【单元测试篇】数学:第11章 三角形 期末复习试题
- 格式:pdf
- 大小:584.00 KB
- 文档页数:6
人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列长度的各组线段能组成一个三角形的是()A.1cm,2cm,3cm B.3cm,8cm,5cmC.4cm,5cm,10cm D.4cm,5cm,6cm2.以下四个图片中的物品,没有利用到三角形的稳定性的是()A.B.C.D.3.在△ABC中,若∠A=80°,∠B=20°则∠C=()A.80°B.70°C.60°D.100°4.如图,△ABC的面积为8,AD为BC边上的中线,E为AD上任意一点,连接BE,CE,图中阴影部分的面积为()A.2 B.3 C.4 D.55.如图AB∥CD,AE交CD于点F,连接DE,若∠D=28°,∠E=112°则∠A的度数为()A.48°B.46°C.42°D.40°6.如图∠A=100°,∠B=20°则∠ACD的度数是()A.100°B.110°C.120°D.140°7.小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE= 91°∠DCE=124°,则∠AEC的度数是( )A.29°B.30°C.31°D.33°8.如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米二、填空题9.如图,A\B为池塘岸边两点,小丽在池塘的一侧取一点O,得到△OAB,测得OA=16米OB=12米,A\B 间最大的整数距离为米.10.正n形的每个内角都是120°,这个正n边形的对角线条数为条.11.如图,BD是△ABC的中线,DE⊥BC于点E,已知△ABD的面积是3,BC的长是4,则DE的长是.12.如图AB∥CD,若∠A=65°.∠E=38°,则∠C=.13.如图,△ABC中,AD\AE分别为角平分线和高∠B=46°,∠C=64°则∠DAE=.三、解答题14.若一个多边形的内角和比它的外角和的3倍多180°,求这个多边形的边数和对角线的条数.15.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.16.如图,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=60°,∠BED=70°,求∠BAC的度数.17.如图,在△BCD中BC=3,BD=5.(1)若CD的长是偶数,直接写出CD的值;(2)若点A在CB的延长线上,点E、F在CD的延长线上,且AE∥BD,∠A=55°,∠BDE=125°,求∠C 的度数.18.如图,在五边形ABCDE中AE∥CD,∠A=100°,∠B=120°.(1)若∠D=110°,请求∠E的度数;(2)试求出∠C的度数.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】D6.【答案】C7.【答案】D8.【答案】B9.【答案】2710.【答案】911.【答案】3212.【答案】27°13.【答案】9°14.【答案】解:设这个多边形的边数为n,则内角和为180°(n−2),依题意得:180(n−2)=360×3+180解得n=9=27对角线条数:9×(9−3)2答:这个多边形的边数是9,对角线有27条15.【答案】解:∵∠C=∠ABC=2∠A∴∠C+∠ABC+∠A=5∠A=180°∴∠A=36°则∠C=∠ABC=2∠A=72°又BD是AC边上的高则∠DBC=90°-∠C=18°16.【答案】解:∵AD是△ABC的高.即AD⊥BC∴∠ADB=90°∵在Rt△EBD中∠BED=70°∴∠DBE=20°∵BE平分∠ABC∴∠ABE=∠DBE=20°∴∠ABD=40°∴∠BAC=180°−∠ABD−∠C=180°−40°−60°=80°17.【答案】(1)解:在△BCD中BC=3,BD=5∴2<CD<8∵CD的长是偶数∴CD的长为4或6故答案为:4或6;(2)解:∵AE∥BD∴∠CBD=∠A=55°∵∠BDE=∠C+∠CBD=125°∴∠C=∠BDE−∠CBD=125°−55°=70°18.【答案】(1)解:∵AE∥CD∴∠D+∠E=180°∴∠E=180°−∠D=180°−110°=70°(2)解:五边形ABCDE中∵∠D+∠E=180°,∠A=100°∴∠C=540°−(∠D+∠E)−∠A−∠B=140°。
第十一章 三角形时间:60分钟 满分:100分一、选择题(本大题共10小题,每小题3分,满分30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·广东阳江期末)如图,△ABC中AB边上的高是( )A.线段CDB.线段ACC.线段ADD.线段BC(第1题) (第2题)2.如图,要使一个六边形木架在同一平面内不变形,至少还要钉上木条( )A.1根B.2根C.4根D.3根3.(2022·安徽淮南期中)如图,为估计池塘两岸A,B两点之间的距离,在池塘的一侧选取一点O,测得OA=5,OB=11,则A,B两点间的距离可能是( ) A.5B.10 C.16D.17(第3题) (第4题)4.(2022·四川自贡贡井区期中改编)如图,CE是△ABC的外角∠ACD的平分线,CE 交BA的延长线于点E,若∠B=35°,∠E=25°,则∠ACD的度数为( )A.100°B.110°C.120°D.130°5.(2022·天津武清区期中改编)如图,在△ABC中,∠A=90°,若沿图中虚线截去∠A,则∠1+∠2的度数为( ) A.90° B.180° C.270° D.300°(第5题) (第6题)6.如图,将一副直角三角板按如图所示的方式叠放在一起,则∠α的度数为( )A.15°B.30°C.65°D.75°7.(2022·山东临沂期中)在探究证明三角形的内角和定理时,综合实践小组的同学们作了如下四种辅助线,其中不能证明“三角形的内角和是180°”的是( ) A.过点C作EF∥AB B.作CD⊥AB于点DC.过AB上一点D作DF∥AC,DE∥BCD.延长AC到点F, 过点C作CE∥AB8.(2022·山西吕梁孝义期中)如图,△ABC中,点D是边AB的中点,点E是边AC的中点,点F是CD的中点.若△DEF的面积是3,则△ABC的面积为( ) A.24 B.12 C.36 D.48(第8题) (第10题)9.(2021·河北唐山路北区期末)若一个多边形截去一个角后,形成的新多边形的内角和是1 620°,则原来多边形的边数可能是( )A.10或11B.11C.11或12D.10或11或1210.(2022·河南焦作期中)如图,已知P是△ABC内一点,∠BPC=120°,∠A=50°,BD 是∠ABP的平分线,CE是∠ACP的平分线,BD与CE交于点F,则∠BFC的度数为( )A.100°B.90°C.85°D.95°二、填空题(共6小题,每小题3分,共18分)11.(2022·北京延庆区期末)如图,△ABC中,∠B=20°,D是BC延长线上一点,若∠ACD=60°,则∠A的度数为 .(第11题) (第14题)12.(2021·上海长宁区期末)在△ABC中,∠C=90°,若∠A比∠B小24°,则∠A= .13.(2022·云南昭通昭阳区期中)已知a,b,c是△ABC的三条边长,则|a+b-c|+|b-a-c|= .14.(2022·北京海淀区期中)如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD.若∠DBC=54°,则∠A= .15.新风向新定义试题(2022·湖南益阳赫山区期末)定义:若三角形中一个内角α是另一个内角β的一半时,则这样的三角形为“半角三角形”,其中α为“半角”.若一个“半角三角形”的“半角”为15°,则这个“半角三角形”的最大内角的度数为 .16.已知BD,CE分别是△ABC的高,直线BD,CE相交所成的角中有一个角为65°,则∠BAC= .题号12345678910答案11. 12. 13. 填空14. 15. 16. 三、解答题(共6小题,共52分)17.(7分)(2022·陕西榆林期末)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,点E 是AD上一点,连接BE.求证:∠BED>∠C.18.(7分)(2021·河南巩义期末)一个零件的形状如图所示,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,请你运用三角形的有关知识说出零件不合格的理由.19.(7分)(2021·广东东莞期末)如图,在△ABC中,AD平分∠BAC,P为AD延长线上一点,PE⊥BC于点E,已知∠ACB=80°,∠B=24°,求∠P的度数.20.(9分)(2022·安徽六安金安区期中)如图,AD 是△ABC 的边BC 上的中线,已知AB=5,AC=3.(1)边BC 的取值范围是 ; (2)求△ABD 与△ACD 的周长之差;(3)若AB 边上的高为2,求AC 边上的高.21.(11分)(2021·山西晋城期末)如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形.如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题.(1)将下面的表格补充完整:正多边形的边数3456…18∠α的度数 … (2)根据发现的规律,是否存在一个正n 边形,使其中的∠α=20°?若存在,求出n 的值;若不存在,请说明理由.(3)根据发现的规律,是否存在一个正a边形,使其中的∠α=21°?若存在,求出a的值;若不存在,请说明理由.22.(11分)新风向探究性试题(2022·江苏连云港海州区期末)某数学兴趣小组对“三角形内(外)角平分线形成的夹角与第三个内角之间的数量关系”进行了探究. (1)如图(1),在△ABC中,∠ABC与∠ACB的平分线交于点P,若∠A=66°,则∠BPC= ;(2)如图(2),△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.若∠A=α,则∠E= (用含α的式子表示);(3)如图(3),△ABC的两外角∠CBM与∠BCN的平分线交于点Q.请写出∠BQC与∠A之间的数量关系,并说明理由. 图(1) 图(2) 图(3)第十一章 三角形选择填空题答案速查12345678910A DBC CD B A D C11.40°12.33°13.2a14.27°15.135°16.65°或115°1.A2.D图示速解根据三角形的稳定性,简易示意图如下(方式不唯一).3.B 设A,B两点间的距离为x.根据三角形的三边关系,得11-5<x<11+5,解得6<x<16,故A,B两点间的距离可能是10.4.C ∵∠ECD=∠B+∠E=35°+25°=60°,CE平分∠ACD,∴∠ACD=2∠ECD=120°.一题多解∵∠B=35°,∠E=25°,∴∠BCE=180°-∠B-∠E=120°,∴∠ECD=180°-120°=60°.∵CE平分∠ACD,∴∠ACD=2∠ECD=120°.5.C ∵在△ABC中,∠A=90°,且∠A+∠B+∠C=180°,∴∠B+∠C=180°-90°= 90°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°-90°=270°.【题眼】四边形的内角和=(4-2)×180°=360°一题多解∵在△AEF中,∠A=90°,∴∠AEF+∠AFE=90°.∵∠1=∠A+∠AFE,∠2=∠A+∠AEF,∴∠1+∠2=2∠A+90°=270°.6.D 如图,∵∠2=45°,∴∠1=∠2-30°=45°-30°=15°,∴∠α=90°-∠1=90°-15°=75°.7.B (排除法)由EF∥AB,得∠ECA=∠A,∠FCB=∠B.由∠ECA+∠ACB+∠FCB=180°,得∠A+∠ACB+∠B=180°.由DF∥AC,得∠EDF=∠AED,∠A=∠FDB.由DE∥BC,得∠EDA=∠B,∠C=∠AED,即∠C=∠EDF.由∠ADE+∠EDF+∠FDB=180°,得∠B+∠C+∠A=180°.由CE∥AB,得∠A=∠FCE,∠B=∠BCE.由∠FCE+∠ECB+∠ACB=180°,得∠A+∠B+∠ACB=180°.故选B.8.A ∵点F是CD的中点,∴S△DCE=2S△DEF=2×3=6.∵点E是边AC的中点,∴S△ACD=2S△DCE=2×6=12.∵点D是边AB的中点,∴S△ABC=2S△ACD=2×12=24.【题眼】两三角形高相等,面积比=底边长之比9.D 设新多边形的边数为n,则(n-2)·180°=1 620°,解得n=11.∵多边形截去一个角后,边数可以增加1、不变或减少1,∴原来多边形的边数可能是10或11或12.故选D.【注意】多边形截去一个角后,边数有增加1、不变和减少1三种情况,易漏解10.C (整体思想)∵∠A=50°,∴∠ABC+∠ACB=130°.∵∠BPC=120°,∴∠PBC+∠PCB=180°-120°=60°,∴∠ABP+∠ACP=(∠ABC+∠ACB)-(∠PBC+∠PCB)=130°-60°=70°.∵BD是∠ABP的平分线,CE是∠ACP的平分线,∴∠FBP+∠FCP=(∠ABP+∠ACP)=35°,∴∠FBC+∠FCB=(∠PBC+∠PCB)+(∠FBP+∠FCP)=60°+35°=95°,∴∠BFC=180°-(∠FBC+∠FCB)=180°-95°=85°.11.40° ∵∠ACD=60°,∠B=20°,∴∠A=∠ACD-∠B=60°-20°=40°.【注意】三角形的外角等于与它不相邻的两个内角的和12.33° 设∠A=x,则∠B=24°+x.∵90°+x+x+24°=180°,解得x=33°,∴∠A=33°.13.2a ∵a,b,c为△ABC的三条边长,∴a+b-c>0,b-a-c<0,∴原式=a+b-c-(b-a-c)= a+b-c-b+a+c=2a.【关键】三角形的三边关系14.27° ∵BD⊥CD,∴∠D=90°.∵∠DBC=54°,∴∠DCB=90°-54°=36°.∵CD平分∠ACB,∠ACB=72°.∵∠A=∠ABD,∠A+∠ABC+∠ACB=180°,∴∠A+∠A+54°+72°=180°,∴∠A=27°.15.135° 令α=15°,则β=2α=30°,∴最大内角的度数为180°-15°-30°=135°.16.65°或115° (分类讨论思想)分两种情况,①当∠A为锐角时,如图(1),设BD,CE 交于点O,∵∠DOC=65°,∴∠EOD=115°.∵BD,CE是△ABC的高,∴∠AEC=∠ADB=90°,∴∠BAC=360°-90°-90°-115°=65°.②当∠BAC为钝角时,如图(2),设BD,CE交于点F,∵∠F=65°,∠ADF=∠AEF=90°,∴∠DAE=360°-90°-90°-65°=115°,∴∠BAC=∠DAE=115°.综上,∠BAC=65°或115°. 图(1) 图(2)17.【参考答案】证明:∵∠BAC=90°,∴∠BAD+∠DAC=90°.∵AD⊥BC,∴∠C+∠DAC=90°,∴∠BAD=∠C.(5分)【注意】等量代换∵∠BED=∠BAD+∠ABE,∴∠BED>∠BAD,∴∠BED>∠C.(7分)18.【参考答案】如图,延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°.(3分)同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,∴这个零件不合格.(7分) 19.【参考答案】在△ABC中,∠ACB=80°,∠B=24°,∴∠BAC=180°-∠ACB-∠B=76°.∵AD平分∠BAC,∴∠CAD=1∠BAC=38°.(3分)2在△ACD中,∠ACD=80°,∠CAD=38°,∴∠ADC=180°-∠ACD-∠CAD=62°,∴∠PDE=∠ADC=62°.∵PE⊥BC,∴∠PED=90°,∴∠P=90°-∠PDE=28°.(7分) 20.【参考答案】(1)2<BC<8(3分)解法提示:∵AB=5,AC=3.∴2<BC<8.【关键】三角形的三边关系(2)∵AD 是△ABC 的中线,∴BD=CD ,∴△ABD 与△ACD 的周长之差=(AB+BD+AD )-(AC+CD+AD )=AB+BD-AC-CD =AB-AC =5-3=2.(6分)(3)设AC 边上的高为h ,则S △ABC =12AB ·2=12AC ·h ,【技巧】等面积法解得h=103,∴AC 边上的高为103.(9分)21.【参考答案】(1)补充表格如下:正多边形的边数3456 (18)∠α的度数60°45°36°30°…10°(5分)(2)存在.(6分)根据发现的规律得180°n=20°,解得n=9,∴存在一个正九边形,能使其中的∠α=20°.(8分)(3)不存在.理由如下:假设存在正a 边形使得∠α=21°,则180°a=21°,解得a=847.∵a 是正整数,∴不存在正a 边形使得∠α=21°.(11分)22.【参考答案】(1)123°(3分)解法提示:∵BP ,CP 分别平分∠ABC ,∠ACB ,∴∠PBC=12∠ABC ,∠PCB=12∠ACB ,∴∠BPC=180°-(∠PBC+∠PCB )=180°-12(∠ABC+∠ACB )=180°-12(180°-∠A )=90°+12∠A.∵∠A=66°,∴∠BPC=90°+12×66°=123°.(2)α2(6分)解法提示:∵CE ,BE 分别是∠ACB ,∠ABD 的平分线,∴∠BCE=12∠ACB ,∠DBE=12∠ABD.又∠ABD 是△ABC 的外角,∴∠ABD=α+∠ACB ,∴∠DBE=12(α+∠ACB )=12α+∠BCE.∵∠DBE 是△BEC 的外角,∴∠DBE=∠E+∠BCE ,∴∠E+∠BCE=12α+∠BCE ,∴∠E=α2.(3)∠BQC=90°-12∠A.理由如下:由题意得∠QBC=12(∠A+∠ACB ),∠QCB=12(∠A+∠ABC ),∴∠BQC=180°-∠QBC-∠QCB=180°-12(∠A+∠ACB )-12(∠A+∠ABC )=180°-12∠A-12(∠A+∠ABC+∠ACB )=180°-12∠A-90°=90°-1∠A,(10分) 2∴∠BQC=90°-1∠A.(11分)2。
人教版八年级数学第11章三角形章末复习(含答案)一、选择题(本大题共10道小题)1. 如图,在△ABC中,AC边上的高是()图A.线段DA B.线段BAC.线段BC D.线段BD2. 人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.两直线平行,内错角相等D.三角形具有稳定性3. 已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.104. 如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 60°D. 70°5. 如图,为估计池塘岸边A,B两地之间的距离,小明在池塘的一侧选取一点O,测得OA=10米,OB=8米,那么A,B两地之间的距离可能是()A.2米B.15米C.18米D.28米6. 若一个正多边形的每一个外角都等于40°,则它是()A.正九边形B.正十边形C.正十一边形D.正十二边形7. 将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是直角三角形B.都是钝角三角形C.都是锐角三角形D.是一个直角三角形和一个钝角三角形8. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8C.8或9 D.7或8或99. 长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种10. 如图,在△ABC中,∠ACB=70°,∠1=∠2,则∠BPC的度数为()A.70°B.108°C.110°D.125°二、填空题(本大题共6道小题)11. 如图所示是一幅电动伸缩门的图片,则电动门能伸缩的几何原理是__________________________.12. (2019•怀化)若等腰三角形的一个底角为72 ,则这个等腰三角形的顶角为___ _______.13. 有一程序,如果机器人在平地上按如图所示的步骤行走,那么机器人回到A 处行走的路程是.14. 如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=________°.15. 如图,在四边形ABCD中,AB∥CD,将四边形ABCD沿对角线AC折叠,使点B落在点B′处.若∠1=∠2=44°,则∠B=________°.16. 如图,在△ABC中,点D在BC的延长线上,∠A=m°,∠ABC和∠ACD 的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…;∠A2019BC和∠A2019CD的平分线交于点A2020,则∠A2020=________°.三、解答题(本大题共5道小题)17. 已知一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.18. 等面积法如图,BE,CF均是△ABC的中线,且BE=CF,AM⊥CF于点M,AN⊥BE于点N.求证:AM=AN.19. 如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.20. 如图11-Z-11,点B在点A的南偏西45°方向,点C在点A的南偏东30°方向,点C在点B的北偏东60°方向,求∠C的度数.21. 已知:如图11-Z-12,在△ABC中,∠ABC=∠C,D是AC边上一点,∠A =∠ADB,∠DBC=30°.求∠BDC的度数.人教版八年级数学第11章三角形章末复习-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】D3. 【答案】C[解析] 设第三边的长为x,由三角形三边关系可得,4-1<x<4+1,即3<x<5.由于第三边长为整数,因此x=4,所以该三角形的周长为9.4. 【答案】A【解析】由AE∥BD,可得∠DBC=∠E=35°,由BD平分∠ABC 可得∠ABC=2∠DBC=70°,由AB=AC可得∠ABC=∠C=70°,由三角形内角和定理可得∠BAC=180°-70°-70°=40°.5. 【答案】B[解析] 设A,B两地之间的距离为x米.依据题意,得10-8<x <10+8,即2<x<18,所以A,B两地之间的距离可能是15米.6. 【答案】A [解析] 由于正多边形的外角和为360°,且每一个外角都相等,因此边数=360°40°=9.7. 【答案】C[解析] 如图①,沿虚线剪开即可得到两个直角三角形.如图②,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图③,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.8. 【答案】D[解析] 设内角和为1080°的多边形的边数为n ,则(n -2)×180°=1080°,解得n =8.则原多边形的边数为7或8或9.故选D.9. 【答案】C10. 【答案】C[解析] ∵在△ABC 中,∠ACB =70°,∠1=∠2,∴∠2+∠BCP =∠1+∠BCP =∠ACB =70°. ∴∠BPC =180°-∠2-∠BCP =180°-70°=110°.二、填空题(本大题共6道小题)11. 【答案】四边形具有不稳定性12. 【答案】36°【解析】∵等腰三角形的一个底角为72︒,∴等腰三角形的顶角180727236=︒-︒-︒=︒, 故答案为:36︒.13. 【答案】30米 [解析] 360°÷24°=15,利用多边形的外角和等于360°,可知机器人回到A 处时,恰好沿着正十五边形的边走了一圈,即可求得路程为15×2=30(米).14. 【答案】75【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.15. 【答案】114[解析] 因为AB ∥CD ,所以∠BAB′=∠1=44°.由折叠的性质知∠BAC =12∠BAB′=22°.在△ABC 中,∠B =180°-(∠BAC +∠2)=114°.16. 【答案】(m22020)三、解答题(本大题共5道小题)17. 【答案】解:设这个多边形的边数是n.依题意,得(n -2)×180°=3×360°-180°, 解得n =7.∴这个多边形的边数是7.18. 【答案】证明:∵BE ,CF 均是△ABC 的中线, ∴S △ABE =S △ACF =12S △ABC .∵BE =CF ,AM ⊥CF 于点M ,AN ⊥BE 于点N , ∴12AM·CF =12AN·BE. ∴AM =AN.19. 【答案】解:(1)∵在Rt △ABC 中,∠ACB =90°,∠A =40°,∴∠ABC =90°-∠A =50°. ∴∠CBD =130°.∵BE 是∠CBD 的平分线, ∴∠CBE =12∠CBD =65°. (2)∵∠ACB =90°,∠CBE =65°, ∴∠CEB =90°-65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.20. 【答案】解:∵∠NBC=60°,∠NBA=∠BAS=45°,∴∠ABC=∠NBC-∠NBA=60°-45°=15°.又∵∠BAC=∠BAS+∠SAC=45°+30°=75°,∴在△ABC中,∠C=180°-(75°+15°)=90°.21. 【答案】解:设∠C=x°,则∠ABC=x°,∠ABD=x°-30°.∵∠ADB是△DBC的外角,∴∠ADB=30°+x°,于是∠A=30°+x°.在△ABD中,2(30+x)+(x-30)=180,解得x=50.故∠BDC=180°-(30°+50°)=100°.。
2022-2023学年人教版八年级数学上册《第11章三角形》期末综合复习题(附答案)一.选择题(共9小题)1.若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A.1B.5C.7D.92.图中三角形的个数是()A.8B.9C.10D.113.如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3等于()A.55°B.60°C.65°D.70°4.下列图中具有稳定性的是()A.B.C.D.5.下列说法中错误的是()A.三角形的中线、角平分线、高线都是线段B.任意三角形的外角和都是360°C.两条直线被第三条直线所截,内错角相等D.平行于同一直线的两条直线互相平行6.四边形的内角和为()A.180°B.360°C.540°D.720°7.现有长度分别为20cm,30cm的两根木条,从下面四根木条中选取一根,首尾相接能连成一个三角形木架,则应选取的是()A.10cm B.20cm C.50cm D.60cm8.已知直角三角形的一个锐角为25°,则它的另一个锐角的度数为()A.25°B.65°C.75°D.不能确定9.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315°B.270°C.180°D.135°二.填空题10.在△ABC中,∠A=52°,∠B=102°,则∠C=.11.正五边形的内角和为°,外角和为°.12.如图,有下列结论:①∠A>∠ACD;②∠B+∠ACB=180°﹣∠A;③∠A+∠ACB<180°;④∠HEC>∠B.其中,正确的是(填上你认为正确的所有的序号).13.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B =.14.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.15.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC=.三.解答题16.如图,AD是△ABC的角平分线,∠1=∠2,∠3=∠4,IE⊥BC于点E,(1)若∠ABC=40°,∠ACB=80°,则∠5=,∠6=.(2)猜想∠5、∠6的数量关系是:.(3)请对你的猜想进行证明.17.四边形ABCD中,∠A=140°,∠D=80度.(1)如图1,若∠B=∠C,试求出∠C的度数;(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(3)如图3,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.18.已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.(1)求∠2的度数;(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.19.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,则∵∠ACD﹣∠ABD=∠∴∠ACD﹣∠ABD=°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=°;(2)根据①中的计算结果写出∠A与∠A1之间等量关系;(3)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A6与∠A的数量关系;(4)如图,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值.20.如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.(1)若∠A=∠AOC,求证:∠B=∠BOC;(2)延长AB交x轴于点E,过O作OD⊥AB,且∠DOB=∠EOB,∠OAE=∠OEA,求∠A度数;(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,当△ABO绕O点旋转时(斜边AB与y轴正半轴始终相交于点C),在(2)的条件下,试问∠P的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.参考答案一.选择题1.解:根据三角形的三边关系,得:第三边>两边之差,即4﹣3=1,而<两边之和,即4+3=7,即1<第三边<7,∴只有5符合条件,故选:B.2.解:∵图中的三角形有:△AGD,△ADF,△AEF,△AEC,△ABC,△DGF,△DEF,△CEF,△CEB,∴共9个三角形.故选:B.3.解:∵直线l1∥l2,∠1=40°,∠2=75°,∴∠1=∠4=40°,∠2=∠5=75°,∴∠3=65°.故选:C.4.解:因为三角形具有稳定性,而只有C是全部由三角形结构组成.故选C.5.解:A、三角形的中线、角平分线、高线都是线段说法正确,故此选项不符合要求;B、任意三角形的外角和都是360°说法正确,故此选项不符合要求;C、两条直线被第三条直线所截,只有两直线平行时,内错角才能相等,此说法错误,故此选项符合要求;D、平行于同一直线的两条直线互相平行,说法正确,故此选项不符合要求;故选:C.6.解:四边形的内角和=(4﹣2)•180°=360°.故选:B.7.解:设第三根木条的长为lcm,∵△的另外两边分别为20cm,30cm,∴30cm﹣20cm<l<20cm+30cm,即10cm<l<50cm.∴四个选项中只有B符合题意.故选:B.8.解:∵直角三角形的两个锐角互余,而一个锐角为25°,∴另一个锐角的度数为90°﹣25°=65°.故选:B.9.解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°﹣∠C=90°,∴∠1+∠2=2×90°+90°=270°.故选:B.二.填空题10.解:∵∠A=52°,∠B=102°,∴∠C=180°﹣∠A﹣∠B=180°﹣52°﹣102°=26°.故答案为26°.11.解:∵n边形的内角和公式(n﹣2)•180°,∴正五边形的内角和为(5﹣2)•180°=540°,外角和为360°,故答案为540°;360°.12.解:①∠A<∠ACD,故①错误;②∠B+∠ACB=180°﹣∠A,故②正确;③∠A+∠ACB<180°,故③正确;④∠HEC=∠AED>∠ACD>∠B,则∠HEC>∠B,故④正确.故答案为:②③④.13.解:∵∠ACD=∠A+∠B,∠A=80°,∠ACD=150°,∴∠B=70°.故答案为:70°.14.解:第一个是1×3,第二个是2×4,第三个是3×5,…第n个是n•(n+2)=n2+2n故答案为:n2+2n.15.解:如图,连接AO并延长,∵∠A=80°,∠1=15°,∠2=40°,∴∠BOC=∠A+∠1+∠2,=80°+15°+40°,=135°.故答案为:135°.三.解答题16.解:(1)∵∠ABC=40°,∠ACB=80°,∴∠BAC=180°﹣40°﹣80°=60°,∵AD是△ABC的角平分线,∠1=∠2,∠3=∠4,∴∠5=∠1+∠BAD=20°+30°=50°,同理可得∠6=50°,故答案为:50°,50°;(2)猜想∠5=∠6;(3)证明:∵∠5=∠BAD+∠1=(∠A+∠B)=(180°﹣∠C)=90°﹣∠C,∠6=90°﹣∠3=90°﹣∠C,∴∠5=∠6.17.解:(1)因为∠A+∠B+∠C+∠D=360,∠B=∠C,所以∠B=∠C=.(2)∵BE∥AD,∴∠BEC=∠D=80°,∠ABE=180°﹣∠A=180°﹣140°=40°.又∵BE平分∠ABC,∴∠EBC=∠ABE=40°,∴∠C=180°﹣∠EBC﹣∠BEC=180°﹣40°﹣80°=60°.或解:∵BE∥AD,∴∠ABE=180°﹣∠A=180°﹣140°=40°,又∵BE平分∠ABC,∴∠ABC=2∠ABE=80°,∴∠C=360°﹣∠ABC﹣∠A﹣∠D=60°.(3)∵∠A+∠ABC+∠BCD+∠D=360°,∴∠ABC+∠BCD=360°﹣∠A﹣∠D=360°﹣140°﹣80°=140°.∵∠EBC=∠ABC,∠BCE=∠BCD,∴∠E=180﹣∠EBC﹣∠BCE=180°﹣(∠ABC+∠BCD)=180°﹣×140°=110°.18.解:(1)∵∠1=∠C,∠2=2∠3,∴∠C=∠1=∠2+∠3=2∠3+∠3=3∠3,∵∠BAC+∠2+∠C=180°,即70°+2∠3+3∠3=180°,∴∠3=22°,∴∠2=2∠3=44°;(2)AE⊥BC,∵∠DAC=∠BAC﹣∠3=70°﹣22°=48°,又∵AE平分∠DAC,∴∠DAE=∠DAC=24°∴∠1=3∠3=66°,∴∠AED=180﹣∠1﹣∠DAE=180°﹣66°﹣24°=90°,即AE⊥BC.19.解:(1)∠A;70°;35°;(2)∠A=2∠A1;(3)∠A=64∠A6;(4)∵∠ACD﹣∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD 的平分线∴∠A1=∠A1CD﹣∠A1BD=∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,∴∠Q=180°﹣(∠QEC+∠QCE)=180°﹣∠BAC,∴∠Q+∠A1=180°.因此①∠Q+∠A1的值为定值正确.20.解:(1)∵△AOB是直角三角形,∴∠A+∠B=90°,∠AOC+∠BOC=90°.∵∠A=∠AOC,∴∠B=∠BOC;(2)∵∠A+∠ABO=90°,∠DOB+∠ABO=90°,∴∠A=∠DOB,即∠DOB=∠EOB=∠OAE=∠OEA.∵∠DOB+∠EOB+∠OEA=90°,∴∠DOB=30°,∴∠A=30°;(3)∠P的度数不变,∠P=30°,∵∠AOM=90°﹣∠AOC,∠BCO=∠A+∠AOC,∵OF平分∠AOM,CP平分∠BCO,∴∠FOM=∠AOM=(90°﹣∠AOC)=45°﹣∠AOC,∠PCO=∠BCO=(∠A+∠AOC)=∠A+∠AOC.∴∠P=180°﹣(∠PCO+∠FOM+90°)=45°﹣∠A=30°.。
人教版八年级上册数学单元测试卷第十一章三角形姓名班级学号成绩一.选择题(共10小题,每小题3分,共30分)1.下列图形具有稳定性的是()A.B.C.D.2.若正n边形的一个外角为60°,则n的值是()A.6B.5C.4D.33.如图,△ABC的边BC上的高是()A.线段AF B.线段DB C.线段CF D.线段BE第3题图第6题图第7题图4.以下各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm5.在△ABC中,∠A=∠B=∠C,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.如图,在△ABC中,∠B=30°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.30°B.45°C.60°D.70°7.如图所示,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠BAC的度数是()A.50°B.60°C.70°D.80°8.如图,在△ABC中,BD是AC边上的高,CE是∠ACB的平分线,BD,CE交于点F.若∠AEC=80°,∠BFC=128°,则∠ABC的度数是()A.28°B.38°C.42°D.62°9.一个多边形的内角和等于540°,则它的边数为()A.4B.5C.6D.80.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC=()A.95°B.120°C.130°D.135°第10题图第13题图第14题图二.填空题(每小题3分,共15分)11.已知一个三角形的两边长分别为4和5,若第三边的长为整数,则此三角形周长的最大值.12.如果一个多边形的内角和等于它外角和的3倍,则这个多边形的边数是.13.如图,AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=50°,点F为边AB上一点,当△BDF为直角三角形时,则∠ADF的度数为.14.如图,在△ABC中,AD为BC边上的中线,DE⊥AB于点E,DF⊥AC于点F,AB=3,AC=4,DF=1.5,则DE=.15.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为三.解答题一(共3小题,每题8分,共24分)16.在△ABC中,∠CAE=25°,∠C=40°,∠CBD=30°,求∠AFB的度数.17.已知一个正多边形的边数为n.(1)若这个多边形的内角和为其外角和的4倍,求n的值;(2)若这个正多边形的一个内角为135°,求n的值.18.如图,在△ABC中,∠B=40°,∠C=70°,AD是△ABC的角平分线,点E在BD上,点F在CA的延长线上,EF∥AD.(1)求∠BAF的度数.(2)求∠F的度数.四.解答题二(共3小题,每题9分,共27分)19.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠C=70°.(1)∠AOB的度数为;(2)若∠ABC=60°,求∠DAE的度数.20.已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式:|a+b﹣c|+|b﹣a﹣c|=.(2)若AB=AC,AC边上的中线BD把三角形的周长分为15和6两部分,求腰长AB.21.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)求证:∠BAC=∠B+2∠E.(2)若CA⊥BE,∠ECD﹣∠ACB=30°时,求∠E的度数.五.解答题三(共2小题,每题12分,共24分)22.我们在小学已经学习了“三角形内角和等于180°”.在三角形纸片中,点D,E分别在边AC,BC上,将∠C沿DE折叠,点C落在点C'的位置.(1)如图1,当点C落在边BC上时,若∠ADC'=58°,则∠C=,可以发现∠ADC'与∠C 的数量关系是;(2)如图2,当点C落在△ABC内部时,且∠BEC'=42°,∠ADC'=20°,求∠C的度数;(3)如图3,当点C落在△ABC外部时,若设∠BEC'的度数为x,∠ADC'的度数为y,请求出∠C与x,y之间的数量关系.23.如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)∠ACB=;(2)如图2,若BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,过C作直线与AB交于F,且满足∠AGO﹣∠BCF=45°,求证:CF∥OB.第11章:三角形单元测试卷(参考答案)一.选择题(共10小题,每小题3分,共30分)1.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性解答.【解答】解:三角形、四边形、五边形及六边形中只有三角形具有稳定性.故选:A.【点评】本题考查了三角形具有稳定性,是基础题,需熟记.2.若正n边形的一个外角为60°,则n的值是()A.6B.5C.4D.3【分析】根据多边形的外角和与正多边形的性质即可求得答案.∵【解答】解:正n边形的一个外角为60°∴n=360°÷60°=6故选:A.【点评】本题考查多边形的外角和及正多边形的性质,此为基础且重要知识点,必须熟练掌握.3.如图,△ABC的边BC上的高是()A.线段AF B.线段DB C.线段CF D.线段BE【分析】根据三角形的高的定义进行分析即可得出结果.【解答】解:由图可得:△ABC的边BC上的高是AF.故选:A.【点评】本题主要考查三角形的角平分线、中线、高,解答的关键是对三角形的高的定义的掌握.4.以下各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、2+4=6,不能组成三角形;B、4+6=10>8,能组成三角形;C、6+7=13<14,不能够组成三角形;D、2+3=5<6,不能组成三角形.故选:B.【点评】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.5.在△ABC中,∠A=∠B=∠C,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【分析】用∠A表示出∠B、∠C,然后利用三角形的内角和等于180°列方程求解即可.【解答】解:∵∠A=∠B=∠C∴∠B=2∠A,∠C=3∠A∵∠A+∠B+∠C=180°∴∠A+2∠A+3∠A=180°解得∠A=30°所以,∠B=2×30°=60°∠C=3×30°=90°所以,此三角形是直角三角形.故选:B.【点评】本题考查了三角形的内角和定理,熟记定理并用∠A列出方程是解题的关键.6.如图,在△ABC中,∠B=30°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.30°B.45°C.60°D.70°【分析】由折叠的性质可得∠B=∠D=30°,再根据外角的性质即可求出结果.【解答】解:将△ABC沿直线m翻折,交BC于点E、F,如图所示:由折叠的性质可知:∠B=∠D=30°根据外角的性质可知:∠1=∠B+∠3,∠3=∠2+∠D∴∠1=∠B+∠2+∠D=∠2+2∠B∴∠1﹣∠2=2∠B=60°故选:C.【点评】本题考查三角形内角和定理、翻折变换的性质,熟练掌握三角形外角的性质和翻折的性质是解题的关键.7.如图所示,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠BAC的度数是()A.50°B.60°C.70°D.80°【分析】由∠B=30°,∠ADC=70°,利用外角的性质求出∠BAD,再利用AD平分∠BAC,求出∠BAC.【解答】解:∵∠B=30°,∠ADC=70°∴∠BAD=∠ADC﹣∠B=70°﹣30°=40°∵AD平分∠BAC∴∠BAC=2∠BAD=80°.故选:D.【点评】本题主要考查三角形的外角性质,解答的关键是熟记三角形的外角性质:三角形的外角等于与其不相邻的两个内角之和.8.如图,在△ABC中,BD是AC边上的高,CE是∠ACB的平分线,BD,CE交于点F.若∠AEC=80°,∠BFC=128°,则∠ABC的度数是()A.28°B.38°C.42°D.62°【分析】根据∠BFC的度数以及BD⊥AC,可求出∠ACE度数,进而得出∠ACB度数,再结合∠AEC度数,求出∠A度数,最后利用三角形的内角和定理即可解题.【解答】解:因为BD是AC边上的高所以∠BDC=90°.又∠BFC=128°所以∠ACE=128°﹣90°=38°又∠AEC=80°则∠A=62°.又CE是∠ACB的平分线所以∠ACB=2∠ACE=76°.故∠ABC=180°﹣62°﹣76°=42°.故选:C.【点评】本题考查角平分线的定义及三角形的内角和定理,利用外角求出∠ACE的度数是解题的关键.9.一个多边形的内角和等于540°,则它的边数为()A.4B.5C.6D.8【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n∴(n﹣2)•180°=540°∴n=5.故选:B.【点评】本题考查了多边形的内角和定理,掌握n边形的内角和为(n﹣2)•180°是解决此题关键.10.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC=()A.95°B.120°C.130°D.135°【分析】利用三角形ABC和三角形OBC的内角和都是180°,求解即可.【解答】解:由三角形内角和定理在三角形ABC中:∠A+∠ABC+∠ACB=180°∴∠OBC+∠OCB+∠1+∠2+∠A=180°∴∠OBC+∠OCB=180°﹣80°﹣15°﹣40°=45°在三角形OBC中∠OBC+∠OCB+∠BOC=180°∴∠BOC=180°﹣45°=135°故选:D.【点评】此题主要考查三角形的内角和定理:三角形的内角和是180°;掌握定理是解题关键.二.填空题(共5小题,每小题3分,共15分)11.已知一个三角形的两边长分别为4和5,若第三边的长为整数,则此三角形周长的最大值17.【分析】第三边的长为x,根据三角形的三边关系得出x的取值范围,再由第三边的长为整数得出x的值,进而可得出结论.【解答】解:第三边的长为x∵一个三角形的两边长分别为4和5∴5﹣4<x<5+4,即1<x<9∵第三边的长为整数∴x的值可以为2,3,4,5,6,7,8∴当x=8时,此三角形周长的最大值=4+5+8=17.故答案为:17.【点评】本题考查的是三角形的三边关系,熟知三角形两边之和大于第三边;三角形的两边之差小于第三边是解题的关键.12.如果一个多边形的内角和等于它外角和的3倍,则这个多边形的边数是8.【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故答案为:8.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.13.如图,AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=50°,点F为边AB上一点,当△BDF为直角三角形时,则∠ADF的度数为20°或60°.【分析】分两种情况进行讨论:当∠BFD=90°时,当∠BDF=90°时,分别依据三角形内角和定理以及角平分线的定义,即可得到∠ADF的度数为20°或60°.【解答】解:如图所示,当∠BFD=90°时∵AD是△ABC的角平分线,∠BAC=60°∴∠BAD=30°∴Rt△ADF中,∠ADF=60°;如图,当∠BDF=90°时同理可得∠BAD=30°∵CE是△ABC的高,∠BCE=50°∴∠BFD=∠BCE=50°∴∠ADF=∠BFD﹣∠BAD=20°综上所述,∠ADF的度数为20°或60°.故答案为:20°或60°.【点评】此题主要考查了三角形的内角和定理,解答此题的关键是要明确:三角形的内角和是180°.14.如图,在△ABC中,AD为BC边上的中线,DE⊥AB于点E,DF⊥AC于点F,AB=3,AC=4,DF=1.5,则DE=2.【分析】由题意,△ABC中,AD为中线,可知△ABD和△ADC的面积相等;利用面积相等,问题可求.【解答】解:∵△ABC中,AD为中线∴BD=DC∴S△ABD=S△ADC∵DE⊥AB于E,DF⊥AC于F,AB=3,AC=4,DF=1.5∴•AB•ED=•AC•DF∴×3×ED=×4×1.5∴ED=2故答案为:2.【点评】此题考查三角形的中线,三角形的中线把三角形的面积分成相等的两部分.本题的解答充分利用了面积相等这个知识点.15.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为360°【分析】根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.【解答】解:如图∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°∴∠A+∠B+∠C+∠D+∠E+∠F=360°故答案为:360°.【点评】此题考查三角形的内角和,角的和与差,掌握三角形的内角和定理是解决问题的关键.三.解答题一(共3小题,每题8分,共24分)16.在△ABC中,∠CAE=25°,∠C=40°,∠CBD=30°,求∠AFB的度数.【分析】根据三角形的外角定理得出∠AEB=∠CAE+∠C,再根据∠AFB=∠CBD+∠AEB即可求解.【解答】解:∵∠CAE=25°,∠C=40°∴∠AEB=∠CAE+∠C=25°+40°=65°∵∠CBD=30°∴∠AFB=∠CBD+∠AEB=30°+65°=95°.【点评】本题主要考查了三角形的外角定理,解题的关键是掌握三角形的一个外角等于与它不相邻的两个内角之和.17.已知一个正多边形的边数为n.(1)若这个多边形的内角和为其外角和的4倍,求n的值;(2)若这个正多边形的一个内角为135°,求n的值.【分析】(1)利用多边形的内角和与外角和列得方程,解方程即可;(2)利用多边形的内角和与正多边形的性质列得方程,解方程即可.【解答】解:(1)由题意可得(n﹣2)•180°=360°×4解得:n=10;(2)由题意可得(n﹣2)•180°=135°n解得:n=8.【点评】本题考查多边形的内角和与外角和,正多边形的性质,结合已知条件列得对应的方程是解题的关键.18.如图,在△ABC中,∠B=40°,∠C=70°,AD是△ABC的角平分线,点E在BD上,点F在CA的延长线上,EF∥AD.(1)求∠BAF的度数.(2)求∠F的度数.【分析】(1)根据外角的性质即可得到结论;(2)根据角平分线的定义得到∠DAC=BAC=35°,根据平行线的性质即可得到结论.【解答】解:(1)∵∠BAF=∠B+∠C∵∠B=40°,∠C=70°∴∠BAF=110°;(2)∵∠BAF=110°∴∠BAC=70°∵AD是△ABC的角平分线∴∠DAC=BAC=35°∵EF∥AD∴∠F=∠DAC=35°.【点评】本题考查了三角形外角的性质,平行线的性质,三角形的内角和,角平分线的定义,熟练掌握三角形外角的性质是解题的关键.四.解答题二(共3小题,每题9分,共27分)19.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠C=70°.(1)∠AOB的度数为125°;(2)若∠ABC=60°,求∠DAE的度数.【分析】(1)根据角平分线的定义得出∠OAB+∠OBA=(∠BAC+∠ABC),根据三角形内角和定理得出∠BAC+∠ABC=180°﹣∠C=110°,进而即可求解;(2)根据三角形内角和定理求得∠DAC,∠BAC,根据AE是∠BAC的角平分线,得出∠CAE=∠CAB =25°,根据∠DAE=∠CAE﹣∠CAD,即可求解.【解答】(1)解:∵AE、BF是∠BAC、∠ABC的角平分线∴∠OAB+∠OBA=(∠BAC+∠ABC)在△ABC中,∠C=70°∴∠BAC+∠ABC=180°﹣∠C=110°∴∠AOB=180°﹣∠OAB﹣∠OBA=180°﹣(∠BAC+∠ABC)=125°.故答案为:125°;(2)解:∵在△ABC中,AD是高,∠C=70°,∠ABC=60°∴∠DAC=90°﹣∠C=90°﹣70°=20°,∠BAC=180°﹣∠ABC﹣∠C=50°∵AE是∠BAC的角平分线∴∠CAE=∠CAB=25°∴∠DAE=∠CAE﹣∠CAD=25°﹣20°=5°∴∠DAE=5°.【点评】本题考查了三角形中线,角平分线,三角形内角和定理,掌握三角形内角和定理是解题的关键.20.已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式:|a+b﹣c|+|b﹣a﹣c|=2a.(2)若AB=AC,AC边上的中线BD把三角形的周长分为15和6两部分,求腰长AB.【分析】(1)先根据三角形的三边关系定理可得a+b>c,a+c>b,从而可得a+b﹣c>0,b﹣a﹣c<0,再化简绝对值,然后计算整式的加减法即可得;(2)先根据三角形中线的定义可得,再分①和②两种情况,分别求出a,c的值,从而可得三角形的三边长,然后看是否符合三角形的三边关系定理即可得出答案.【解答】解:(1)由题意得:a+b>c,a+c>b∴a+b﹣c>0,b﹣a﹣c<0∴|a+b﹣c|+|b﹣a﹣c|=a+b﹣c+(﹣b+a+c)=a+b﹣c﹣b+a+c=2a.故答案为:2a;(2)设AB=AC=2x,BC=y,则AD=CD=x∵AC上的中线BD将这个三角形的周长分成15和6两部分①当3x=15,且x+y=6解得,x=5,y=1∴三边长分别为10,10,1;②当x+y=15且3x=6时解得,x=2,y=13,此时腰为4根据三角形三边关系,任意两边之和大于第三边,而4+4=8<13,故这种情况不存在.∴△ABC的腰长AB为10.【点评】本题考查了三角形的三边关系定理、整式加减的应用、二元一次方程组的应用、三角形的中线等知识点,掌握相应的定义和分类讨论思想是解题关键.21.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)求证:∠BAC=∠B+2∠E.(2)若CA⊥BE,∠ECD﹣∠ACB=30°时,求∠E的度数.【分析】(1)根据角平分线的定义、三角形的外角性质计算,证明结论;(2)根据角平分线的定义及已知条件可求解∠ACB,∠ECD的度数,利用直角三角形的性质可求解∠B 的度数,再由三角形外角的性质可求解.【解答】(1)证明:∵CE平分∠ACD∴∠ECD=∠ACE.∵∠BAC=∠E+∠ACE∴∠BAC=∠E+∠ECD∵∠ECD=∠B+∠E,′∴∠BAC=∠E+∠B+∠E∴∠BAC=2∠E+∠B.(2)解:∵CE平分∠ACD∴∠ACE=∠DCE∵∠ECD﹣∠ACB=30°,2∠ECD+∠ACB=180°∴∠ACB=40°,∠ECD=70°∵CA⊥BE∴∠B+∠ACB=90°∴∠B=50°∵∠ECD=∠B+∠E∴∠E=70°﹣50°=20°.【点评】本题考查的是三角形的外角性质、三角形内角和定理,直角三角形的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.五.解答题三(共2小题,每题12分,共24分)22.我们在小学已经学习了“三角形内角和等于180°”.在三角形纸片中,点D,E分别在边AC,BC上,将∠C沿DE折叠,点C落在点C'的位置.(1)如图1,当点C落在边BC上时,若∠ADC'=58°,则∠C=29°,可以发现∠ADC'与∠C的数量关系是∠ADC'=2∠C;(2)如图2,当点C落在△ABC内部时,且∠BEC'=42°,∠ADC'=20°,求∠C的度数;(3)如图3,当点C落在△ABC外部时,若设∠BEC'的度数为x,∠ADC'的度数为y,请求出∠C与x,y之间的数量关系.【分析】(1)根据平角定义求出∠CDC′=122°,然后利用折叠的性质可得∠CDE=∠CDC′=61°,∠DEC=×180°=90°,最后利用三角形内角和定理,进行计算即可解答;(2)根据平角定义求出∠CDC′=160°,∠CEC′=138°,然后利用折叠的性质可得∠CDE=∠CDC′=80°,∠DEC=∠CEC′=69°,最后利用三角形内角和定理,进行计算即可解答;(3)根据平角定义求出∠CDC′=180°﹣x,∠CEC′=180°+y,然后利用折叠的性质可得∠CDE=∠CDC′=90°+y,∠DEC=∠CEC′=90°﹣x,最后利用三角形内角和定理,进行计算即可解答.【解答】解:(1)∵∠ADC′=58°∴∠CDC′=180°﹣∠ADC′=122°由折叠得:∠CDE=∠C′DE=∠CDC′=61°,∠DEC=∠DEC′=×180°=90°∴∠C=180°﹣∠EDC﹣∠DEC=29°∴∠ADC'与∠C的数量关系:∠ADC'=2∠C.故答案为:29°,∠ADC'=2∠C;(2)∵∠BEC′=42°,∠ADC′=20°∴∠CEC′=180°﹣∠BEC′=138°,∠CDC′=180°﹣∠ADC′=160°由折叠得:∠CDE=∠C′DE=∠CDC′=80°,∠DEC=∠DEC′=∠CEC′=69°∴∠C=180°﹣∠EDC﹣∠DEC=31°∴∠C的度数为31°;(3)如图:∵∠BEC′=x,∠ADC′=y∴∠CEC′=180°﹣x,∠1=180°+∠ADC′=180°+y由折叠得:∠CDE=∠C′DE=∠1=90°+y,∠DEC=∠DEC′=∠CEC′=90°﹣x∴∠C=180°﹣∠EDC﹣∠DEC=180°﹣(90°+y)﹣(90°﹣x)=x﹣y∴∠C与x,y之间的数量关系:∠C=x﹣y.【点评】本题考查了三角形内角和定理,熟练掌握三角形内角和定理,以及折叠的性质是解题的关键.23.如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)∠ACB=135°;(2)如图2,若BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,过C作直线与AB交于F,且满足∠AGO﹣∠BCF=45°,求证:CF∥OB.【分析】(1)根据直角三角形的性质得到∠BAO+∠ABO=90°,根据角平分线的定义、三角形内角和定理计算,得到答案;(2)根据三角形的外角性质得到∠OBE﹣∠OAB=90°,再根据三角形的外角性质计算即可;(3)根据邻补角的概念得到∠BCG=45°,根据三角形的外角性质得到∠CBG=∠BCF,根据平行线的判定定理证明结论.【解答】(1)解:∵∠AOB=90°∴∠BAO+∠ABO=90°∵AC、BC分别是∠BAO和∠ABO的角平分线∴∠CAB=∠BAO,∠CBA=∠ABO∴∠CAB+∠CBA=(∠BAO+∠ABO)=45°∴∠ACB=180°﹣45°=135°故答案为:135°;(2)解:∠ADB的大小不发生变化∵∠OBE是△AOB的外角∴∠OBE=∠OAB+∠AOB∵∠AOB=90°∴∠OBE﹣∠OAB=90°∵BD平分∠OBE∴∠EBD=∠OBE∵∠EBD是△ADB的外角∴∠EBD=∠BAG+∠ADB∴∠ADB=∠EBD﹣∠BAG=∠OBE﹣∠OAB=45°;(3)证明:∵∠ACB=135°,∠ACB+∠BCG=180°∴∠BCG=180°﹣∠ACB=180°﹣135°=45°∵∠AGO是△BCG的外角∴∠AGO=∠BCG+∠CBG=45°+∠CBG∵∠AGO﹣∠BCF=45°∴45°+∠CBG﹣∠BCF=45°∴∠CBG=∠BCF∴CF∥OB.【点评】本题考查的是三角形的外角性质、平行线的判定、角平分线的定义、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.。
人教版八年级数学上册第十一章三角形单元测试题一.选择题1.在如图中,正确画出AC边上高的是()A.B.C.D.2.多边形的边数每增加一条,它的内角和增加()A.120°B.180°C.270°D.360°3.如图,∠A=70°,∠2=130°,则∠1=()A.130°B.120°C.140°D.110°4.如图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,BE、CF相交于D,则∠CDE的度数是()A.110°B.70°C.80°D.75°5.如图,△ABC中,∠C=80°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.260°C.180°D.140°6.△ABC的三边长是a、b、c,且a>b>c,若b=8,c=3,则a的取值范围是()A.3<a<8 B.5<a<11 C.8<a<11 D.6<a<107.点P是△ABC内任意一点,则∠BPC与∠A的大小关系是()A.∠BPC<∠A B.∠BPC>∠A C.∠BPC=∠A D.无法确定8.如图,AE,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAE的度数为()A.40°B.20°C.18°D.38°9.如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B 间的距离不可能是()米.A.20 B.10 C.15 D.510.如图,在△ABC中,∠B=48°,三角形的外角∠DAC和∠ACF的平分线交于点E,∠AEC等于()A.56°B.66°C.76°D.无法确定11.如图所示,∠1+∠2+∠3+∠4等于()A.180°B.360°C.240°D.540°12.如图,∠MAN=100°,点B、C是射线AM、AN上的动点,∠ACB的平分线和∠MBC的平分线所在直线相交于点D,则∠BDC的大小()A.40°B.50°C.80°D.随点B、C的移动而变化二.填空题13.若一个三角形的三个内角比为2:3:5,则此三角形为角三角形.14.如图,把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架利用了三角形的性.15.如图,在△ABC中,∠A=40°,有一块直角三角板DEF的两条直角边DE、DF分别经过点B、C,若直角顶点D在三角形外部,则∠ABD+∠ACD的度数是度.16.在△ABC中,AB=14,AC=12,AD为中线,则△ABD与△ACD的周长之差为.17.如图所示,已知四边形ABCD,∠a、∠β分别是∠BAD、∠BCD的邻补角,且∠B+∠ADC=140°,则∠a+∠β=.18.如图,在△ABC中,∠A=64°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;∠A2BC和∠A2CD的平分线交于点A3,则∠A3=.三.解答题19.如图,已知△ABC中,AD平分∠BAC交BC于D,AE⊥BC于E,若∠ADE=80°,∠EAC=20°,求∠B的度数.20.已知△ABC,(1)如图1,若D点是△ABC内任一点、求证:∠D=∠A+∠ABD+∠ACD.(2)若D点是△ABC外一点,位置如图2所示.猜想∠D、∠A、∠ABD、∠ACD有怎样的关系?请直接写出所满足的关系式.(不需要证明)(3)若D点是△ABC外一点,位置如图3所示、猜想∠D、∠A、∠ABD、∠ACD之间有怎样的关系,并证明你的结论.21.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.22.如图,已知△ABC中,∠B<∠C,AD平分∠BAC,E是线段AD(除去端点A、D)上一动点,EF⊥BC于点F.(1)若∠B=40°,∠DEF=10°,求∠C的度数.(2)当E在AD上移动时,∠B、∠C、∠DEF之间存在怎样的等量关系?请写出这个等量关系:并说明理由.23.如图,在△ABC中,内角平分线BP和外角平分线CP相交于点P,根据下列条件求∠P的度数.(1)若∠ABC=50°,∠ACB=80°,则∠P=,若∠ABC+∠ACB=110°,则∠P=;(2)若∠BAC=90°,则∠P=;(3)从以上的计算中,你能发现∠P与∠BAC的关系是;(4)证明第(3)题中你所猜想的结论.参考答案一.选择题1.解:画出AC边上高就是过B作AC的垂线,故选:C.2.解:n边形的内角和可以表示成(n﹣2)•180°,可以得到增加一条边时,边数变为n+1,则内角和是(n﹣1)•180°,因而内角和增加:(n﹣1)•180°﹣(n﹣2)•180°=180°.故选:B.3.解:如图,∵∠2=130°,∵∠3=180°﹣∠2=180°﹣130°=50°,∴∠1=∠A+∠3=70°+50°=120°.故选:B.4.解:∵BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,∴∠CBE=∠ABC=40°,∠FCB=∠ACB=30°,∴∠CDE=∠CBE+∠FCB=70°.故选:B.5.解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=80°+180°=260°.故选:B.6.解:∵a>b>c,b=8,c=3,∴根据三角形的三边关系,得8<a<11.故选:C.7.解:连接BP并延长交AC于D,连接CP,∠BPC>∠BDC,∠BDC>∠A,因而∠BPC>∠A.故∠BPC与∠A的大小关系是∠BPC>∠A.故选:B.8.解:∵△ABC中已知∠B=36°,∠C=76,∴∠BAC=68°.∴∠BAD=∠DAC=34°,∴∠ADC=∠B+∠BAD=70°,∴∠DAE=20°.故选:B.9.解:根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴AB的值在5和25之间,A、B间的距离不可能是5米.故选:D.10.解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF,∵∠DAC=∠B+∠2,∠ACF=∠B+∠1∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2),∵∠B=48°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=114°∴∠AEC=180°﹣(∠DAC+∠ACF)=66°.故选:B.11.解:∵∠1+∠2+∠5=360°,∠3+∠6+∠4=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=720°,又∵∠5+∠6=180°,∴∠1+∠2+∠3+∠4=720°﹣180°=540°.故选:D.12.解:∵CD平分∠ACB,BE平分∠MBC,∴∠ACB=2∠DCB,∠MBC=2∠CBE,∵∠MBC=2∠CBE=∠A+∠ACB,∠CBE=∠D+∠DCB,∴2∠CBE=∠D+∠DCB,∴∠MBC=2∠D+∠ACB,∴2∠D+∠ACB=∠A+∠ACB,∴∠A=2∠D,∵∠A=100°,∴∠D=50°.故选:B.二.填空题(共6小题)13.解:∵∠A+∠B+∠C=180°,∠B:∠C:∠A=2:3:5,∴∠A=×180°=90°,∴△ABC是直角三角形,故答案为:直.14.解:三角形的支架很牢固,这是利用了三角形的稳定性,故答案为:稳定.15.解:在△ABC中,∠A+∠ABC+∠ACB=180°,∠A=40°∴∠ABC+∠ACB=180°﹣40°=140°在△BCD中,∠D+∠BCD+∠CBD=180°∴∠BCD+∠CBD=180°﹣∠D在△DEF中,∠D+∠E+∠F=180°∴∠E+∠F=180°﹣∠D∴∠CBD+∠BCD=∠E+∠F=90°∴∠ABD+∠ACD=∠ABC+∠CBD+∠ACB+∠BCD=140°+90°=230°.故答案为:230.16.解:∵AD为中线,∴BD=DC,∴(AB+BD+AD)﹣(AC+AD+CD)=AB+BD+AD﹣AC﹣AD﹣CD=AB﹣AC=2,故答案为:2.17.解:∵∠B+∠D+∠DAB+∠BCD=360°,∠B+∠ADC=140°,∴∠DAB+∠BCD=360°﹣140°=220°,∵∠a+∠β+∠DAB+∠BCD=360°,∴∠a+∠β=360°﹣220°=140°.故答案为:140°.18.解:∵A1B平分∠ABC,A1C平分∠ACD,∴∠A1BC=∠ABC,∠A1CA=∠ACD,∵∠A1CD=∠A1+∠A1BC,即∠ACD=∠A1+∠ABC,∴∠A1=(∠ACD﹣∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD﹣∠ABC,∴∠A1=∠A,∴∠A1=×64°=32°,∵∠A1=∠A,∠A2=∠A1=∠A,∴∠A3=∠A2=∠A=×64°=8°.故答案为:8°.三.解答题(共5小题)19.解:∵AE⊥BC,∠EAC=20°,∴∠C=70°,∴∠BAC+∠B=110°.∵∠ADE=∠B+∠BAD=(∠BAC+∠B)+∠B,∴∠B=50°.20.解:(1)证明:延长BD交AC于点E.∵∠BDC是△CDE的外角,∴∠BDC=∠2+∠CED,∵∠CED是△ABE的外角,∴∠CED=∠A+∠1.∴∠BDC=∠A+∠1+∠2.即∠D=∠A+∠ABD+∠ACD.(2)∵∠D+∠A+∠ABD+∠ACD=∠A+∠ABC+∠ACB+∠D+∠DBC+∠DCB,即∠D+∠A+∠ABD+∠ACD=180°+180°=360°,∠A+∠ABC+∠ACB=180°,∠D+∠DBC+∠DCB=180°,∴∠D+∠A+∠ABD+∠ACD=360°.(3)证明:令BD、AC交于点E,∵∠AED是△ABE的外角,∴∠AED=∠1+∠A,∵∠AED是△CDE的外角,∴∠AED=∠D+∠2.∴∠A+∠1=∠D+∠2即∠D+∠ACD=∠A+∠ABD.21.证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.22.解:(1)∵EF⊥BC,∠DEF=10°,∴∠EDF=80°,∵∠B=40°∴∠BAD=∠EDF﹣∠B=80°﹣40°=40,∵AD平分∠BAC,∴∠BAC=80°,∴∠C=180°﹣40°﹣80°=60°;(2)∵EF⊥BC,∴∠EDF=90°﹣∠DEF,∵∠EDF=∠B+∠BAD,∴∠BAD=90°﹣∠DEF﹣∠B,∵AD平分∠BAC,∴∠BAC=2∠BAD=180°﹣2∠DEF﹣2∠B,∴∠B+180°﹣2∠DEF﹣2∠B+∠C=180°,∴∠C﹣∠B=2∠DEF.23.(1)解:∵∠ACB=80°,∴∠ACD=180°﹣80°=100°,∵BP、CP分别为∠ABC、∠ACD的平分线,∴∠PBC=∠ABC=×50°=25°,∠PCD=∠ACD=×100°=50°,在△PCD中,∠PBC+∠P=∠PCD,即25°+∠P=50°,解得∠P=25°;∵∠ABC+∠ACB=110°,∴∠A=180°﹣110°=70°,∵BP、CP分别为∠ABC、∠ACD的平分线,∴∠PBC=∠ABC,∠PCD=∠ACD,根据三角形的外角性质,∠ACD=∠A+∠ABC,∠PCD=∠PBC+∠P,∴∠A+∠ABC=2(∠PBC+∠P)=2∠PBC+2∠P,∴∠A=2∠P,∠P=∠A=×70°=35°;(2)解:∵BP、CP分别为∠ABC、∠ACD的平分线,∴∠PBC=∠ABC,∠PCD=∠ACD,根据三角形的外角性质,∠ACD=∠A+∠ABC,∠PCD=∠PBC+∠P,∴∠BAC+∠ABC=2(∠PBC+∠P)=2∠PBC+2∠P,∴∠BAC=2∠P,∠P=∠BAC,∵∠BAC=90°,∴∠P=45°;(3)由计算可知,∠P=∠A;(4)证明:∵BP、CP分别为∠ABC、∠ACD的平分线,∴∠PBC=∠ABC,∠PCD=∠ACD,根据三角形的外角性质,∠ACD=∠A+∠ABC,∠PCD=∠PBC+∠P,∴∠BAC+∠ABC=2(∠PBC+∠P)=2∠PBC+2∠P,∴∠BAC=2∠P,∠P=∠BAC.故答案为:(1)25°,35°;(2)45°;(3)∠P=∠A.。
(人教版)八年级上册数学第11章《三角形》练习一.选择题(共19小题)1.(2020春•开福区校级期末)如图,在三角形ABC中,∠A=45°,三角形ABC的高线BD,CE交于点O,则∠BOC的度数()A.120°B.125°C.135°D.145°2.(2020春•永州期末)富有灿烂文化的永州,现今保留着许多具有历史和文化价值的建筑,古朴的建筑物上雕刻的优美图案是我们数学研究的重要内容.图1中的“冰裂纹窗格”图案就是永州古建筑雕刻图案其中的代表,无规则多边形的形状,蕴含了丰富而和谐的数学美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的多边形,根据绘制的图形,则∠1+∠2+∠3+∠4+∠5的度数为()A.72°B.108°C.360°D.540°3.(2020春•雨花区校级期末)以下列各组线段的长为边,能组成三角形的是()A.3cm,6cm,8cm B.3cm,2cm,6cmC.5cm,6cm,11cm D.2cm,7cm,4cm4.(2020春•雨花区期末)在一个直角三角形中,有一个锐角等于25°,则另一个锐角的度数是()A.25°B.55°C.65°D.75°5.(2020春•雨花区期末)如图,已知CD和BE是△ABC的角平分线,∠A=60°,则∠BOC=()A.60°B.100°C.120°D.150°6.(2020春•天心区期末)如图,一副直角三角板图示放置,点C在DF的延长线上,点A在边EF上,AB ∥CD,∠ACB=∠EDF=90°,则∠CAF=()A.10°B.15°C.20°D.25°7.(2019秋•赫山区期末)已知三角形三边长3,4,x,则x的取值范围是()A.x>1B.x<7C.1<x<7D.﹣1<x<78.(2019秋•永定区期末)长度分别为3,7,x的三条线段能组成一个三角形,x的值可以是()A.2B.3C.4D.59.(2020春•天心区期末)△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC的形状是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形10.(2020春•天心区期末)已知三角形三边长为2,3,x,则x的取值范围是()A.x>1B.x<5C.1<x<5D.﹣1<x<511.(2020春•岳麓区校级期末)如图,点C在线段AB的延长线上,∠DAC=15°,∠DBC=110°,则∠D的度数是()A.95°B.85°C.100°D.125°12.(2019秋•浏阳市期末)以下列长度的线段为边,可以作一个三角形的是()A.6cm,16cm,21cm B.8cm,16cm,30cmC.6cm,16cm,24cm D.8cm,16cm,24cm13.(2020春•衡阳期末)如果一个多边形的内角和与外角和相等,那么这个多边形是()A.七边形B.六边形C.五边形D.四边形14.(2019秋•永定区期末)如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.915.(2020春•赫山区期末)若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.1316.(2020春•长沙期末)△ABC中BC边上的高作法正确的是()A.B.C.D.17.(2019春•永州期末)在Rt△ABC中,若∠A=40°,∠C=90°,则∠B的度数是()A.20°B.30°C.40°D.50°18.(2019春•靖州县期末)下列度数不可能是多边形内角和的是()A.360°B.560°C.720°D.1440°19.(2018秋•江华县期末)以下列各组长度的线段为边,其中a>3,能构成三角形的是()A.2a+7,a+3,a+4B.5a2,6a2,10a2C.3a,4a,a D.a﹣1,a﹣2,3a﹣3二.填空题(共9小题)20.(2020春•涟源市期末)如图,在Rt△ABC中,∠B=90°,∠ACD=130°,则∠A=°.21.(2020春•长沙期末)如图,四边形ABCD中,且∠1,∠2分别是∠BCD和∠BAD的邻补角,若∠1+∠2=150°.则∠B+∠ADC=.22.(2020春•开福区校级期末)已知三条线段长度分别为1、2、4,能否组成三角形?.(填“能”或“不能”).23.(2020春•雨花区期末)如图,若∠A=30°,∠ACD=105°,则∠EBC=°.24.(2020春•衡阳期末)如图,小明从P点出发,沿直线前进5米后向右转α,接着沿直线前进5米,再向右转α,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则α的度数是.25.(2019秋•涟源市期末)如图,∠BDC=130°,∠A=40°,∠B+∠C的大小是.26.(2020春•岳麓区校级期末)如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD=42°,则∠BFD=度.27.(2020春•常德期末)如图,两直线AB与CD平行,则∠1+∠2+∠3+∠4+∠5+∠6=°.28.(2019春•开福区校级期末)三角形的两边长分别为5cm和12cm,第三边与前两边中的一边相等,则三角形的周长为.三.解答题(共7小题)29.(2020春•永州期末)如图所示,在四边形ABCD中,∠A=110°,∠ABC=70°,BD⊥CD于点D,EF⊥CD于点F,试说明∠1=∠2.30.(2019秋•双清区期末)如图,点A在MN上,点B在PQ上,连接AB,过点A作AC⊥AB交PQ于点C,过点B作BD平分∠ABC交AC于点D,且∠NAC+∠ABC=90°.(1)求证:MN∥PQ;(2)若∠ABC=∠NAC+10°,求∠ADB的度数.31.(2020春•益阳期末)阅读:如图1,CE∥AB,所以∠1=∠A,∠2=∠B.所以∠ACD=∠1+∠2=∠A+∠B.这是一个有用的结论,请用这个结论,在图2的四边形ABCD内引一条和一边平行的直线,求∠A+∠B+∠C+∠D的度数.32.(2018秋•靖州县期末)已知:如图,△ABC中,AD⊥BC于D,BE是三角形的角平分线,交AD于F.(1)若∠ABC=40°,求∠AFE的度数.(2)若∠BAC是直角,请猜想:△AFE的形状,并写出证明.33.(2019春•雨花区校级期末)如图,AD是△ABC的角平分线,∠B=45°,点E在BC延长线上且EH ⊥AD于H.(1)若∠BAD=30°,求∠ACE的度数.(2)若∠ACB=85°,求∠E的度数.34.(2018秋•安仁县期末)如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°.(1)求∠B的度数;(2)若∠BAC=70°,判断△ABC的形状,并说明理由.35.(2019春•天心区校级期末)一个多边形的内角和与外角和的和是1440°,通过计算说明它是几边形.参考答案与试题解析一.选择题(共19小题)1.【解答】解:∵∠A+∠ABC+∠ACB=180°,∠A=45°,∴∠ABC+∠ACB=135°,∵BD⊥AC,CE⊥AB,∴∠ABC+∠BCE=∠ACB+∠CBD=90°,∴∠ABC+∠BCE+∠ACB+∠CBD=180°,∴∠BCE+∠CBD=45°,∵∠BOC+∠BCE+∠DBC=180°,∴∠BOC=135°.故选:C.2.【解答】解:由多边形的外角和等于360度,可得∠1+∠2+∠3+∠4+∠5=360度.故选:C.3.【解答】解:根据三角形的三边关系,A、3+6=9>8,能组成三角形;B、2+3=5<6,不能够组成三角形;C、5+6=11,不能组成三角形;D、4+2=6<7,不能组成三角形.故选:A.4.【解答】解:∵在一个直角三角形中,有一个锐角等于25°,∴另一个锐角的度数是90°﹣25°=65°.故选:C.5.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵CD和BE是△ABC的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=120°,故选:C.6.【解答】解:∵AB∥CD,∴∠BAC=∠ACD=30°,∵∠AFD=∠CAF+∠ACF=45°,∴∠CAF=45°﹣30°=15°,故选:B.7.【解答】解:由题意得:4﹣3<x<4+3,即:1<x<7,故选:C.8.【解答】解:7﹣3<x<7+3,4<x<10,只有选项D符合题意.故选:D.9.【解答】解:∵在△ABC中,∠A:∠B:∠C=1:2:3,∴设∠A=x,则∠B=2x,∠C=3x.∵∠A+∠B+∠C=180°,即x+2x+3x=180°,解得x=30°,∴∠C=3x=90°,∴△ABC是直角三角形.故选:A.10.【解答】解:由三角形三边关系可知,3﹣2<x<3+2,∴1<x<5,故选:C.11.【解答】解:∵∠DBC是△ABD的外角,∴∠DBC=∠D+∠A,则∠D=∠DBC﹣∠A=110°﹣15°=95°,故选:A.12.【解答】解:A、∵6+16=22>21,∴6、16、21能组成三角形;B、∵8+16=24<30,∴8、16、30不能组成三角形;C、∵6+16=22<24,∴6、16、24不能组成三角形;D、∵8+16=24,∴8、16、24不能组成三角形.故选:A.13.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故选:D.14.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.15.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.16.【解答】解:为△ABC中BC边上的高的是D选项.故选:D.17.【解答】解:∵∠A=40°,∠C=90°,∴∠B=90°﹣40°=50°,故选:D.18.【解答】解:360°、720°、1440°都是180°的倍数,它们是多边形内角和;560°不是180°的倍数,所以它不可能是多边形内角和;故选:B.19.【解答】解:当a>3时,根据三角形的三边关系,得A、a+3+a+4=2a+7,不能组成三角形;B、5a2+6a2>10a2,能组成三角形;C、a+3a=4a,不能够组成三角形;D、a﹣1+a﹣2=2a﹣3,3a﹣3﹣2a+3=a>3,2a﹣3<3a﹣3,不能组成三角形.故选:B.二.填空题(共9小题)20.【解答】解:∵∠ACD的△ABC的一个外角,∴∠A=∠ACD﹣∠B=130°﹣90°=40°,故答案为:40.21.【解答】解:∵∠1+∠2=150°,∴∠DAB+∠DCB=360°﹣150°=210°,∵∠B+∠D+∠DAB+∠DCB=360°,∴∠B+∠ADC=360°﹣(∠DAB+∠DCB)=150°,故答案为150°.22.【解答】解:根据三角形的三边关系,1+2=3<4,不能组成三角形;故答案为:不能.23.【解答】解:∵∠ACD=∠A+∠ABC,∴105°=30°+∠ABC,∴∠ABC=75°,∴∠EBC=180°﹣∠ABC=105°,故答案为105.24.【解答】解:向左转的次数120÷5=24(次),则左转的角度是360°÷24=15°.故答案是:15°.25.【解答】解:延长BD交AC于H,∵∠BDC=∠DHC+∠C,∠DHC=∠A+∠B,∴∠BDC=∠A+∠B+∠C,∵∠BDC=130°,∠A=40°,∴∠B+∠C=130°﹣40°=90°故答案为90°.26.【解答】解:∵AD是高线,∴∠ADB=90°∵∠BAD=42°,∴∠ABC=48°,∵BE是角平分线,∴∠FBD=24°,在△FBD中,∠BFD=180°﹣90°﹣24°=66°.故答案为:66.27.【解答】解:分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB 利用内错角和同旁内角,把这六个角转化一下,可得,有5个180°的角,∴180×5=900°.故答案为:900.28.【解答】解:当第三边为5cm时,此时三角形的三边分别为:5cm,5cm和12cm,∵5+5<12,∴不能组成三角形;当第三边为12cm时,此时三角形的三边分别为:5cm,12cm和12cm,∵5+12>12,∴能组成三角形;此时周长为5+12+12=29cm,故答案为:29cm.三.解答题(共7小题)29.【解答】解:∵∠A=110°,∠ABC=70°,∴∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行),∴∠1=∠3(两直线平行,内错角相等),∵BD⊥CD,EF⊥CD,∴∠BDC=∠EFC=90°,∴BD∥EF,∴∠2=∠3(两直线平行,同位角相等),∴∠1=∠2(等量代换).30.【解答】(1)证明:∵AC⊥AB,∴∠BAC=90°,∴∠ABC+∠ACB=90°,∵∠NAC+∠ABC=90°,∴∠NAC=∠ACB,∴MN∥PQ;(2)解:∵∠ABC=∠NAC+10°=∠ACB+10°,∵∠ACB+∠ABC=90°,∴∠ACB+∠ACB+10°=90°,∴∠ACB=40°,∴∠ABC=50°,∵BD平分∠ABC,∴∠ABD=12∠ABC=25°,∵∠BAC=90°,∴∠ADB=90°﹣25°=65°.31.【解答】解:作DE∥AB,交BC于E,由题意,∠DEB=∠C+∠EDC,∴∠A+∠ADE=180°,∠B+∠DEB=180°,则∠A+∠B+∠C+∠ADC=∠A+∠B+∠C+∠EDC+∠ADE=∠A+∠B+∠DEB+∠ADE=360°.32.【解答】解:(1)∵AD⊥BC,∴∠ADB=90°,∵∠ABC=40°,BE平分∠ABC,∴∠DBF=12∠ABC=20°,∴∠BFD=90°﹣20°=70°∴∠AFE=∠BFD=70°(2)结论:△AEF是等腰三角形.理由:∵∠BAE=∠ADF=90°,∴∠AEF+∠ABE=90°,∠BFD+∠FBD=90°,∵∠ABE=∠DBF,∴∠AEF=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠AEF,∴AE=AF,∴△AEF是等腰三角形.33.【解答】解:∵AD是△ABC的角平分线∴∠BAD=∠CAD=12∠BAC(1)∵∠BAD=30°∴∠BAC=2∠BAD=60°∵∠B=45°∴∠ACE=∠B+∠BAC=45°+60°=105°(2)∵∠ACB=85°,∠B=45°,且∠ACB+∠B+∠BAC=180°∴∠BAC=50°∴∠CAD=25°∵∠ACB+∠CAD+∠ADC=180°∴∠ADC=70°∵EH⊥AD∴∠E+∠ADC=90°∴∠E=90°﹣70°=20°.34.【解答】解:(1)∵在△ABD中,AD=BD,∴∠B=∠BAD,∵∠ADC=∠B+∠BAD,∠ADC=80°,∴∠B=12∠ADC=40°;(2)△ABC是等腰三角形.理由:∵∠B=40°,∠BAC=70°,∴∠C=180°﹣∠B﹣∠BAC=70°,∴∠C=∠BAC,∴BA=BC,∴△ABC是等腰三角形.35.【解答】解:设它是n边形,依题意得:(n﹣2)180°+360°=1440°.解得:n=8.答:它是八边形.。
人教版2021年八年级上册第11章《三角形》单元复习试题一.选择题1.下列图形中,具有稳定性的是()A.B.C.D.2.三角形的角平分线、中线、高都是()A.直线B.线段C.射线D.以上都不对3.在△ABC中,作出AC边上的高,正确的是()A.①B.②C.③D.④4.四组木条(每组3根)的长度分别如图,其中能组成三角形的一组是()A.B.C.D.5.如图,在Rt△AOB中,∠O=90°,C为AO上一点,且不与A,O重合,则x可能是()A.10°B.20°C.30°D.40°6.将一个四边形用刀截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形7.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个8.如图∠1,∠2,∠3是五边形ABCDE的三个外角,若∠A+∠B=230°,则∠1+∠2+∠3=()A.140°B.180°C.230°D.320°9.如图,已知△ABC中,AD,AE,AF分别是三角形的高线,角平分线及中线,那么下列结论错误的是()A.AD⊥BC B.BF=CF C.BE=EC D.∠BAE=∠CAE 10.如图,已知四边形ABCD中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°11.如图,在△ABC中,AD,AE分别是△ABC的角平分线和高线,用等式表示∠DAE、∠B、∠C的关系正确的是()A.2∠DAE=∠B﹣∠C B.2∠DAE=∠B+∠CC.∠DAE=∠B﹣∠C D.3∠DAE=∠B+∠C12.已知三角形的三边长分别为a、b、c,化简|a+b﹣c|﹣2|a﹣b﹣c|+|a+b+c|得()A.4a﹣2c B.2a﹣2b﹣c C.4b+2c D.2a﹣2b+c二.填空题13.木工师傅做完房门后,为防止门变形,会沿着门的对角线方向钉上一根斜拉的木条,这做的根据是.14.在△ABC中,若∠A=40°,∠B=100°,则△ABC的形状是.15.如果一个正多边形的一个内角是162°,则这个正多边形是正边形.16.如图,∠ADB是△和△的外角;以AC为一边长的三角形有个.17.如图,线段AD和BC相交于点O,若∠A=70°,∠C=85°,则∠B﹣∠D=.18.如图,计算∠A+∠B+∠C+∠D+∠E+∠F=度.19.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P=°.三.解答题20.如图所示,在△ABC中,D是BC边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.21.如图,在△ABC中,CF、BE分别是AB、AC边上的中线,若AE=2,AF=3,且△ABC 的周长为15,求BC的长.22.如图,在△ABC中,点D在BC上,∠ADB=∠BAC,BE平分∠ABC,过点E作EF ∥AD,交BC于点F.(1)求证:∠BAD=∠C;(2)若∠C=20°,∠BAC=110°,求∠BEF的度数.23.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.24.阅读理解:请你参与下面探究过程,完成所提出的问题.(Ⅰ)问题引入:如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=70°,则∠BOC =度;若∠A=α,则∠BOC=(用含α的代数式表示);(Ⅱ)类比探究:如图②,在△ABC中,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α.试探究:∠BOC与∠A的数量关系(用含α的代数式表示),并说明理由.(Ⅲ)知识拓展:如图③,BO、CO分别是△ABC的外角∠DBC,∠ECB的n等分线,它们交于点O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,求∠BOC的度数(用含α、n的代数式表示).参考答案一.选择题1.解:A、具有稳定性,故此选项符合题意;B、不具有稳定性,故此选项不符合题意;C、不具有稳定性,故此选项不符合题意;D、不具有稳定性,故此选项不符合题意;故选:A.2.解:三角形的角平分线、中线、高都是线段.故选:B.3.解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,①、②、③都不符合高线的定义,④符合高线的定义.故选:D.4.解:A、2+2<5,不能构成三角形;B、2+2=4,不能构成三角形;C、2+3=5,不能组成三角形;D、3+2>4,能够组成三角形.故选:D.5.解:∵∠BCA=∠O+∠OBC,∠O=90°,∴90°<6x<180°,∴15°<x<30°,故选:B.6.解:一个四边形沿对角线截一刀后得到的多边形是三角形,一个四边形沿平行于边的直线截一刀后得到的多边形是四边形,一个四边形沿除上述两种情况的位置截一刀后得到的多边形是五边形,故选:A.7.解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.8.解:∵五边形ABCDE,∠A+∠B=230°,∴∠AED+∠EDC+∠BCD=540°﹣230°=310°,又∵∠AED+∠EDC+∠BCD+∠1+∠2+∠3=540°,∴∠1+∠2+∠3=540°﹣310°=230°.故选:C.9.解:∵AD,AE,AF分别是三角形的高线,角平分线及中线,∴AD⊥BC,∠BAE=∠CAE,BF=CF,而BE=CE不一定成立,故选:C.10.解:∵三角形的内角和等于180°,∴可得∠1和∠2的邻补角等于90°,∴∠1+∠2=2×180°﹣90°=270°.故选:C.11.解:∵∠BAC=180°﹣∠B﹣∠C,AD是∠BAC的平分线,∴∠BAD=∠BAC=(180°﹣∠B﹣∠C),∵AE是高,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAE﹣∠CAD=(90°﹣∠C)﹣(180°﹣∠B﹣∠C)=(∠B﹣∠C),故选:A.12.解:∵△ABC的三边长分别是a、b、c,∴必须满足两边之和大于第三边,两边的差小于第三边,则a+b﹣c>0,a﹣b﹣c<0,a+b+c >0∴|a+b﹣c|﹣2|a﹣b﹣c|+|a+b+c|=a+b﹣c+2a﹣2b﹣2c+a+b+c=4a﹣2c.故选:A.二.填空题13.解:木工师傅做完房门后,为防止门变形,会沿着门的对角线方向钉上一根斜拉的木条,这做的根据是三角形具有稳定性,故答案为:三角形具有稳定性.14.解:∵∠A+∠B+∠C=180°,∠A=40°,∠B=100°,∴∠C=180°﹣∠A﹣∠B=180°﹣40°﹣100°=40°,∵∠A=∠C,∴△ABC是等腰三角形;又∠B=100°∴△ABC是钝角三角形.故△ABC的形状是等腰三角形或钝角三角形.15.解:∵正多边形的一个内角是162°,∴它的外角是:180°﹣162°=18°,边数n=360°÷18°=20.故答案为:二十.16.解:根据图形可得:∠ADB是△ADC和△DFC的外角;以AC为一边长的三角形有:△ACF,△ADC,△ACB,△ACE,共4个;故答案为:ADC,DFC,4.17.解:∵∠C+∠D+∠COD=180°,∠A+∠B+∠AOB=180°,∴∠D=180°﹣∠C﹣∠COD,∠B=180°﹣∠A﹣∠AOB.∵∠AOB=∠COD,∴∠B﹣∠D=(180°﹣∠A﹣∠AOB)﹣(180°﹣∠C﹣∠COD)=∠C﹣∠A=85°﹣70°=15°.故答案为:15°.18.解:∵∠1=∠A+∠F,∠2=∠D+∠E,∠3=∠B+∠C,∴∠A+∠B+∠C+∠D+∠E+∠F=∠1+∠2+∠3,∠1、∠2、∠3是△MNP的三个不同外角,∵∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360.19.解:∵BP是△ABC中∠ABC的平分线,∠ABP=15°,∴∠CBP=∠ABP=15°,∵CP是∠ACB的外角的平分线,∠ACP=50°,∴∠PCM=∠ACP=50°,∴∠P=∠PCM﹣∠CBP=50°﹣15°=35°,故答案为:35.三.解答题20.解:设∠1=∠2=x°,则∠3=∠4=2x°,∵∠2+∠4+∠BAC=180°,∴x+2x+69=180,解得x=37,即∠1=37°,∴∠DAC=∠BAC﹣∠1=69°﹣37°=32°.21.解:∵CF、BE分别是AB、AC边上的中线,AE=2,AF=3,∴AB=2AF=2×3=6,AC=2AE=2×2=4,∵△ABC的周长为15,∴BC=15﹣6﹣4=5.22.(1)证明:∵∠ABC+∠BAC+∠C=180°,∠ABC+∠BDA+∠BAD=180°,∠BDA=∠BAC,∴∠BAD=∠C.(2)解:∵∠C=20°,∠BAC=110°,∴∠ABC=180°﹣20°﹣110°=50°,∵BE平分∠ABC,∴∠EBF=∠ABC=25°,∵∠BDA=∠BAC=110°,∴∠BHD=180°﹣∠HBD﹣∠BDA=180°﹣25°﹣110°=45°,∵AD∥EF,∴∠BEF=∠BHD=45°.23.(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E,则90°﹣∠A=∠A,解得∠A=60°;④∠E=2∠Q,则∠A=2(90°﹣∠A),解得∠A=120°.综上所述,∠A的度数是90°或60°或120°.24.解:(Ⅰ)∠ABC+∠ACB=180°﹣∠A=110°,∵点O是∠ABC和∠ACB平分线的交点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=55°,∴∠BOC=125°;∠ABC+∠ACB=180°﹣∠A=180°﹣α,∵点O是∠ABC和∠ACB平分线的交点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=90°﹣α,∴∠BOC=90°+α;(Ⅱ)∠BOC=120°+α.理由如下:∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=120°+α.(3)∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠DBC+∠ECB)=180°﹣(180°+∠A)=•180°﹣.故答案为:125°;90°+α.。
第十一章三角形》单元测试卷含答案(共5套)第十一章三角形单元测试卷(一)时间: 120分钟满分: 120分一、选择题1.以下列每组长度的三条线段为边能组成三角形的是() A。
2.3.6.B。
2.4.6C。
2.2.4.D。
6、6、62.如图, 图中∠1的大小等于()A。
40°。
B。
50°。
C。
60°。
D。
70°3.一个多边形的每一个内角都等于140°, 则它的边数是() A。
7.B。
8.C。
9.D。
104.如图, △ABC中, ∠A=46°, ∠C=74°, BD平分∠XXX于点D, 那么∠XXX的度数是()A。
76°。
B。
81°。
C。
92°。
D。
104°5.用五根木棒钉成如下四个图形, 具有稳定性的有()A。
1个。
B。
2个。
C。
3个。
D。
4个6.如图, 点A, B, C, D, E, F是平面上的6个点, 则∠A+∠B +∠C+∠D+∠E+∠F的度数是()A。
180°。
B。
360°。
C。
540°。
D。
720°二、填空题7.已知三角形两条边长分别为3和6, 第三边的长为奇数, 则第三边的长为9.8.若n边形内角和为900°, 则边数n为10.9.将一副三角板按如图所示的方式叠放, 则∠α的度数为30°。
10.如图, 在△ABC中, ∠ACB=90°, ∠A=20°。
若将XXX沿CD所在直线折叠, 使点B落在AC边上的点E处, 则∠XXX的度数是70°。
11.如图, 在△ABC中, E、D.F分别是AD.BF、CE的中点。
若△DEF的面积是1cm², 则S△ABC=3cm²。
12.当三角形中一个内角β是另一个内角α的时, 我们称此三角形为“希望三角形”, 其中角α称为“希望角”。
如果一个“希望三角形”中有一个内角为54°, 那么这个“希望三角形”的“希望角”的度数为27°。
第十一章 三角形 单元复习与检测题(含答案)一、选择题1、以下列各组线段为边,能组成三角形的是( ) A.1cm, 2cm, 4cm B.8cm, 6cm, 4cm C.12cm, 5cm, 6cm D.2cm, 3cm, 6cm2、三角形的三条高在( ) A.三角形的内部 B.角形的外部C.三角形的边上D.角形的内部、外部或与边重合3、一个三角形的两边长分别是3和6,第三边的长为奇数,那么第三边的长是( ) A.5或7 B.7或9 C.3或5 D.94、如图,在△ABC 中,∠ABC 的平分线与∠ACB 的外角平分线相交于D 点,∠A =50°,则∠D =( )A .15°B .20°C .25°D .30°5、如图,∠ABD ,∠ACD 的角平分线交于点P ,若∠A =50°,∠D =10°,则∠P 的度数为( )A .15°B .20°C .25°D .30°6、一个多边形的外角中,钝角的个数不可能是( ) A .1个 B .2个 C .3个 D .4个7、下列说法正确的是( )A .三角形三条高都在三角形内B .三角形三条中线相交于一点C .三角形的三条角平分线可能在三角形内,也可能在三角形外D .三角形的角平分线是射线8、在建筑工地我们常可看见如图7-31所示,用木条EF 固定矩形门框ABCD 的情形.这种做法根据( )A.两点之间线段最短B.两点确定一条直线C.三角形的稳定性D.矩形的四个角都是直角9、若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( ) A .2:1 B .1:1 C .5:2 D .5:4 10、三角形的高线是( ) A .直线 B .线段C .射线D .三种情况都可能二、填空题11、△ABC 中,如果∠A =∠B =3∠C ,则∠A = .12、如图,在△ABC 中,AD 是BC 边上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是24,则△ABE 的面积是________.13、已知a ,b ,c 是三角形的三边长,化简:|a -b +c |-|a -b -c|=__________.14、一个多边形截去一个角后,所形成的一个新多边形的内角和为2520°,则原多边形有__________条边。
第十一章《三角形》单元检测题一、选择题(每小题3分,共30分)1.若三角形的三边长分别为5、x 、15,则x 的值可以是( )A .2B .3C .8D .112.下列图形中,△ABC 的高画法错误的是( )A .B .C .D .3.一个多边形的对角线共有27条,则这个多边形的边数是( )A .8B .9C .10D . 114.如图,D 、E 分别是BC 、AC 的中点,2CDE S ∆=,则ABC 的面积为( )A .4B .8C .10D .125.如图,工人师傅做了一个长方形窗框 ABCD E F G H ,,,, 分别是四条边上的中点,为使它稳固,需要在窗框上钉一根木条,这根木条不能钉在( )A .E H , 两点之间B .AC , 两点之间C .F E , 两点之间D .E G , 两点之间6.若三角形三个内角度数比为345::,则这个三角形一定是( )A .锐角三角形B .直角三角形 C .钝角三角形 D .不能确定7.已知△ABC中,∠A=80°,∠B、∠C的平分线的夹角是( )A.130°B.60°C.130°或50°D.60°或120°8.如图,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一点,FG∥CE,交AB于点G,若∠1=70°,∠2=36°,则∠3=( )A.36°B.40°C.34°D.70°9. 如图,∠BDC=98∘,∠C=38∘,∠B=23∘,则∠A的度数是( )A. 61∘B. 60∘C. 37∘D. 39∘10. 如图,在四边形ABCD中,∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,则∠E+∠F的度数是( )A. 100∘B. 150∘C. 180∘D. 270∘二、填空题(每题3分,共24分)11.工程师设计屋顶时通常把钢架屋顶设计成三角形,这样做应用的数学原理是 .12.如图,BD为△ABC的中线,已知AC=10,则CD= .13.如果一个正多边形每一个内角都等于135°,那么这个正多边形的边数是 .14.△ABC中,∠B=40°,D在BA的延长线上,AE平分∠CAD,且AE∥BC,则∠BAC= .15.如图,五边形ABCDE中,AE∥CD,∠A=147°,∠B=121°,则∠C= .16.图中共有三角形 个,其中以AE为边的三角形有 个.17. 如图,在五边形ABCDE中,点M,N分别在AB,AE边上,∠1+∠2=100∘,则∠B+∠C+∠D+∠E=.18. 如图,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为cm.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,ABC 中,AD 是ABC 的中线,AE 是ABC 的角平分线,AH 是ABC 的高.(1)若ABD △的面积为8,4AH =,求BC 的长;(2)若3020B EAH ∠=︒∠=︒,,求C ∠的度数.20.如图,点C 为ABF △的边AB 的延长线上一点,过点C 作CE AF ⊥于点E ,CE 交BF 于点G ,若40F ∠=︒,20C ∠=︒,求FBC ∠的度数.21.如图,在△ABC 中,BD 是∠ABC 的平分线,CE 是AB 边上的高,且∠ACB =60°,∠ADB =97°,求∠A 和∠ACE 的度数.22.如图,在Rt △ABC 中,∠ACB=90°,D 是AB证:CD⊥AB;23.如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°,求:(1)∠BAE的度数;(2)∠DAE的度数.24.如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC的三分线,其中,BD是邻AB的三分线,BE是邻BC的三分线.(1)如图②,在△ABC中,∠A=73°,∠B=42°,∠B的三分线交AC于点D,求∠BDC的度数;(2)如图③,在△ABC中,BP是∠ABC的邻AB三分线,CP是∠ACB的邻AC三分线,且BP⊥CP,垂足为P,求∠A的度数.答案一、选择题题号12345678910答案D B B B D A C C C C二、填空题11.解:工程师设计屋顶时通常把钢架屋顶设计成三角形是利用三角形具有稳定性,故答案为:三角形具有稳定性.12.解:∵BD为△ABC的中线,∴CD=AC∵AC=10,∴CD=5故答案为:5.13.解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数n=360÷45=8,∴该正多边形的边数是8.故答案为:8.14.100°15.92°16.解:(1)①△BDO,△ABO,△AOE,共3个;②△ABD,△ADC,2个;③△ABE,△BCE,2个;④△ABC,1个;综上,图中共有共8个三角形;(2)以AE为边的三角形有:△AOE,△ABE,2个;故答案为:8;2.17.解:∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=68°+65°=133°,故答案为:133°.18.解:∵DF⊥AB,∴∠ADE=90°,∵∠A=30°,∴∠AED=∠CEF=90°﹣30°=60°,∴∠ACF=180°﹣∠F﹣∠CEF=180°﹣40°﹣60°=80°,故答案为80°.三、解答题19.(1)8(2)70︒20.110︒21.解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是∠ABC的平分线,∴∠ABC=74°,∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°,∴∠ACE=90°-∠A=44°.22.【分析】(1)利用三角形三边关系进而得出c的取值范围,进而得出答案;(2)①根据偶数的定义,以及x的取值范围即可求解;②利用等腰三角形的判定方法得出即可.【解答】解:(1)因为a=4,b=6,所以2<c<10.故周长x的范围为12<x<20.(2)①因为周长为小于18的偶数,所以x=16或x=14.当x为16时,c=6;当x为14时,c=4.②当c=6时,b=c,△ABC为等腰三角形;当c=4时,a=c,△ABC为等腰三角形.综上,△ABC是等腰三角形.【点评】此题主要考查了等腰三角形的判定和三角形三边关系,得出c的取值范围是解题关键.23.解:(1)∵∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣30°=80°.∵AE平分∠BAC,∴.(2)∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=90°﹣70°=20°.∴∠DAE=∠BAE﹣∠BAD=40°﹣20°=20°.24.解:(1)如图,当BD是“邻AB三分线”时,∵∠A=73°,∠B=42°,∴∠BDC=∠A+∠ABD=73°+×42°=87°;当BD′是“邻BC三分线”时,∠BDC′=∠A+∠ABD′=73°+×42°=101°;(2)∵BP⊥CP,∴∠BPC=90°,∴∠PBC+∠PCB=90°,∵BP、CP分别是∠ABC邻AB三分线和∠ACB邻AC三分线,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠ABC+∠ACB=90°,∴∠ABC+∠ACB=135°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣135°=45°.。
第11章 三角形 单元测试题一、单选题1.根据下列已知条件,能确定的形状和大小的是( )A .,,B .,,C .,,D .,,2.如图,一只手握住了一个三角形的一部分,则这个三角形是( )A .钝角三角形B .直角三角形C .锐角三角形D .以上都有可能3.如图,为估计池塘两岸,间的距离,小明在池塘一侧选取了一点,测得,,那么间的距离不可能是( )A .B .C .D .4.如图,人字梯中间一般会设计一“拉杆”,这样做的道理是( )A .三角形具有稳定性B .垂线段最短C .两点之间,线段最短D .两直线平行,内错角相等5.在中,,若,则等于( )A .B .C .D .6.如图,AE ,AD 分别是的高和角平分线,,,则的度数为( )ABC 30A ∠=︒=60B ∠︒90C ∠=︒40A ∠=︒50B ∠=︒5cm AB =5cm AB =4cm AC =30B ∠=︒6cm AB =4cm BC =30A ∠=︒A B P 14m PA =10m PB =AB 4m 15m 20m 22m Rt ABC 90C ∠=︒50A ∠=︒B ∠55︒50︒45︒40︒ABC 30B ∠=︒70C ∠=︒DAE ∠A .40°B .20°C .10°D .30°7.四边形具有不稳定性,如图,挤压矩形ABCD ,会产生变形,得到四边形EBCF ,则在这个变化过程中,关于矩形ABCD 的周长和面积,下列说法正确的是( )A.周长和面积都不变B.周长不变,面积变小C .周长变小,面积不变D .周长变小,面积变小8.一个多边形每个外角都等于,则从这个多边形的某个顶点画对角线,最多可以画出几条( )A .7条B .8条C .9条D .10条9.正五边形的每个内角度数为( )A .B .C .D .10.一个正多边形的外角等于36°,则这个正多边形的内角和是( )A .1440°B .1080°C .900°D .720°11.一个多边形截去一个角后,形成另一个多边形的内角和为,那么原多边形的边数为( )A .5B .5或6C .6或7D .5或6或712.小磊利用最近学习的数学知识,给同伴出了这样一道题:假如从点A 出发,沿直线走5米后向左转θ,接着沿直线前进5米后,再向左转θ……如此下去,当他第一次回到A 点时,发现自己走了60米,θ的度数为( )A .28°B .30°C .33°D .36°二、填空题36︒72︒100︒108︒120︒720︒14.如图,在中, .15.如图,在中,上,且,则16.大桥钢架、索道支架、人字梁等为了坚固,学校门口的电动推拉门是利用四边形的17.如图,两条平行线l 1、那么∠2= .ABC A ∠=ABC ∆∠DE BC ∥EDC ∠三、解答题(1)写出图中所有相等的角和相等的线段;(2)当BF=8cm ,AD=7 cm 时,求△ABC 22.已知:在中,,分别是(1)若,.求(2)试求与有何关系?23.如图,在中,(1) ;(2)若是两条外角平分线的交点,则ABC AD AE 30B ∠=︒50C ∠=︒DAE ∠DAE ∠C B ∠-∠ABC 50BAC ∠=︒BIC ∠=︒D(3)在(2)的条件下,若是内角和外角的平分线的交点,试探索与的数量关系,并说明理由.E ABC ∠ACG ∠BEC ∠BAC ∠参考答案:1.B解:A 、∠A =30°,∠B =60°,∠C =90°,△ABC 的形状和大小不能确定,故不符合题意;B 、∠A =40°,∠B =50°,AB =5cm ,则利用“ASA”可判断△ABC 是唯一的,故符合题意;C 、AB =5cm ,AC =4cm ,∠B =30°,△ABC 的形状和大小不能确定,故不符合题意;D 、AB =6cm ,BC =4cm ,∠A =30°,△ABC 的形状和大小不能确定,故不符合题意. 2.D解:A 、当另外两角为44°和100°时,该三角形为钝角三角形,B 、当另外两角为90°和54°时,该三角形为直角三角形,C 、当另外两角为80°和64°时,该三角形为锐角三角形,∴钝角三角形,直角三角形,锐角三角形都有可能,3.A解:,,,即,间的距离不可能是:.4.A解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性.5.D解:在中,,,,,6.B解:∵,,AE ⊥BC ,∴∠BAC=80°,∠AEB=90°,∵AD 平分∠BAC ,∴∠BAD=∠CAD=40°,在△AEB 中,∠AEB+∠B+∠BAE=180°,∴∠BAE=60°,14m PA = 10m PB =PA PB AB PA PB ∴-<<+4m 24m AB <<AB ∴4m Rt ABC =90C ∠︒ =50A ∠︒=90A B ∴∠+∠︒=9050=40B ∴∠︒-︒︒30B ∠=︒70C ∠=︒∴∠EAD=∠BAE-∠BAD=60°-40°=20°;7.B解:因为把长方形拉成平行四边形后,每个边的长度不变,所以它的周长就不变;但是平行四边形的高比长方形的宽变小了,所以平行四边形的面积就变小了.8.A解:根据题意可知多边形为正多边形,设边数为则由多边形外角和的性质可得,解得则从一个顶点最多可以画10-3=7条对角线9.C解:,∴正五边形的每个内角度数为 10.A解:∵一个正多边形的外角等于36°,∴这个正多边形是正十边形,∴内角和为(10﹣2)×180°=1440°,11.D解:如图,剪切的三种情况:①不经过顶点剪,则比原来边数多1,②只过一个顶点剪,则和原来边数相等,③按照顶点连线剪,则比原来的边数少1,设内角和为的多边形的边数是n ,∴,解得:.则原多边形的边数为5或6或7.12.Bn36360n ︒⨯=︒10n =()180525=108︒⨯-÷︒108︒720︒()2180720n -⋅︒=︒6n =。
《三角形》单元测试(时间:40分钟满分:100分)一、选择题(每小题3分,共24分)1.下列各组数可能是一个三角形的边长的是()A.1,2,4B.4,5,9C.4,6,8D.5,5,112.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B. C. D.3.一个多边形的每个外角都等于72°,则这个多边形的边数为()A.5B.6C.7D.84.如图,图中∠1的大小等于()A.40°B.50°C.60°D.70°5.小鹏用家中多余的硬纸板做了一个如图所示的多边形飞镖游戏盘,则该游戏盘的内角和比外角和多()A.1080°B.720°C.540°D.360°6.一副三角板有两个三角形,如图叠放在一起,则∠的度数是()A.120°B.135°C.150°D.165°7.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A.95°B.120°C.135°D.无法确定8.如图,在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于点P.若∠A=50°,则∠BPC的度数是()A.50°B.90°C.100°D.130°二、填空题(每小题4分,共24分)9.如图是自行车的三角形支架,这是利用三角形具有__________性10.已知在△ABC中,∠A:∠B:∠C=1:3:5,则△ABC是__________三角形11.如图所示,直线a∥b.直线c与直线a,b分别相交于点A,B,AM⊥b,垂足为M.若∠1=58°,则∠2=_________.12.如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D=________13.已知等腰三角形的一边等于6cm,一边等于7cm,则它的周长为________.14.如图,在△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处.若DE∥AB,则∠ADC的度数为___________三、解答题(共52分)15.(8分)如图,在△ABC中,AD,AE分别是边BC上的中线和高,AE=3cm,S△ABC=12cm2,求BC和DC的长16.(10分)某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在一同一条直线上,测量人员在如图所示的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取个可以同时看到点A,P,Q的点O,测得∠A=28°,∠O=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?17.(10分)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F(1)求证:CF∥AB;(2)求∠DFC的度数18.(12分)如图,已知,在△ABC中,∠B<∠C,AD平分∠BAC,E是线段AD (除去端点A,D)上的一动点,EF BC于点F(1)若∠B=40°,∠DEF=10°,求∠C的度数;(2)当点E在AD上移动时,∠B,∠C,∠DEF之间存在怎样的等量关系?请写出这个等量关系,并说明理由19.(12分)如图,在四边形ABCD中,∠A=∠C=90°(1)求证:∠ABC+∠ADC=180°;(2)如图1,若DE平分∠ADC,BF平分∠ABC的外角,写出DE与BF的位置关系,并证明;(3)如图2,若BF,DE分别平分∠ABC,∠ADC的外角,写出DE与BF的位置关系,并证明参考答案1.C2.A3.A4.D5.B6.D7.C8.D9.稳定10.钝角11.32°12.425°13.19cm或20cm14.110°15.解:BC=8cm,DC=4cm16.解:∠QBO应等于52°才能确保BQ与AP在同一条直线上17.解:(1)证明:由三角板的性质可知∠D=30°,∠3=45°,∠DCE=90°. ∵CF平分∠DCE,∴∠1=∠2=∠DCE=45°·∴∠1=∠3.∴CF∥AB.(2)∠DFC=105°18.解:(1)∠C=60°.(2)∠C-∠B=2∠DEF19.解:(1)证明:在四边形ABCD中,∠A+∠ABC+∠C+∠ADC=360°,∵∠A=∠C=90°,∴∠ABC+∠ADC=180.(2)DE⊥BF,证明略. (3)DE∥BF,证明略。
章末复习(一) 三角形分点突破命题点1 三角形的三边关系1.(大连中考)下列长度的三条线段能组成三角形的是( )A.1,2,3 B.1,2,3 C.3,4,8 D.4,5,6 2.(泉州中考)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( )A.11 B.5 C.2 D.1命题点2 三角形的高.中线与角平分线3.下列不一定在三角形内部的线段是( )A.三角形的角平分线 B.三角形的中线C.三角形的高 D.以上都不对4.如图,△ABC的角平分线BD与中线CE相交于点O.有下列两个结论:①BO是△CBE的角平分线;②CO是△CBD的中线.其中( ) A.只有①正确B.只有②正确C.①和②都正确 D.①和②都不正确5.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是________________.命题点3 三角形的内角和与外角性质6.(东莞中考)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是( )A.75° B.55° C.40° D.35°7.一副三角板AOC和BCD如图摆放,则∠AOB=________.8.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC 于D,DE∥AB,交AC于E,则∠ADE的大小是________.9.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,若∠A=60°,求∠BFC的度数.命题点4 多边形及其内角和10.从多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2 013个三角形,则这个多边形的边数为( )A.2 011 B.2 015 C.2 014 D.2 016 11.(临沂中考)将一个n边形变成n+1边形,内角和将( )A.减少180° B.增加90°C.增加180° D.增加360°综合训练12.已知等腰三角形的两边长分别是3和6,则这个等腰三角形的周长为( )A.12 B.15 C.12或15 D. 16 13.(莱芜中考)一个多边形除一个内角外其余内角的和为1 510°,则这个多边形对角线的条数是( )A.27 B.35 C.44 D.5414.将一副直角三角板按如图所示叠放在一起,则图中∠α的度数是________.15.如图,在Rt△ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E,F,则图中与∠C(∠C除外)相等的角的个数是________个.16.将正三角形.正四边形.正五边形按如图所示的位置摆放.如果∠3=30°,那么∠1+∠2=________度.17.如图,AD是△ABC的BC边上的高,AE是△ABC的一条角平分线,若∠B=42°,∠C=70°,求∠AEC和∠DAE的度数.18.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,求∠AEC的度数.19.如图,△ABC中,AD⊥BC于点D,BE平分∠ABC,若∠ABC=64°,∠AEB=70°.(1)求∠CAD的度数;(2)若点F为线段BC上的任意一点,当△EFC为直角三角形时,求∠BEF的度数.参考答案1.D 2.B 3.C 4.A 5.三角形的稳定性 6.C 7.165° 8.40°9.∵∠A =60°,∴∠ABC +∠ACB =120°.∵BE ,CD 是∠ABC ,∠ACB 的平分线,∴∠CBE =12 ∠ABC ,∠BCD =12∠ACB . ∴∠CBE +∠BCD =12(∠ABC +∠ACB )=60°. ∴在△BFC 中,∠BFC =180°-60°=120°.10.C 11.C 12.B 13.C 14.75° 15.3 16.7217.∵∠B =42°,∠C =70°,∴∠BAC =180°-∠B -∠C =68°.∵AE 平分∠BAC ,∴∠BAE =12∠BAC =34°. ∴∠AEC =∠B +∠BAE =76°.∵AD ⊥BC ,∴∠ADE =90°.∴∠DAE =90°-∠AEC =14°.18.∵三角形的外角∠DAC 和∠ACF 的平分线交于点E ,∴∠EAC =12∠DAC ,∠ECA =12∠ACF . 又∵∠B =40°(已知),∠B +∠BAC +∠ACB =180°(三角形内角和定理), ∴12∠DAC +12∠ACF =12(∠B +∠ACB )+12(∠B +∠BAC )=12(∠B +∠B +∠BAC +∠ACB )=110°(外角定理).∴∠AEC =180°-(12∠DAC +12∠ACF )=70°.19.(1)∵BE 平分∠ABC ,∴∠ABC =2∠EBC =64°.∴∠EBC =32°.∵AD ⊥BC ,∴∠ADB =∠ADC =90°.∴∠BAD =90°-64°=26°.∵∠C =∠AEB -∠EBC =70°-32°=38°,∴∠CAD =90°-38°=52°.(2)分两种情况:①当∠EFC =90°时,如图1所示.则∠BFE =90°, ∴∠BEF =90°-∠EBC =90°-32°=58°;②当∠FEC =90°时,如图2所示,则∠EFC =90°-38°=52°, ∴∠BEF =∠EFC -∠EBC =52°-32°=20°.综上所述,∠BEF 的度数为58°或20°.。
2024-2025学年人教新版八年级上册数学《第11章三角形》单元测试卷一.选择题(共10小题,满分30分,每题3分)1.△ABC的三角之比是1:2:3,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定2.下面四个图形中,线段BD是△ABC的高的是()A.B.C.D.3.学习了四边形之后,小颖同学用如图所示的方式表示了四边形与特殊四边形的关系,则图中的“M”和“N”分别表示()A.平行四边形,正方形B.正方形,菱形C.正方形,矩形D.矩形,菱形4.一个正n边形的一个外角与它相邻的内角相等,则n的值为()A.4B.5C.6D.75.下面是三根小棒的长度(单位:cm),能围成三角形的是()A.1,2,3B.3,4,8C.5,5,10D.2,8,76.如图,有一个直角三角形纸板破损了一个角,如果把它补成完整的三角形纸板,需要补的角的度数是()A.45°B.35°C.55°D.25°7.将一副三角板按如图所示方式摆放,使有刻度的边互相垂直,则∠1=()A.45°B.50°C.60°D.75°8.空调安装在墙上时,一般都会采用如图的方法固定,这种方法应用的几何原理是()A.两点确定一条直线B.两点之间线段最短C.三角形的稳定性D.垂线段最短9.如图,点P是△ABC的重心,过点P作AC的平行线,分别交AB,BC于点D,E,若AC=6,则DE 的长为()A.2B.3C.4D.510.如图,将一副三角尺按不同位置摆放,摆放方式中∠α≠∠β的图形有()A.B.C.D.二.填空题(共10小题,满分30分,每题3分)11.多边形的每一个内角都等于它相邻外角的5倍,则该多边形的边数是.12.一个三角形,一个内角的度数是另两个内角度数和的.另两个内角的度数相差18°.这个三角形的最小的内角的度数是.13.如图,在生活中,为了保证儿童的安全,通常儿童座椅主体框架成三角形,这是利用了.14.已知a,b,c是△ABC的三边长,满足|a﹣7|+(b﹣2)2=0,c为奇数,则c=.15.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',变形后∠A'=30°,若矩形ABCD的面积是12,则平行四边形A'B'C'D'的面积是.16.如图,∠ACB=90°,AC=6,BC=8,点D在AB上,∠A=2∠BCD,则CD的长为.17.如图,AP,BP分别平分△ABC内角∠CAB和外角∠CBD,连接CP,若∠ACP=130°,则∠APB =.18.在△ABC中,AD,BE为三角形的高,M为AD,BE所在直线的交点,∠BMD=52°,则∠C的度数是.19.已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S=4cm2,则阴影△ABC 部分的面积为cm2.20.如图,点D是△ABC的重心,连接AD并延长交BC于点E,AB=4,△ABE的周长比△ACE的周长大1.8,则AC=.三.解答题(共7小题,满分60分)21.已知在△ABC中,AB=5,BC=2,且AC为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.22.已知:如图,点P是△ABC的重心,过P作AC的平行线,分别交AB,BC于点D,E,作DF∥EC,交AC于点F,若△ABC的面积为18cm2,求四边形ECFD的面积.23.如图,在△ABC中,∠B=38°,∠C=60°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE 的度数.24.如图,在五边形ABCDE中,AP平分∠EAB,且AP∥DE,交CD于点P.(1)五边形ABCDE的内角和为度;(2)若∠C=100°,∠D=75°,∠E=135°,求∠B的度数.25.如图,AD是△ABC的高,CE是△ABC的角平分线,BF是△ABC的中线.(1)若∠ACB=50°,∠BAD=65°,求∠AEC的度数;(2)若AB=9,△BCF与△BAF的周长差为3,求BC的长.26.如图,在△ABC中,∠ACB=90°,∠CDB=90°,CE是△ABC的角平分线,已知∠CEB=105°,求∠ECB,∠ECD的大小.27.如图,已知每个小正方形格的面积是1平方厘米,求不规则图形的面积是多少平方厘米.参考答案与试题解析一.选择题(共10小题,满分30分,每题3分)1.B2.D3.B4.A5.D6.B7.D8.C9.C10.D二.填空题(共10小题,满分30分,每题3分)11.12.12.45°.13.三角形的稳定性.14.7.15.6.16..17.40°.18.52°或128°.19.见试题解答内容20.2.2.三.解答题(共7小题,满分60分)21.见试题解答内容22.见试题解答内容23.11°.24.(1)540;(2)∠B=140°.25.(1)50°(2)12或15.26.45°,15°.27.不规则图形的面积是19平方厘米.。
八年级数学上册《第十一章三角形》单元测试卷-带答案(人教版)一、单选题1.下列语句正确的是()A.三角形的角平分线、中线和高都在三角形内B.直角三角形的高只有一条C.三角形的高至少有一条在三角形内D.钝角三角形的三条高都在三角形外2.正多边形的每一个外角都等于45°,则这个多边形的边数是()A.6 B.7 C.8 D.93.已知三角形的两边长分别是4、7,则第三边长a的取值范围是()A.3<a<11 B.3≤a≤11 C.a>3 D.a<114.如图,∠1+∠2+∠3+∠4+∠5+∠6=()A.180°B.270°C.360°D.不能确定5.如图,在△ABC中AB=AC,点D是B C延长线上一点,且∠BAC=2∠CAD已知BC=4,AD= 7则△ACD的面积为()A.7 B.14 C.21 D.286.如图,D,E是△ABC中BC边上的点,且BD=DE=EC,那么()A.S1<S2<S3B.S1>S2>S3C.S1=S2=S3D.S2<S1<S37.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.270°C.360°D.720°8.如图,将三角尺的直角顶点放在直尺的一边上∠1=30°,∠2=50°则∠3的度数等于()A.20°B.30°C.50°D.80°二、填空题9.在△ABC中,∠A=50°,∠B,∠C的角平分线相交于点O,则∠BOC的度数是.10.正多边形的每一个内角比相邻的外角大90°,则这个多边形的边数是11.已知△ABC的三个内角的度数之比∠A:∠B:∠C=1:3:5则∠B=度,∠C=度.12.如图,已知AB//DE,∠ABC=70°,∠CDE=140°则∠BCD=.13.如图,△ABC中,点D在BC上且BD=2DC,点E是AC中点,已知△CDE面积为2,那么△ABC的面积为.14.如图所示,在△ABC中∠A=66°,点I是三条角平分线的交点,则∠BIC的大小为三、解答题15.将长度为24的一根铝丝折成各边均为正整数的三角形,这个三角形的三边分别记为a、b、c,且a≤b≤c,请写出满足题意的a、b、c.16.已知:如图,△ABC的两条高线BD、CE相交于H点∠A=56°求∠BHC的度数.17.探索归纳:(1)如图1,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( ) A.90°B.135°C.270°D.315°(2)如图2,已知△ABC中∠A=40°,剪去∠A后成四边形,则∠1+∠2=(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.18.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.19.如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.20.如图,已知直线AB,CD,AC上的点M,N,E满足ME⊥NE,∠AME+∠CNE=90°,∠ACD的平分线CG 交MN于G,作射线GF∥AB.(1)直线AB与CD平行吗?为什么?(2)若∠CAB=66°,求∠CGF的度数.参考答案1.C2.C3.A4.C5.A6.C7.C8.A9.115°10.811.60;10012.30°13.1214.123°15.解答:∵a+b+c=24,且a+b>c,a≤b≤c,∴8≤c≤11,即c=8,9,10,11,故可得(a,b,c)共12组:当c=11时,有:2,11,11; 3,10,11;4,9,11;5,8,1;6,7,11.当c=10时,有:4,10,10;5,9,10;6,8,10;7,7,10.当c=9时,有: 6,9,9;7,8,9.当c=8时,有:8,8,8.16.∵BD⊥AC,CE⊥AB∴∠AEH=∠ADH=90°在四边形AEHD中,∠AEH=∠ADH=90°,∠A=56°∴∠EHD=360°-∠AEH-∠ADH-∠A=360°-90°-90°-56°=124°∵∠BHC与∠EHD是对顶角∴∠BHC=∠EHD=124°.17.(1)C(2)220°(3)∠1+∠2=180°+∠A(4)∵△EFP是由△EFA折叠得到的∴∠AFE=∠PFE,∠AEF=∠PEF∴∠1=180°﹣2∠AFE,∠2=180°﹣2∠AEF∴∠1+∠2=360°﹣2(∠AFE+∠AEF)又∵∠AFE+∠AEF=180°﹣∠A∴∠1+∠2=360°﹣2(180°﹣∠A)=2∠A.18.解:∵DE=EB∴设∠BDE=∠ABD=x∴∠AED=∠BDE+∠ABD=2x∵AD=DE∴∠AED=∠A=2x∴∠BDC=∠A+∠ABD=3x∵BD=BC∴∠C=∠BDC=3x∵AB=AC∴∠ABC=∠C=3x在△ABC中,3x+3x+2x=180°解得x=22.5°∴∠A=2x=22.5°×2=45°.19.(1)解:∵六边形ABCDEF的内角相等∴∠B=∠A=∠BCD=120°∵CF∥AB∴∠B+∠BCF=180°∴∠BCF=60°∴∠FCD=60°(2)解:∵∠AFC=360°﹣120°﹣120°﹣60°=60°∴∠AFC=∠FCD∴AF∥CD20.(1)解:平行,理由如下:∵ ME⊥NE,即∠MEN=90°∴∠AEM+∠CEN=90°又∵∠AME+∠CNE=90°∴∠A+∠ECN=180°+180°-(∠AEM+∠CEN+∠AME+∠CNE) =360°-90°×2=180°∴ AB∥CD.(2)解:∵GF∥AB, AB∥CD∴GF∥CD∴∠GNC=∠FGN∴∠CGF=∠CGN+∠FGN=∠CGN+GNC=180°-∠GCN∵AB∥CD,∠CAB=66°∴∠ACD=180°-∠CAB=180°-66°=114°∴CG 平分∠ACD∠ACD=57°∴∠GCN=12∴∠CGF=180°-∠GCN=180°-57°=123°。
八年级数学练习题
一.选择题(共7小题)
1.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O 是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;
③AC=AO+AP;④S△ABC=S四边形AOCP.其中正确的有()个.
A.①②③B.①②④C.①③④D.①②③④
2.如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点P是腰AD上的一个动点,要使PC+PB 最小,则点P应该满足()
A.P B=PC B.P A=PD C.∠BPC=90°D.∠APB=∠DPC
3.如图,△ABC是等腰直角三角形,△DEF是一个含30°角的直角三角形,将D放在BC的中点上,
转动△DEF,设DE,DF分别交AC,BA的延长线于E,G,则下列结论:
①AG=CE ②DG=DE
③BG﹣AC=CE ④S△BDG﹣S△CDE=S△ABC
其中总是成立的是()
A.①②③B.①②③④C.②③④D.①②④
4.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()
A.①②③B.①②④C.①③④D.①②③④
5.如图,BC∥AM,∠A=90°,∠BCD=75°,点E在AB上,△CDE为等边三角形,BM交CD于F,下列结论:①∠ADE=45°,②AB=BC,③EF⊥CD,④若∠AMB=30°,则CF=DF.其中正确的有()
A.①②③B.①②④C.①③④D.②③④
6.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,连接EF交AP于G.给出四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④∠AEP=∠AGF.其中正确的结论有()
A.1个B.2个C.3个D.4个
7.如图,AM、BE是△ABC的角平分线,AM交BE于N,AL⊥BE于F交BC于L,若∠ABC=2∠C,下列结论:①B E=EC;②BF=AE+EF;③AC=BM+BL;④∠MAL=∠ABC,其中正确的结论是()
A.①②③B.①④C.①②③④D.①②
二.解答题(共8小题)
8.如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E作EG⊥BC于G.
(1)若∠A=50°,∠D=30°,求∠GEF的度数;
(2)若BD=CE,求证:FG=BF+CG.
9.如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a﹣t)2+|b﹣t|=0(t>0).
(1)证明:OB=OC;
(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE 的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN 交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.
10.如图1,在平面直角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S四边形
=16.
OBAC
(1)∠COA的值为_________;
(2)求∠CAB的度数;
(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足
∠HON=∠NMO,请探究两条线段MN、OH之间的数量关系,并给出证明.
11.如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,
(1)求A点坐标;
(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC的数量关系和位置关系.
(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG=45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.
12.(2013•日照)问题背景:
如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.
(1)实践运用:
如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为_________.
(2)知识拓展:
如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.
13.(2013•六盘水)(1)观察发现
如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.
如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:
作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE 的最小值为_________.
(2)实践运用
如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为_________.
(3)拓展延伸
如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.
14.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.
(1)如图1,DE与BC的数量关系是_________;
(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.
15.(2013•东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.
证明:DE=BD+CE.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若
∠BDA=∠AEC=∠BAC,试判断△DEF的形状.。