我们能求出n D ,则可求出n S 。
2、求n D 的方法:(草稿上完成)
例题:已知数列{}n a 的通项n a =n
n 34⋅,求其前n 项和n S 设n n B An D 3)(+=,则n n n B A An B A An D 3)333(3)(11++=++=++ 令1+n D -n D =n a 可得:n n n B A An 343)232(⋅=++⎩⎨⎧⎩⎨⎧-==⇒=+=⇒3202342B A B A A ∴n n n D 3)32(-=
3、书写格式:
解:令数列{}n D 的通项为:n n n D 3)32(-=,∴113)12(++-=n n n D ,1D =-3 则有:n a =n n 34⋅=13)12(+-n n -n
n 3)32(-=1+n D -n D ∴n S =1a +2a +。
+n a =(2D -1D )+(3D -2D )+。
+(1+n D -n D ) = 1+n D -1D = 33)12(1+-+n n
4、练习:(1)已知n n n a 2)12(+=,求其前n 项和n S
(2)已知13)2(--=n n n a ,求其前n 项和n S
(3)已知n n n a 3=,求其前n 项和n S
(4)已知n
n n a 212-=,求其前n 项和n S (5)已知32)12(++=n n n a ,求其前n 项和n S
(6)已知n n a n n ++=2)12(,求其前n 项和n S。