人教版初一数学下册5.1.1平行线与相交线
- 格式:docx
- 大小:17.75 KB
- 文档页数:2
新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
人教版初中数学七年级下相交线和平行线知识点总结本章介绍了平面内两条直线相交与平行的关系,重点探讨了两条直线相交时形成角的特征、两条直线互相垂直的特性、两条直线平行的条件和特征,以及有关图形平移变换的性质。
本文将对其中的重点知识点进行总结。
5.1 相交线1.邻补角与对顶角当两条直线相交时,所形成的四个角具有不同的关系。
其中,对顶角是具有特殊位置关系的两个角,它们的大小相等;邻补角则是互为反向延长线的两个角,它们的和为180度。
2.垂线垂线是指当两条直线相交时,其中一个角为直角的情况。
垂线具有两个性质:一是过一点只有一条直线与已知直线垂直;二是连接直线外一点与直线上各点的垂线段最短。
3.垂线的画法画垂线的方法有两种:一是过直线上一点画已知直线的垂线;二是过直线外一点画已知直线的垂线。
画法可采用“一靠二移三画”的方法。
4.点到直线的距离点到直线的距离是指直线外一点到这条直线的垂线段的长度。
记忆时应结合图形进行理解。
本章内容的重点是垂线和其性质、平行线的判定方法和性质、平移和其性质,以及这些知识点的组织运用。
在研究这些知识点时,需要注意记忆其定义和性质,掌握其画法和应用方法。
垂线是指从一个点垂直于一条直线或平面的线段,而垂线段则是垂线的长度。
它们都具有垂直的性质,可以用来计算点到直线的距离或两点间的距离。
点到直线的距离是特殊的两点(即已知点与垂足)间距离,而两点间的距离是点与点之间的长度。
线段和距离都是长度的概念,但线段是一种图形,不能等同于距离。
平行线是指在同一平面内不相交的两条直线,它们的位置关系只有两种:相交和平行。
判断两条直线的位置关系可以根据它们的公共点个数来确定,有且只有一个公共点时两直线相交,无公共点时两直线平行,两个或两个以上公共点时两直线重合。
平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。
同时,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
三线八角是指两条直线被第三条直线所截形成的八个角,包括同位角、内错角和同旁内角。
第五章相交线与平行线5.1相交线5.1.1相交线1.邻补角(定义:一条公共边,另一边互为反向延长线)2.对顶角(定义:两边互为反向延长线)性质:对顶角相等(同角的补角相等)5.1.2垂线1.垂线(定义:两条线互相垂直,其中一条直线是直线的垂线)2.垂足(定义:两条互相垂直的线的交点)3.定理:①在同一平面内,过一点有且只有一条直线与已知直线垂直②垂线段最短:连接直线外一点与直线上个点的所有线段中,垂线段最短③点到直线的距离(定义:直线外一点到这条直线的垂线段的长度)5.1.3同位角、内错角、同旁内角1.同位角(定义:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角)2.内错角(定义:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间)3.同旁内角(定义:两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,)5.2平行线及其判定5.2.1 平行线1.平行(定义:永不相交)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)5.2.2平行线的判定1.同位角相等,两直线平行2.内错角相等,两两直线平行直线平行3.同旁内角互补,两直线平行5.3平行线的性质5. 3.1平行线的性质1.两直线平行,同位角相等2.两直线平行,内错角相等3.两直线平行,同旁内角互补5. 3. 2命题、定理、证明1.命题:题设、结论①真命题:题设成立,结论一定成立②假命题:题设成立,结论不一定成立2.定理3.证明5. 4平移6.1 平方根1.算术平方根、被开方数(规定:0 的算术平方根是 0)2.平方根、开平方①正数有两个互为相反数的平方根②0 的平方根为 0 ③负数没有平方根6.2立方根1.立方根、开立根6.3实数1.无理数:无限不循环的小数2.有理数:有限小数和无限循环小数(包含 0)3.实数 a 的相反数是-a4.一个正实数的绝对值是它本身,一个负实数的绝对值时它的相反数,0 的绝对值是07. 1平面直角坐标系7. 1. 1有序数对(a, b)7. 1. 2平面直角坐标系1.横轴X,纵轴y,原点2.象限(坐标轴上的点不属于任何象限)7. 2坐标方法的简单应用7. 2. 1用坐标表示地理位置7. 2. 2用坐标表示平移& 1二元一次方程组1.二元一次方程:两个未知数的次数都是1& 2消元一一解二元一次方程组1.带入消元法2.加减消元法&3实际问题与二元一次方程组1.设未知数2.列方程组*8. 4三元一次方程组的解法9.1不等式9. 1. 1不等式及其解集1•不等式的解(值)2•解集(含未知数的不等式的所有的解)9. 1. 2不等式的性质1∙不等式两边加(或减)同一个数(或式子),不等号的方向不变2.不等式两边乘(或除以)同一个正数,不等号的方向不变3.不等式两边乘(或除以)同一个负数,不等号的方向改变9. 2 一元一次不等式9. 3 一元一次不等式组第十章数据的收集、整理与描述< ______________________________________ √10.1统计调查1•全面调查2.抽样调查3.简单随机抽样调查4.数据处理的一般过程:调查、收集数据、整理数据(制表)、描述数据(绘图10.2直方图1.计算最大值和最小值的差2.决定组距和组数3.列频数分布表4.画频数分布直方图10. 3课题学习从数据谈节水:条形图,扇形图,折线图,直方图)、分析数据、得出结论。
5.1 相交线相交线【知识与技能】1.能结合具体的图形找出邻补角和对顶角,进而理解邻补角和对顶角的定义;2.理解对顶角的性质;3.能运用邻补角的性质、对顶角的性质进行简单的推理或计算.【过程与方法】通过画图、看图、归纳等掌握邻补角、对顶角的概念;通过先观察,再猜想,最后再推理的方法掌握“对顶角相等”这一重要定理.【情感态度】经历画图、看图、猜想、推理等过程,初步体会几何学习的基本方法.【教学重点】邻补角、对顶角的概念,对顶角的性质.【教学难点】1.邻补角与补角的区别与联系.2.初步体验推理的方法.一、情境导入,初步认识问题1参见教材P2“探究”问题2填空:如图,直线AB、CD交于点O,因为∠1与∠3是______角,所以∠1+∠3=_______,因为∠2与∠3是______,所以∠2+∠3=_______,根据_________,所以∠1______∠2,这就证明了对顶角的一个重要的性质定理:__________________________________.【教学说明】全班同学合作交流,共同完成上面两个问题,教师巡回指导.二、思考探究,获取新知思考1.邻补角与补角有怎样的关系?2.推理的依据一般有哪些?【归纳结论】1.定义:(1)邻补角:有一条公共边,且另一边互为反向延长线的两个角互为邻补角;(2)对顶角:如果两个角有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.2.性质定理:(1)如果两个角互为邻补角,那么这两个角的和等于180°;(2)对顶角相等.3.邻补角与补角的关系:邻补角一定互补,互补的两个角不一定是邻补角.邻补角是具有特殊位置关系的补角.4.推理是今后经常遇到的事情,推理的依据是已知、定义、公理、定理等.三、运用新知,深化理解1.如图,找出图中的对顶角与邻补角.第1题图第2题图2.如图,∠B+∠2=180°,问∠1与∠B是否相等,∠B与∠3是否相等,为什么?【教学说明】题1可以抢答的形式让同学们回答,对于题2,教师应及时给予引导,鼓励学生大胆完成.【答案】略.四、师生互动,课堂小结1.邻补角、对顶角定义.2.邻补角、对顶角的性质.1.布置作业:从教材“习题5.1”中选取.2.完成练习册中本课时的练习.三角形三心共线的证明题求证:任意三角形的垂心H,重心G和外心O三点共线.这道题乍一看较为棘手,一般的学生不知如何下手,若把命题改为“△ABC内接于圆O,H 为垂心.求证H到该三角形任意顶点的距离等于O到这个顶点所对的边距离的两倍.”证起来就轻松多了.下面先简单证明这个命题.证明:如图1(仅以锐角三角形为例),O是△ABC的外心,H是垂心,OM⊥BC于M,即证AH=2OM,连BO且延长交圆O于D,则DC=2OM.∵ BD是直径.即 AH=2OM.这就为我们证明前者奠定了基础,于是就有三角形三心共线的第一种证法.证法1 在图2中,H、O分别为△ABC的垂心和外心,中线AM交HO于G′,∵ AH∥OM,且AH=2OM∴ AG′=2G′M,即G′就是重心G,故H、G、O三心共线.证法2 如图3,作OM⊥BC,OF⊥AB,垂足分别为M、F,则M是BC的中点,F是AB的中点,∴ FM∥AC,且AC=2FM∵ OF、CE均垂直于AB,且FM∥AC∴∠1=∠2,同理∠3=∠4,从而有△OMF∽△HAC∵ AC=2FM,∴ AH=2MO.∴ AM与OH的交点必为重心G,故H、G、O三心共线.证法3 在图4中,△ABC的两条高AD.BE相交于H(垂心),边AC和边CB上的中垂线ON、OM相交于O(外心),M、N分别在CB.AC上,则AM与ON于X,AD交ON于Q,连OG和HG,可证△XOG∽△YHG∵△NXG∽△BYG∠OXG=∠HYG(两线平行,内错角相等)②由①、②、③知△XOG∽△YHG得∠OGX=∠HGY,可得H、G、O三点在一条直线.即任意三角形的垂心、重心、外心共线.在上述三种证法中,证法1和证法2的思路清晰、敏捷;证法3是融代数、几何于一体,可培养我们综合运用能力.11.5 用一元一次不等式解决问题一、单选题1.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打( )A .9折B .8折C .7折D .6折2.张老师每天从甲地到乙地锻炼身体,甲、乙两地相距1.4千米.已知他步行的平均速度为80米/分,跑步的平均速度为200米/分,若他要在不超过10分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .()20080101400x x +-≥B .()80200101400x x +-≤C .()2008010 1.4x x +-≥D .()8020010 1.4x x +-≤3.某次知识竞赛共有30道题,每一题答对得5分,答错或不答扣3分,小亮得分要超过70分,他至少要答对多少道题?如果设小亮答对了x 道题,根据题意列式得( )A .()533070x x -+≥B .()533070x x +-≤C .()533070x x +->D .()533070x x -->4.张师傅再就业,做起了小商品生意.第一次进货时,他以每件a 元的价格购进了20件甲种小商品,每件b 元的价格购进了30件乙种小商品(a >b );回来后,根据市场行情,他将这两种小商品以每件2a b +元的价格全部售出,则在这次买卖中,张师傅赚了( )元A .5a ﹣5bB .10a ﹣10bC .20a ﹣5bD .30a ﹣20b 5.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )A .4辆B .5辆C .6辆D .7辆6.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入( )个小球时有水溢出.A.8 B.9 C.10 D.117.设a,b,c,d都是整数,且a<2b,b<3c,c<4d,d<20,则a的最大值是()A.480 B.479 C.448 D.4478.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A.10 B.9 C.8 D.7二、填空题9.通过测量一棵树的树围(树干的周长)可以计算出它的树龄.通常规定以树干离地面1.5 m的地方作为测量部位.某树栽种时的树围为5 cm,以后树围每年增长3 cm.假设这棵数生长x年其树围才能超过2.4 m.列满足x 的不等关系:__________________.10.某商品的进价是500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打_____折出售此商品.11.一次普法知识竞赛共有30道题,规定答对一题得4分,答错或者不答倒扣一份,在这次竞赛中.小明获得优秀(90分或90分以上),则小明至少答对了___道题.12.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.13.某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是_____.14.仲夏蝉鸣,凤凰花开,匆匆三年,激扬青春,又是一年毕业季来临!某文具店抓住商机,发现有甲、乙、丙、丁四种毕业纪念册比较受学生的喜欢,于是制定了进货方案:其中甲、丙的进货量相同,乙、丁的进货量相同,甲与丁的单价相同,甲、乙的单价和与丙、丁的单价和均为66元,且甲、乙的进货总价比丙、丁的进货总价多600元.由于资金周转紧张,进货时临时决定只购进甲、乙两种纪念册,甲、乙的进货量及单价与原方案相同,进货总数不超过500册,则该文具店最多需要准备__________________________元进货资金.15.一个两位数,它的十位数上的数字比个位上的数字大2.且这个两位数小于40,则这个两位数是________. 16.一年一度的“八中之星”校园民谣大赛是每年八中艺术节的重要活动之一,吸引了众多才华横溢的八中同学参赛.该比赛裁判小组由若干人组成,每名裁判员给选手的最高分不超过10分.今年大赛一名选手演唱后的得分情况是:全体裁判员所给分数的平均分是9.84分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.82分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.9分.那么,所有裁判员所给分数中的最低分最少可以是________分.17.某鲜花销售商经过市场调查,发现有甲、乙、丙、丁四种鲜花组合比较受顾客的喜欢,于是制定了进货方案,其中甲、丙的进货量相同,甲与丁的单价相同,甲、乙与丙、丁的单价和均为66元/束,且甲、乙的进货总价比丙、丁的进货总价多600元.由于年末资金周转紧张,所以临时决定只购进甲、乙两种组合,甲、乙的进货量与原方案相同,且进货总数不超过500束,则该销售商最多需要准备_____元进货资金.18.按如图所示的程序计算,若输入的值x=17,则输出的结果为22;若输入的值x=34,则输出的结果为22.当输出的值为24时,则输入的x的值在0至40之间的所有正整数是____.三、解答题19.哈尔滨地铁“三号线”正在进行修建,现有大量的残土需要运输.某车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次可以运输110吨残土.(1)求该车队有载重量8吨、10吨的卡车各多少辆?(2)随着工程的进展,该车队需要一次运输残土不低于165吨,为了完成任务,该车队准备新购进这两种卡车共6辆,则最多购进载重量为8吨的卡车多少辆?20.某班级准备购买一些奖品奖励春季运动会表现突出的同学,奖品分为甲、乙两种,已知,购买一个甲奖品比一个乙奖品多用20元,若用400元购买甲奖品的个数是用160元购买乙奖品个数的一半.(1)求购买一个甲奖品和一个乙奖品各需多少元?(2)经商谈,商店决定给予该班级每购买甲奖品3个就赠送一个乙奖品的优惠,如果该班级需要乙奖品的个数是甲奖品的2倍还多8个,且该班级购买两种奖项的总费用不超过640元,那么该班级最多可购买多少个甲奖品?21.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车,恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,且所有参加活动的师生都有座位,求租用小客车数量的最大值.22.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?23.一筐橘子分给若干个儿童,如果每人分4个,则剩下9个;如果每人分6个,则最后一个儿童分得的橘子少于3个,问共几个儿童,分了多少个橘子?24.为培养学生自主意识,拓宽学生视野,促进学习与生活的深度融合我市某中学决定组织部分学生去青少年综合实践基地进行综合实践活动在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生现有甲、乙两种大客车它们的载客量和租金如表所示学校计划此实践活动的租车总费用不超过3100元,为了安全每辆客车上至少要有2名老师.(1)参加此次综合实践活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,租用客车总数为多少辆?(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.25.预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定数减少10个,总金额仍多用29元.又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,乙商品仍每个涨价1元,那么甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.。
相交线与平行线1. 相交线关键词:邻补角、对顶角、同位角、内错角、同旁内角性质:对顶角相等。
2. 垂线关键词:垂直、垂足、定义:两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直. 其中一条直线叫另一条直线的垂线,它们的交点叫垂足。
性质:1)在同一平面内,过一点有且只有一条直线与已知直线垂直.2 )直线外一点与直线上各点连结的所有线段中,垂线段最短•简称:垂线段最短.该垂线段的长度称为点到直线的距离。
3. 平行线定义:在同一个平面内,不相交的两条直线叫做平行线•平行用符号“// ”表示。
如图一,直线AB与C D是平行线,记作“ AB//CD',读作“ AB平行于CD” •在同一个平面内,两条直线的位置关系只有两种:相交或平行.图一判定:1)同位角相等,两直线平行。
2)内错角相等,两直线平行。
3)同旁内角互补,两直线平行。
4)平行于同一直线的两直线平行。
5 )垂直于同一直线的两直线平行。
性质:1)两条平行线被第三条直线所截,同位角相等.2)两条平行线被第三条直线所截,内错角相等.3)两条平行线被第三条直线所截,同旁内角互补.4. 命题定义:判断一件事情的语句,叫做命题. 一般形态:1)“如果??,那么??. ”2)“若??,则??.”3)“倘若??,那么??.分类:1)正确的命题:如果题设成立,那么结论一定成立的命题.2 )如果题设成立,不能保证结论总是成立的命题.5. 数学名词定理:用推理的方法判断为正确的命题叫做定理,如“内错角相等,两直线平行" 、“两直线平行,内错角相等”等等.公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理,如“同位角相等,两直线平行”、“两直线平行,同位角相等”等.证明:判断一个命题的正确性的推理过程叫做证明.二平面直角坐标系1. 有序数对定义:有顺序的两个数a与b组成的数对(a,b)叫做有序数对。
应用:找出平面上点的坐标。
第五章相交线与平行线
5.1.1相交线
教学目标:1 •理解对顶角和邻补角的概念,能在图形中辨认.
2 •掌握对顶角相等的性质和它的推证过程.
3•通过在图形中辨认对顶角和邻补角,培养学生的识图能力.
重点:在较复杂的图形中准确辨认对顶角和邻补角.
难点:在较复杂的图形中准确辨认对顶角和邻补角.
教学过程
一、创设情境,引入课题
先请同学观察本章的章前图,然后引导学生观察,并回答问题.
学生活动:口答哪些道路是交错的,哪些道路是平行的.
教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用. 所以研究这些问题对今后的工作和学习都是有用的,也将为后
面的学习做些准备.我们先研究直线相交的问题,引入本节课题.
二、探究新知,讲授新课
1.对顶角和邻补角的概念
学生活动:观察上图,同桌讨论,教师统一学生观点并板书.
【板书】/ 1与/ 3是直线AB、CD相交得到的,它们有一个公共顶点0,没有公共边,
像这样的两个角叫做对顶角.
学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:/ 2和/ 4再也是对顶角.
紧扣对顶角定义强调以下两点:
(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边. 符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.
(2)对顶角是成对存在的,它们互为对顶角,如/ 1是/ 3的对顶角,同时,/ 3是/ 1的对顶角,也常说/ 1和/ 3是对顶角.
2 .对顶角的性质
提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.
【板书I:/ 1与/ 2互补,/ 3与/ 2互补(邻补角定义),1=/ 3 (同角的补角相等).
注意:/ I与/ 2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.
或写成:•••/ 1 = 180° -/ 2,/ 3 = 180° -/ 2 (邻补角定义),
•••/ 1 = / 3 (等量代换).
学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程, 请一个学生板演。
解:/ 3 =Z 1 = 40°(对顶角相等).
/ 2= 180° - 40°= 140°(邻补角定义)
/ 4=7 2= 140。
(对顶角相等).
三、范例学习
学生活动:让学生把例题中7 1 = 40°这个条件换成其他
条件,而结论不变,自编几道题.
变式1 :把7 1= 40° 变为7 2-7 1 = 40°
变式2 :把7 1 = 40°变为7 2是7 1的3倍
变式3 :把7 1 = 40°变为7 1:7 2= 2: 9
四、课堂小结
学生活动:表格中的结论均由学生自己口答填出.
角的名称特征性质相同点不同点
对顶角①两条直线相交面成的角
②有一个公共顶点
③没有公共边
对顶角
相等
都是两直线相交而
成的角,都有一个
公共顶点,它们都
是成对出现。
对顶角没有公共边而邻补角
有条公共边;两条直线相交
时,一个有的对顶角有一
个,而一个角的邻补角有两
个。
邻补角①两条直线相交面成的角
②有一个公共顶点
③有一条公共边
邻补角
互补
五、布置作业:课本P3练习。