用单摆测定重力加速度
- 格式:doc
- 大小:1.22 MB
- 文档页数:12
用单摆测定重力加速度实验目的用单摆测定当地的重力加速度实验原理当单摆摆角很小(小于50)时,可看作简谐运动,其固有周期为,由公式可得故只要测定摆长l和单摆的周期T,即可算出重力加速度g。
实验器材长约1米的细线、小铁球、铁架台(连铁夹)、米尺、秒表。
实验步骤(1)将细线的一端穿过铁球上的小孔并打结固定好,线的另一端固定在铁架台上,做成一个单摆。
(2)用毫米刻度的米尺测定单摆的摆长l(摆线静挂时从悬挂点到球心的距离)。
(3)让单摆摆动(摆角小于50),测定n(30—50)次全振动的时间t,用公式求出单摆的平均周期T;(4)用公式算出重力加速度g。
实验记录实验结论实验注意1、细线不可伸缩,长度约1m。
小球应选用密度较大的金属球,直径应较小(最好不超过2㎝)。
2、单摆的上端不要卷在夹子上,而要用夹子加紧,以免单摆摆动时摆线滑动或者摆长改变。
3、最大摆角小于5º,可用量角器测量,然后通过振幅来掌握。
4、摆球摆动时要在同一个竖直平面内。
5、计算单摆的振动次数时,应以摆球通过最低点时开始计时,以后摆球从同一方向通过最低点时进行计数,且在数零的同时按下秒表,开始计时计数,并且要测多次全振动的总时间,然后除以振动次数,如此反复三次,求得周期的平均值作为单摆的周期。
实验练习(1)在用单摆测重力加速度的实验中,摆线应选用:A.80厘米长的橡皮筋. B.1米左右的细线.C.1米左右的粗绳.D.25厘米左右的细绳.(2)在用单摆测重力加速度的实验中,摆球应选用:A.半径约1厘米的木球. B.半径约1厘米的铝球.C.半径约1厘米的空心钢球. D.半径约1厘米的空心钢球.(3)在“用单摆测重力加速度”的实验中,单摆得摆角必须小于50,其原因是因为:A.单摆的周期与振幅有关,摆角超过50,测出周期大;B.摆角越大,空气阻力越大,影响实验结果;C.因为简谐振动的周期与振幅无关,摆角小些给实验带来很大方便;D.摆角超过50,单摆的振动不在是简谐振动,周期公式失效.(4)利用单摆测重力加速度的实验中,若测得g 只偏小,可能是由于:A.计算摆长时,只考虑悬线长,而未加小球半径;B.测量周期时,将n 次全振动,误记成n+1次全振动;C.计算摆长时,用悬线长加小球直径;D.单摆振动时,振幅较小.(5)为了提高周期的测量精度,下列那种说法是可取的?A.在最大位移处启动秒表和结束记时;B.用秒表测30至50次全振动的时间,计算出平均值;C..用秒表测100次全振动的时间,计算出平均周期;D.在平衡位置启动秒表,并开始记数,当摆球第30次经过平衡位置时制动秒表,若读数为t ,7、 在用单摆测重力加速度的实验中,某同学利用两个单摆测得其周期分别为T 1、T 2,已知两个单摆的摆长之和为L ,则测得当地重力加速的表达式为____________。
单摆测重力加速度单摆是物理学中常见的实验装置,用于测量重力加速度。
它由一根固定在一个支架上的细线和一个固定在该细线下端的质点组成。
在实验中,质点先被拉到一侧,之后释放,使其自由摆动,通过测量摆动的周期来计算重力加速度。
单摆的原理可以简单描述为:当质点在摆动过程中,重力将会对其产生一个回复力,使质点努力回归到原位置。
这个回复力可以分解为两个分量,一个平行于细线方向的分力,即摆长方向的分力;另一个垂直于细线方向的分力,即摆圆弧方向的分力。
在等幅小角摆动的情况下,摆长方向的分力可以忽略不计,只需要考虑摆圆弧方向的分力。
测量单摆的周期需要先测量摆长。
摆长是指细线的长度,可以通过放置一个水平器或使用测量工具来测量。
摆长的测量需要准确和精密,因为它对于计算重力加速度非常关键。
一旦摆长测量准确,我们可以通过测量摆动的周期来计算重力加速度。
在实验中,我们需要使用计时器来测量单摆的周期。
对于一个完整的摆动周期,我们可以测量时间的起点和终点,然后计算出时间差。
重复多次测量,并求得平均值来减小误差。
然后,我们可以使用以下公式来计算重力加速度:g=4π²L/T²,其中g代表重力加速度,L代表摆长,T代表周期。
当进行单摆实验时,一定要注意以下几点。
首先,保持实验环境相对稳定,避免外部干扰引起误差。
其次,确保摆长的测量准确性,因为摆长的误差将会对重力加速度的计算产生较大影响。
再次,在测量周期时,要准确记录时间起点和终点,避免记录误差。
通过单摆实验,我们可以得到地球上某一地点的重力加速度的近似值。
然而,值得注意的是,地球的重力加速度并不是一致的,它会随着地球表面的高度、纬度、质量分布等因素而略微变化。
因此,单摆实验只能提供一个大致的数值,而不是准确的数值。
除了通过单摆实验来测量重力加速度,还有其他方法可以进行测量,如自由落体实验、弹簧测力计等。
每一种方法都有其适用的场景和相应的误差范围。
在实际应用中,可以根据具体情况选择最合适的方法。
用单摆测定重力加速度实验目的学习用单摆测定重力加速度的方法,测出当地的重力加速度。
实验仪器摆球,秒表,铁架台,铁夹,米尺或钢卷尺,游标卡尺,细线等。
实验原理单摆在摆角很小的情况下,可以看作简谐振动,其固有周期公式为由此得:。
据此,通过实验方法测出摆长l和周期T,即可计算出当地的重力加速度。
实验步骤1、将细线穿过金属小球上的小孔,在细线的一端打一个稍大一点的结,制成一个单摆。
2、将铁架固定在铁架台上端,铁架台放在桌边,使铁架伸出桌面,然后把单摆固定在铁夹上,使摆球自由下垂。
3、用刻度尺量出摆长(摆求静止时悬点到摆球球心的距离)。
4、把摆球从平衡位置拉开一个角度,然后无初速释放小球。
当摆球摆动稳定以后经过最低点时用秒表开始计时,测出单摆30~50次全振动的时间,求出一次振动时间及单摆的周期。
5、反复测量三次,计算出周期的平均值,然后利用公式计算出重力加速度。
注意事项1、摆线要用细而不易伸长的线,悬点要固定不变,不能把摆线随意缠绕在铁夹上,以免悬点松动,引起摆长变化.悬挂单摆时可用铁夹把细线上端夹紧,也可用烧瓶夹夹紧两块小木板,以此夹紧摆线。
2、摆长以1m左右为宜,摆长是指从悬点到球心的距离,测摆长应在单摆竖直悬挂的状态下进行。
如果只用一把米尺测量摆长,可以让米尺与悬线平行,尺上端的零刻度线与过悬点的水平线重合,尺下端与小球相切,切点处的读数就是摆长。
或者用米尺测出摆线的长度、用游标卡尺或两把三角尺测出小球直径,则摆线长加小球半径就是摆长。
3、注意摆动时摆角不能过大。
4、要让单摆在竖直平面内摆动,不要形成锥摆,测定单摆振动周期时,可事前在平衡位置正下方放一支铅笔或一块橡皮作为记号,在摆球经过平衡位置时开始默数,默数全振动次数要与振动周期同步,注意摆球每经过平衡位置两次才完成一次全振动。
开头用倒数的方法、后来才顺数:即默数“5,4,3,2,1,0,1,2,…30”,数到“0”时启动秒表,数至30”时关闭秒表。
2.5 实验:用单摆测量重力加速度问题引入:理论上,与重力加速有关的物理现象都可以用来测量重力加速度g ,例如:利用自由落体运动就可以测量g ,也可以研究平抛运动测量g ,上一节课中我们又学习了单摆的周期公式T =2πlg,我们是否能从该公式出发设计一个实验用来单摆测量重力加速度g 呢?解析:能,由公式T =2πlg可知,只需要设计一个单摆,测出单摆的长度l ,周期T ,然后代入公式即可测出重力加速度g. 一、实验原理:单摆在摆角很小时,由单摆周期公式T =2πl g ,得g =4π2lT2,测得单摆的摆长l 和振动周期T ,就可以测出当地的重力加速度g . 二、实验器材:铁架台及铁夹、金属小球(最好上面有一个通过球心的小孔)、秒表、细线(1 m 左右)、刻度尺(最小刻度为mm)、游标卡尺. 三、实验步骤: 1.做单摆:让线的一端穿过小球的小孔,然后打一个比小孔大一些的结,把线的上端用铁夹固定在铁架台上并把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自由下垂,在单摆平衡位置处作上标记. 2.测摆长:l = l ′+ d2①.用毫米刻度尺量出悬线长l ′,如图甲所示. ②.用游标卡尺测出摆球的直径d ,如图乙所示. ③.摆线悬点固定方法:用“夹”不用“绕”3.测周期:将单摆从平衡位置拉开一个角度,且满足偏角小于5°,然后释放摆球,当单摆摆动稳定后,用秒表测量单摆完成30次(或50次)全振动的时间t ,计算出平均摆动一次的时间T =tn,即为单摆的振动周期.(注意:应以摆球经平衡位置时开始或停止计时.) 4.求重力加速度:把测得的周期和摆长的数值代入公式,求出重力加速度g 的值.5.多次改变摆长,重测周期,并记录数据.四、数据处理:方案一:平均值法改变摆长,重做几次实验.计算出每次实验的重力加速度.最后求出几次实验得到的重力加速度的平均值,即可作为本地区的重力加速度.分别以l和T 2为纵坐标和横坐标,作出l =g4π2T 2的图象,它应该是过原点的一条直线,根据这条直线可以求出斜率k,则重力加速度值g =4π2k.由于l-T的图象不是直线,不便于进行数据处理,所以采用l-T 2的图象,目的是将曲线转换为直线,便于利用直线的斜率计算重力加速度.五、误差分析:1.系统误差:主要来自于单摆模型本身是否符合要求,即悬点是否固定,摆球和摆长是否符合要求,最大摆角是否不超过5°,是否在同一竖直平面内摆动等。
实验08:用单摆测定重力加速度一.实验目的:(1)会用单摆测定当地的重力加速度g;(2)会正确使用秒表。
二.实验原理:在偏角很小时,单摆的运动可看作是简谐运动,其固有周期为T=2π√L/g它与偏角的大小及摆球的质量无关,将公式变形后可得g=4π^2 L/T^2,故只要测定摆长和周期,就可以求出当地的重力加速度g.三.实验器材:不易伸长的细线(约1m),带孔的小钢球和小木球,铁架台,米尺,游标卡尺,秒表.四.实验步骤:(1)取长约1m的细丝线穿过带孔的小钢球,打一个比孔略大一些的结,做成单摆;(2)把线的上端用铁夹固定在铁架台的支架上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,在单摆平衡位置处做上标记.2.测摆长:用毫米刻度尺量出悬线长l′,准确到毫米,测三次,取平均值;用游标卡尺测出摆球的直径d,在不同位置测三次,取平均值,则摆长l=l′+d/2.将测量结果填入表格中.3.测周期:把单摆从平衡位置拉开一个角度(小于5°)释放,让小球摆动,待摆动平稳后用秒表测出单摆完成30~50次全振动所用时间t,求出小球完成一次全振动所用的时间t,这个时间就是单摆的周期,即T=t/N(N为全振动的次数).重复本步骤3次,再计算周期的平均值T=(T1+T2+T3)/3,将结果填入表格。
4.改变摆长,重复上述步骤并做好记录,实验完毕,整理好器材。
5.计算重力加速度:(1)公式法:测出30次或50次全振动的时间t,利用T=t/N,求出周期;不改变摆长,反复测量三次,算出三次测得的周期的平均值,然后代入公式g=4π^2 L/T^2,求重力加速度,改变摆长后算出每次实验的重力加速度值并取平均,即可看作本地的重力加速度.2)图像法:由单摆周期公式可得:L=g/4π^2·T^2,因此,分别测出一系列摆长L对应的周期T,作L-T2的图象,图象应是一条通过原点的直线,求出图线的斜率k=g/4π^2,即可利用g=4π2k求得重力加速度值。
7.3实验:用单摆测重力加速度1.实验原理当摆角较小时,单摆做简谐运动,其运动周期为T =2πl g ,由此得到g =4π2lT 2,因此,只要测出摆长l 和振动周期T ,就可以求出当地的重力加速度g 的值.2.实验器材单摆,游标卡尺,毫米刻度尺,停表.3.实验过程(1)让细线的一端穿过金属小球的小孔,做成单摆.(2)把细线的上端用铁夹固定在铁架台上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,在单摆平衡位置处做上标记,如图所示.(3)用毫米刻度尺量出摆线长度l ′,用游标卡尺测出金属小球的直径,即得出金属小球半径r ,计算出摆长l =l ′+r .(4)把单摆从平衡位置处拉开一个很小的角度(不超过5°),然后放开金属小球,让金属小球摆动,待摆动平稳后测出单摆完成30~50次全振动所用的时间t ,计算出单摆的振动周期T .(5)根据单摆周期公式,计算当地的重力加速度.(6)改变摆长,重做几次实验.4.数据处理(1)公式法:利用T =t N 求出周期,算出三次测得的周期的平均值,然后利用公式g =4π2l T 2求重力加速度.(2)图像法:根据测出的一系列摆长l 对应的周期T ,作l -T 2的图像,由单摆周期公式得l =g 4π2T 2,图像应是一条过原点的直线,如图所示,求出图线的斜率k ,即可利用g =4π2k 求重力加速度.5.注意事项(1)悬线顶端不能晃动,需用夹子夹住,保证悬点固定.(2)单摆必须在同一平面内振动,且摆角小于5°.(3)选择在摆球摆到平衡位置处时开始计时,并数准全振动的次数.(4)应在小球自然下垂时用毫米刻度尺测量悬线长.(5)一般选用一米左右的细线.教材原型实验例题1.某同学用单摆测定重力加速度的实验装置如图所示。
(1)对测量原理的理解正确的是___________。
A .由g=224l T π可知,T 一定时,g 与l 成正比B .由g=224l Tπ可知,l 一定时,g 与T 2成反比 C .单摆的振动周期T 和摆长l 可用实验测定,由g=224l Tπ可算出当地的重力加速度(2)为了利用单摆较准确地测出重力加速度,应当选用的器材有___________。
用单摆测定重力加速度实验注意事项及误差分析
1、实验原理
单摆的偏角很小(小于010)时,其摆动可视为简谐运动,摆动周期为
2T =,由此可得224g L T π=。
从公式可以看出,只要测出单摆的摆长L 和摆动周期T ,即可计算出当地的重力加速度。
实验器材:1、单摆、停表、直尺、游标卡尺、铁架台等。
2、单摆、光电门传感器、直尺、游标卡尺、铁架台等。
注意器材:
绳 —— 不可伸长,质量小,尽可能长但小于1m(不然米尺难以量) 球 —— 越小,越重为佳
长度测量:L = l 线 + r , r :游标卡尺测,精确到0.01mm
l 线 :米尺测,精确到mm ,估读到0.1mm 时间测量:秒表,精确到0.1s ,无须估读
2、注意事项
⑴实验所用的单摆应符合理论要求,即线要细、轻、不伸长,摆球要体积
否符合要求,振动是圆锥摆还是在同一竖直平面振动以及测
量哪段长度作为摆长等等。
只要注意了上面
这些方面,就可以使系统误差减小到远远小
于偶然误差而忽略不计的程度。
⑵本实验偶然误差主要来自时间(即单
摆周期)的测量上。
因此,要注意测准时间(周期)。
要从摆球通过平衡位置开始计时,并采用倒计时的方法,不能多记振动次数。
为了减小偶然误差,应进行多次测量然后取平均值。
⑶本实验中长度(摆线长、摆球的直径)的测量时,读数读到毫米位即可(即使用卡尺测摆球直径也需读到毫米位)。
时间的测量中,秒表读数的有效数字的末位在“秒”的十分位即可。
少算r,换言之作的图是T2-R摆线的图故截距在y轴上为正
4、实验数据处理方法
⑴求平均值法
⑵图象法
①图象法之一:2T -L 图象
L 对应求出图线的斜率k ,即可求得g 值,如图3所示。
24g k π=⋅,22
L L
k T T ∆=
=∆。
5、实例分析
例1、利用单摆测重力加速度时,为了使实验结果尽可能准确,应选择下列哪一组实验器材?( )
A 、乒乓球、丝线、秒表、米尺
B 、软木实心球、细绳、闹钟、米尺
C 、铅质实心球、粗绳、秒表、米尺
D 、铁质实心球、丝线、秒表、米尺
解析:单摆是理想化模型,摆球应质量大、体积小,摆线应细,且不可伸
长,所以D 选项正确。
例2、针对用单摆测重力加速度的实验,下面各种对实验误差的影响的说法中正确的是( )
A 、
在摆长和时间的测量中,时间的测量对实验误差影响较大
B 、在摆长和时间的测量中,长度的测量对实验误差影响较大
C 、将振动次数n 记为(1)n +,测算出的g 值比当地的公认值偏大
D 、将摆线长当作摆长,未加摆球的半径测算出的g 值比当地的公认值偏大
解析:对
于单摆测重力加速度的实验,重力加速度的表达式224l
g T
π=,由于与周期是平
方关系,它若有误差,在平方后会更大,所以时间的测量影响更大些,A 选项正确;另外,重力加速度值变大,C 选项正确;若当摆长未加小球的半径,将使摆长的测量值变小,g 值变小,D 选项错误。
综上所述,正确答案为AC 选项。
例3、两个同学做“利用单摆测重力加速度”的实验: ⑴甲同学测得g 值变小,其可能原因是( ) A 、测摆线长时,摆线拉得过紧 B 、摆线未系牢,摆动中松弛了
C 、试验中误将49次全振动次数记为50次
D 、试验中误将51次全振动次数记为50次
⑵乙同学做实验时,一时找不到摆球,就用重锤代替摆球,两次分别用不同的摆长做实验,测摆长时只测摆线长,其长度分别为1l 和2l ,并相应测出其周期为1T 和2T ,要用上述测量的数据正确计算出g 值,那么他计算重力加速度的表达式应为:g = 。
解析:⑴由224l
g T
π=,若g 偏小,则l 测量值比真实值小或T 测量值比真
实值大,故BD 选项正确。
⑵设重锤的等效半径为r ,由224l g T π=,得21214()l r g T π+=,222
2
4()
l r g T π+=。
由以上两式解得:21222
124()
l l g T T π-=-。
例4、在利用单摆测定重力加速度的试验中,某同学测出了多组摆长和
运动周期,根据实验数据,做出了2T —l 的关系图象如图1所示。
2
4.00 4.00.990.01k s -==+,
所以重力加速度22
244 3.149.874.0
g m s k π⨯===。
巩固练习:
1、在“用单摆测定重力加速度”的试验中,下列关于误差分析的说确的是( AB )
A 、测量中的周期产生的误差,对测g 值影响较大
B 、测摆长时未加摆球半径,使测g 值偏小
C 、重复几次实验,分别求摆长和周期的平均值,这样所得g 值误差就减少了
D 、试验中形成了水平面的圆锥摆式运动,测得g 值偏小
物理量。
⑴现有如下测量工具:A 、时钟;B 、秒表;C 、天平;D 、毫米刻度尺。
2、在“用单摆测定重力加速度”的试验中,
甲同学画的L -2
T 图象如图3中a 图线,乙同学画的L -2T 图象如图3中b 图线,图线不过原点的原因是甲 多加了小球半径 ;乙 漏加了小球半径 。
3、将一单摆装置竖直悬挂于某一深度为h (未知)且开口向下的小筒中(单摆的下部分置一个小角度后由静止释放,设单摆摆动过程中悬线不会碰到筒壁,如果本试验的长度测量工具只能测
量出筒的下端口到摆球球心之间的距离l ,并通过改变l 而测出对应的
摆动周期T ,再以2T 为纵轴、l 为横轴作出函数关系图象,那么就可以通过此图象得出我们想要测量的
本实验所需的测量工具有 BD ;
⑵如果试验中所得到的2T —l 的关系图象如图4乙所示,那么真正的图象应该是a 、b 、c 中的 a ;
⑶由图象可知,小筒的深度h = 30 cm ;当地重力加速度g =9.86
2m s 。
4.学过单摆的周期公式以后,物理兴趣小组的同学们对钟摆产生了兴趣,老师建议他们先研究用厚度和质量分布均匀的方木块(如一把米尺)做成的摆(这种摆被称为复摆),如图所示。
让其在竖直平面做小角度摆动,C 点为重心,板长为L ,周期用T 表示。
甲同学猜想:复摆的周期应该与板的质量有关。
乙同学猜想:复摆的摆长应该是悬点到重心的距离L /2。
丙同学猜想:复摆的摆长应该大于L /2。
理由是:若OC 段看成细线,线栓在C 处,C 点以下部分的重心离O 点的距离显然大于L /2。
为了研究以上猜想是否正确,同学们进行了下面的实验探索:
(1)把两个相同的木板完全重叠在一起,用透明胶(质量不计)粘好,测量其摆动周期,发现与单个木板摆动时的周期相同,重做多次仍有这样的特点。
则证明了甲同学的猜想是_____错误________ 的(选填“正确”或“错误”)。
(2)用T 0表示板长为L 的复摆看成摆长为L /2单摆的周期计算值(T 0=2g
L 2/π),用T 表示板长为L
复摆的实际周期测量值。
计算与测量的数据如下 表:
由上表可知,复摆的等效摆长 大于
L /2(选填“大 于”、“小于”或“等于”)。
(3)为了进一步定量研究,同学们用描点作图法对数据进行处理,所选坐标如图。
请在坐标纸上作出T-T 0图,并根据图象中反映出的规律求出
2
/L L 等=____9/7______(结果保留三位有效数
字,其中L 等是板长为L 时的等效摆长
T=2g
L 等
π
)。