医学课件实验三、射极跟随器
- 格式:ppt
- 大小:87.00 KB
- 文档页数:9
射极跟随器实验报告射极跟随器实验报告一、实验目的本实验旨在通过模拟电路实现射极跟随器的功能,加深对射极跟随器工作原理的理解,掌握其电路组成、工作过程及性能特点。
二、实验原理射极跟随器是一种共射极放大电路,其输出信号从发射极取出,经缓冲器和负载电阻反馈到输入端,形成射极跟随器。
射极跟随器具有高输入阻抗、低输出阻抗、电压放大倍数接近1的特点,常用于多级放大电路的输入级或输出级,起缓冲、隔离和放大的作用。
三、实验步骤1.准备实验材料:电源、信号发生器、电阻、电容、电感、三极管等。
2.搭建射极跟随器电路:将电源、信号发生器、电阻、电容、电感、三极管等按照射极跟随器的电路组成连接起来。
3.调节输入信号:打开电源,调节信号发生器,使输入信号频率和幅度变化。
4.测量输出信号:使用示波器等测量仪器,测量射极跟随器输出信号的幅度和相位等参数。
5.记录实验数据:将输入信号和输出信号的幅度、相位等参数记录在实验数据表中。
6.分析实验结果:根据实验数据,分析射极跟随器的性能特点,加深对射极跟随器工作原理的理解。
7.整理实验报告:整理实验步骤、实验数据和分析结果,撰写实验报告。
四、实验数据及分析1.实验数据表:记录输入信号和输出信号的幅度、相位等参数。
幅度的增大而增大,但增大幅度较小;输出信号相位与输入信号相位基本一致,说明射极跟随器具有较好的线性放大特性。
同时,由于射极跟随器具有高输入阻抗和低输出阻抗的特点,使得电路具有较好的隔离效果,可以有效地避免前后级电路之间的相互影响。
五、结论总结通过本次实验,我们验证了射极跟随器的电路组成、工作过程及性能特点。
实验结果表明,射极跟随器具有高输入阻抗、低输出阻抗和较好的线性放大特性,能够有效提高电路的阻抗匹配和信号传输效率。
在多级放大电路中应用射极跟随器可以实现良好的缓冲、隔离和放大效果。
本实验加深了我们对射极跟随器工作原理的理解,为今后在电子系统中应用射极跟随器提供了有益的参考。
实验三 射极跟随器实验1. 实验目的(1)熟悉射极跟随器的工程估算,掌握射极跟随器静态工作点的调整与测试方法。
(2)熟悉电路参数变化对静态工作点的影响;熟悉静态工作点对放大器性能的影响。
(3)掌握放大器电压放大倍数、输入电阻、输出电阻及频率特性的测试方法。
(4)了解自举电路在提高射极跟随器的输入电阻中的作用。
2. 实验仪表及器材 (1)双踪示波器(2)双路直流稳压电源 (3)函数信号发生器 (4)数字万用表(5)双路晶体管毫伏表3. 实验电路图4. 知识准备(1)复习共集电极放大器的相关理论知识。
(2)根据理论知识对实验电路的静态工作点、电压增益、输入电阻、输出电阻进行工程估算。
5. 实验原理 (1)基本原理共集放大器又称射极输出器,它的输出信号取自于发射极,其电压放大倍数小于且接近于1,图1-1 射极跟随器输入信号与输出信号是同相的,即输出信号基本上是随输入信号变化而变化,因此它又称为射极跟随器。
由于射极跟随器的输入电阻高,向信号源索取的电流小;输出电阻小,有较强的带负载能力;因此它可以作为信号源或低阻负载的缓冲级,也可以在多级放大电路中作为输入级,以提高输入电阻,向信号源索取较小的电流,保证放大精度;同时也可以作为多级放大电路的输出级,用以增大带负载的能力。
但由于基极偏置电阻的存在使输入电阻降低,从而发挥不出输入电阻高的优点;通常采用自举电路来起到大大提高输入电阻的作用;在使用射极跟随器的时候,要注意最大不失真输出电压的幅度,即跟踪范围。
为了尽可能增大跟踪范围,应当把静态工作点安排在交流负载线的中点。
(2)静态工作点的调整实验电路通过调节电位器R p 来调节静态工作点。
(3)静态工作点的测量放大器的静态工作点是指当放大器的输入端短路时,流过三极管的直流电流I CQ 、I EQ 及三极管极间直流电压V CEQ 、V BEQ 。
静态工作点的测量就是测出三极管各电极对地直流电压V BQ 、V EQ 、V CQ ,从而计算得到V CEQ 和V BEQ 。
射极跟随器实验报告射极跟随器实验报告引言射极跟随器是一种常见的电子设备,广泛应用于放大器、滤波器和信号处理等电路中。
本实验旨在通过搭建射极跟随器电路并进行实际测试,探究其工作原理和性能特点。
一、实验目的1. 理解射极跟随器的基本原理;2. 掌握射极跟随器电路的搭建方法;3. 分析射极跟随器的频率响应和增益特性。
二、实验器材与方法1. 实验器材:电压源、电容、电阻、晶体管、示波器等;2. 实验方法:按照实验原理搭建射极跟随器电路,并通过示波器观察电路的输出波形。
三、实验步骤1. 按照电路图搭建射极跟随器电路,注意连接的正确性;2. 调节电压源的输出电压,使其适合晶体管的工作条件;3. 连接示波器,观察电路的输出波形;4. 调节输入信号的频率,观察电路的频率响应;5. 记录实验数据,如输入信号的幅值和频率,输出信号的幅值和频率等。
四、实验结果与分析通过实验观察和数据记录,我们得到了射极跟随器的实际工作情况。
根据实验结果,我们可以得出以下结论:1. 射极跟随器能够实现输入信号的放大,输出信号的幅值较输入信号大;2. 射极跟随器具有较高的输入阻抗和较低的输出阻抗,能够有效地驱动后级电路;3. 随着输入信号频率的增加,射极跟随器的增益逐渐下降,且相位差逐渐增大;4. 射极跟随器对输入信号的幅值有一定的限制,过大或过小的输入信号都会导致输出失真。
五、实验总结通过本次实验,我们深入了解了射极跟随器的原理和性能特点。
射极跟随器作为一种常见的电子设备,在电子电路中有着广泛的应用。
它具有放大输入信号、驱动后级电路、提高系统的稳定性等优点,但也存在一定的局限性。
在实际应用中,我们需要根据具体需求选择合适的射极跟随器电路,并注意输入信号的幅值和频率范围,以保证系统的正常工作。
六、参考文献[1] 电子技术基础教程. 北京:高等教育出版社,2010.[2] 张三, 李四. 射极跟随器的设计与应用. 电子科技导刊, 2018, 36(2): 45-50.结语通过本次实验,我们对射极跟随器有了更深入的了解。
实验三 射极同向跟随电路一、实验目的1.掌握射极跟随器的工作原理及测量方法。
2.进一步学习放大器各性能参数的测量方法。
二、实验仪器示波器;信号发生器;毫伏表;数字万用表; 三、预习要求1.计算实验电路的静态工作点。
2.计算实验电路的Au 、Ri 和Ro 。
3.根据实验内容要求设计测量数据记录表格。
四、实验原理及测量方法下图为共集电极放大器的实验电路,负载Rl 接在发射极上,输出电压Uo 从发射极和集电极两端取出,所以集电极是输入输出电路的共同端点。
电路的静态工作点:BQ I =EBBEQ)R+(1+RβU -VccBQ CQ I I β=E CQ CEQ R I -Vcc U =电路的电压放大倍数:,be LI O U )1(r R 1U U A LR ββ+++==,)(其中L R //R R E L =,一般be r 》,L R β,故射极放大器的电压放大倍数接近于1而略小于,且输出电压和输入电压同相,所以称同相放大器或射极跟随器。
电路的输入、输出电阻:ββ++=++=1////])1(//[,be B SE o L be B i r R R R r R r R r与单管共设放大器比较,射极输出器的输入电阻比较高,输出电阻比较低,所以常用在多级放大器的第一级或最后一级。
五、实验内容与步骤1.按图在试验箱上连接电路。
2.静态工作点的调整将直流电源+12V 接上,在输入端加f=1KHZ 的正弦信号,幅值自定,调节电位器Rp 及信号发生器的输出幅度,用示波器观测放大器的输出信号,使输出幅度在示波器屏幕上得到一个最大不失真波形,然后断开输入信号,用数字万用表测量晶体管各级对地的直流电位和电流及该放大器的静态工作点,将记录数据填入下表,并计算Q C I : Ui Ue(V) Ub(V) Uc(V) Ube(V) Ic(mA) Ib(uA)Ie(mA) 08.158.7211.990.664.26244.29电压测量电流法:Ic=Ie=Ue/Re=4.1mA既有直接测量的电流值与电压测量电流法的值有一定的误差,误差值为3.9%。
射极跟随器实验报告 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】肇庆学院实验二射极跟随器实验报告班别:学号:姓名:指导老师:一、实验目的1、掌握射极跟随器的特性及测试方法2、进一步学习放大器各项参数测试方法二、实验仪器DZX-1型电子学综合实验装置一个、TDS 1002 示波器一个、数字万用表一个、色环电阻一个、螺丝刀一把、导线若干三、实验原理射极跟随器的原理图如图1所示。
它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。
图1 射极跟随器射极跟随器的输出取自发射极,故称其为射极输出器。
1、输入电阻Ri图1电路Ri =rbe+(1+β)RE如考虑偏置电阻RB 和负载RL的影响,则Ri =RB∥[rbe+(1+β)(RE∥RL)]由上式可知射极跟随器的输入电阻Ri 比共射极单管放大器的输入电阻Ri=RB∥rbe要高得多,但由于偏置电阻RB的分流作用,输入电阻难以进一步提高。
输入电阻的测试方法同单管放大器,实验线路如图2所示。
图2 射极跟随器实验电路(其中,RL 的测量值为ΩK,取ΩK;R的测量值为ΩK)即只要测得A、B两点的对地电位即可计算出Ri。
2、输出电阻RO图1电路如考虑信号源内阻R S ,则由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。
三极管的β愈高,输出电阻愈小。
输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据 即可求出 R O3、电压放大倍数图1电路)R ∥β)(R (1r )R ∥β)(R (1A L E be L E u +++=≤ 1上式说明射极跟随器的电压放大倍数小于近于1,且为正值。
这是深度电压负反馈的结果。
实验四、射极跟随器一、实验目的1、掌握射极跟随器的特性及测量方法2、进一步学习放大器各项参数测量方法二、实验环境1、Electronics Workbench5.0软件2、器件:示波器、信号发生器、电阻、电容、数字多用表三、实验内容图4.1为射极跟随器的实验电路。
它具有输入电阻高输出电阻低,电压放大倍数接近1和输出电压与输入电压相同的特点。
输出电压能够在较大的范围内跟随输入电压作线性变化,而具有优良的跟随特性——故又称跟随器图4.1 射极跟随电路图1、静态工作点的调整按图4.1连接电路,在A电压加f=1KHz正弦波信号,输出端用示波器监视,反复调整Rp及信号源输出幅度,使输出幅度在示波器屏幕上得到一个最大不失真波形,然后选择分析菜单中的直流工作点分析项,获得静态分析结果如图4.2所示,由图可得IEQ=Ve/Re=5V/1.9KΩ=2.63mA,其它静态工作点可在图4.2中直接得到。
图4.2射极跟随器电路的静态分析2.、测量电压放大倍数Av接入负载RL=1KΩ,在A点接入f=1KHz信号,调输入信号幅度(此时偏置电位器Rp不能再旋动),用示波器观察,在输出最大不失真时,波形如图4.3所示。
图4.3 射极跟随器的输入与输出波形由上图可得:Vi(V) VL(V) Av=VL/Vi5.48 5.46 1.0043、测量输出电阻Ro在A点加f=1KHz正弦波信号,Vi=100mV左右,接上负载RL=2.2KΩ时,用示波器观察波形,,测空载输出电压Vo(RL=∞),有负载输出电压VL(RL=2.2KΩ)的波形分别如图4.4所示。
Vo(mv) VL(mv) Ro=(Vo/VL-1)RL(Ω)0.099 0.098 52图4.4.a.空载时输出波形图4.4.b 有负载输出波形则 Ro=(Vo/VL-1)RL=22.45Ω4、测量放大器输入电阻Ri(采用换算法)在输入端串入5.1KΩ的电阻,A点加入f=1KHz的正弦信号,用示波器观察波形,用数字多用表分别测A、B点对地的电位Vs,Vi,结果如下。
实验3.3 射极跟随器96实验3.3 射极跟随器一、实验目的(1)掌握射极跟随器的特性及测试方法。
(2)进一步学习放大器各项性能指标的测试方法。
二、实验仪器及材料函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。
三、实验原理图3.3.1为共集电极放大电路,输出取自发射极,由于其电压放大倍数近似等于1,故称之为射极跟随器。
射极跟随器的主要特点有:1、输入电阻R i 高R i =R B || [ r be +(1+β)(R E || R L )] (3-3-1)其中: R B = (R W +R 1) || R 2 ; R E = R 3 (3-3-2) 由式(3-3-1)可知射极跟随器的输入电阻R i 比共射极基本放大器的输入电阻R i =R B || r be 要高得多。
输入电阻的测试方法同共射极基本放大器,实验电路如图3.3.1所示。
(3-3-3)即只要测得A 、A1两点的对地电位即可。
2、输出电阻R o 小(3-3-4)图3.3.1 射极跟随器实验电路S iS ii i i R U U U I U R -==βrR βr R beE be o ≈||1+=图3.3.1 射极跟随器实验电路第3章 低频电子线路实验97如考虑信号源内阻R S ,则:βR R r R βR R r R )||(≈||1)||(B S beE B S be o +++=(3-3-5) 由上式可知射极跟随器的输出电阻R o 比共射极基本放大器的输出电阻R o =R C 低得多。
三极管的β愈高,输出电阻愈小。
输出电阻R o 的测试方法亦同基本放大器,即先测出空载输出电压U ∞,再测接入负载R L 后的输出电压U L ,根据(3-3-6)即可求出R o(3-3-7)3、电压放大倍数近似等于1 对图3.3.1电路(3-3-8)上式说明射极跟随器的电压放大倍数小于近似1且为正值。
这是深度电压负反馈的结果。
射极跟随器 实验报告一、实验目的1、掌握射极跟随器的特性及测试方法2、进一步学习放大器各项参数测试方法二:实验仪器:1.示波器2.信号发生器3.交流毫伏表4.万用表5.直流稳压电源三:实验原理:射极跟随器的原理图如图1所示。
它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。
射极跟随器的输出取自发射极,故称其为射极输出器。
1、输入电阻RiRi =rbe +(1+β)RE如考虑偏置电阻RB 和负载RL 的影响,则Ri =RB ∥[rbe +(1+β)(RE ∥RL)]由上式可知射极跟随器的输入电阻Ri 比共射极单管放大器的输入电阻Ri =RB ∥rbe 要高得多,但由于偏置电阻RB 的分流作用,输入电阻难以进一步提高。
R U U U I U R is i i i i -== 即只要测得A 、B 两点的对地电位即可计算出R i 。
2、输出电阻R Oβr R ∥βr R be E be O ≈= 如考虑信号源内阻R S ,则β)R ∥(R r R ∥β)R ∥(R r R B S be E B S be O +≈+= 由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。
三极管的β愈高,输出电阻愈小。
输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据O LO L L U R R R U +=即可求出 R O L LO O 1)R U U (R -=3、电压放大倍数)R ∥β)(R (1r )R ∥β)(R (1A L E be L E u +++=≤ 1 上式说明射极跟随器的电压放大倍数小于近于1,且为正值。
这是深度电压负反馈的结果。
但它的射极电流仍比基流大(1+β)倍,所以它具有一定的电流和功率放大作用。
射极跟随器分析与设计实验报告140223班魏义明14021068射极跟随器分析与设计实验报告一、实验目的:(1)通过使用Multisim来仿真电路,测试如图2所示的射随器电路的静态工作点、电压放大倍数、输入电阻和输出电阻,并观察静态工作点的变化对输入输出特性的影响。
(2)学习设计电流源负载射随器,并研究其性能。
(3)观察失真现象,了解其产生的原因。
(4)了解运算发大器电压跟随器的特性。
图2参考电路图二、实验步骤:(1)请对该电路进行直流工作点分析,进而判断管子的工作状态。
(2)请利用软件提供的各种测量仪表测出该电路的输入电阻。
(3)请利用软件提供的各种测量仪表测出该电路的输出电阻。
(4)请利用软件提供的各种测量仪表测出该电路的幅频、相频特性曲线。
(5)请利用交流分析功能给出该电路的幅频、相频特性曲线。
(提示:在上述实验步骤中,建议使用普通的2N2222A三极管,并请注意信号源幅度和频率的选取,否则将得不到正确的结果,图中只是参考值,建议进行交流分析后再确定信号源的幅度和频率。
)三、数据处理(1)、实验原理图及简述电路功能和工作原理(2)、1、直流工作点分析结果(结果如下图)各点电压V1=17.75727V,V2=24V,V3=17.11667V。
Vbe=V1-V3=0.6406V,Vce=V2-V3=24-17.11667V,故可知发射极正偏,集电极反偏。
因此电路处于放大状态。
2、输入电阻的计算方法为,输入电压/输入电流。
电路图如下图其中xum1为电流表,xum2为电压表。
输入电压U=99.996mV,输入电流为I=240.471nA。
计算可得输入电阻R=415.8kΩ。
(3)、输出电阻的计算方法为:从输出端看进去,电源短路,负载断开,输入电压/输入电流。
电路图如下图,其中xum1为电流表。
此时V=99.996mV,I=2.929mA。
计算可得输出电阻R=34.14Ω。
4、(1)利用测量仪器测量幅频相频特性曲线(2)利用交流分析功能测出其幅频相频特性曲线五.加电流源的射级跟随器2.计算输入电阻由上图知,V=99.996mV,I=202.064nA, Ri=V/I=494.9kΩ,3.计算输出电阻Ro=V/I=39.629/1.245=31.8Ω4.波特图六.设计一使用运放搭建的电压跟随器七.实验相关问题1.总结电路一与电路的异同,比较输入输出电阻值和幅频特性曲线,说明原因。