行列式测试题有答案
- 格式:doc
- 大小:117.50 KB
- 文档页数:5
内容提要:一、行列式的定义1、2阶和3阶行列式2112221122211211a a a a a a a a D -==312312322113332211333231232221131211a a a a a a a a a a a a a a a a a a ++= 322311332112312213a a a a a a a a a ---2、排列与逆序定义 由n ,,3,2,1 组成的一个有序数组称为一个n 阶排列. 3、n 阶行列式定义定义 称∑-==nn n p p p np p p p p p nnn n nn a a a a a a a a a a a a D21212121)(212222111211)1(τ )det(ij a =为n 阶行列式,记作D 或n D .也记作)det(ij a .4、三角形行列式:主对角线元素的乘积。
二、行列式的性质 性质1 D D ='.性质2 互换行列式的某两行(或列),行列式仅变符号. 推论 若行列式中某两行(或列)相同,则行列式为零.性质3 行列式某行(列)的各元素乘以k ,等于用数k 乘以行列式.推论 行列式的某行(或列)各元素的公因子可以提到行列式符号外面相乘. 推论 若行列式的某两行(或列)的对应成元素成比例,则行列式为零.性质4 nnn n in i i nnnn n in i i n nnn n in in i i i i n a a a a a a a a a a a a a a a a a a21211121121211121121221111211βββαααβαβαβα+=+++性质5 将行列式的某行(或列)各元素乘以数k 加到另一行(或列)的对应元素上,行列式的值不变.三、行列式的展开定理定义 在n D 中划掉ij a 所在的行和列(即第i 行和第j 列),余下的元素按原来的相对位置构成一个(1-n )阶行列式,称为ij a 的余子式,记作ij M .ij j i ij M A +-=)1( ——ij a 的代数余子式定理1 in in i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 行展开 或 ni ni i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 列展开 推论 02211=+++jn in j i j i A a A a A a (j i ≠) 或 02211=+++nj ni j i j i A a A a A a (j i ≠) 四、Cramer 规则⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* (1) 定理 当0≠D 时,方程组(1)有唯一解D D x 11=,D Dx 22=,……,DD x n n =.推论 齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a (01=x ,02=x ,……,0=n x 显然是方程组的解,称为零解)1)0≠D ⇒仅有零解. 2)有非零解⇒0=D .《线性代数》单元自测题答案第一章 行列式一、填空题:1.设j i a a a a a 54435231是五阶行列式中带有负号的项,则i =________;j =_________。
第一章 行列式一、单项选择题1.行列式D 非零的充分条件是( D )(A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式1221--k k ≠0的充分必要条件是( C )A .k ≠-1B .k ≠3C .k ≠-1且k ≠3D .k ≠-1或≠3 3.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( B )+n (m+n )4.设行列式==1111034222,1111304z y x zy x 则行列式( A ) A.32D.38 5.下列行列式等于零的是(D )A .100123123- B. 031010300- C . 100003010- D . 261422613-6.行列式111101111011110------第二行第一列元素的代数余子式21A =( B )A .-2B .-1C .1D .28.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B )9.(考研题)行列式0000000a b abc d c d=( B ) A.()2ad bc -B.()2ad bc --C.2222a d b c -D.2222b c a d -二、填空题1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。
2. 行列式1112344916中(3,2)元素的代数余子式A 32=___-2___.3. 设7343690211118751----=D ,则5A 14+A24+A 44=_______。
解答:5A 14+A 24+A 44=1501343090211115751-=---4.已知行列式011103212=-a ,则数a =____3______.5.若a ,b 是实数,则当a =___且b =___时,有=---10100a b b a 0。
第一部分 行列式作业(一)选择题(15分)1.在5阶行列式展开式中,12335544i j a a a a a 是其中带有正号的一项,则,i j 之值为( )(A) 1,2i j == (B) 2,3i j == (C) 1,3i j == (D) 2,1i j ==2.在5阶行列式展开式中,包含1325,a a 并带有负号的项是( )(A) 1325344251a a a a a - (B) 1325314254a a a a a - (C) 1325324154a a a a a - (D) 1325314452a a a a a -3.已知行列式111213212223313233a a a a a a m a a a =,则行列式212213311132123313112112221323222222a a a a a a aa a a a a aa a ---=+++( )(A)-4m (B)-2m (C)2m (D)4m4.已知4101111111111111x D ---=----,则4D 中x 的系数是( )(A)4 (B)-4 (C)-1 (D)15. 设方程组123123123112x x x x x x x x x λλλ--=⎧⎪++=⎨⎪-++=⎩ ,若方程组有惟一解,则λ的值应为( )(A)0 (B)1 (C)-1 (D)异于0与1±的数 (二)填空题(15分)1.排列(1)(2)321n n n -⋅-⋅⋅⋅ 的逆序数为 。
2.排列12n a a a 与排列121n n a a a a - 的逆序数之和等于 。
3.行列式D 中第2行元素的代数余子式之和21222324A A A A +++= ,其中1111111111111111D -=--。
4.若行列式11121321222331323312a a a a a a a a a =,则行列式111311122123212231333132222222a a a a a a a a a a a a --=- 。
行列式 练习题一、判断题1. 行列式的行数和列数可以相同也可以不同。
( )2. n 阶行列式共有2n 个元素,展开后共有n !项。
( )3. n 阶行列式展开后的n !项中,带正号的项和带负号的项各占一半。
( )4. 行列式D 中元素ij a 的余子式ij M 与其代数余子式ij A 符号相反。
( )5. 上(下)三角形行列式的值等于主对角线上元素的乘积。
( )6. 行列式与它的转置行列式符号相反。
( )7. 行列式中有一行的元素全部是零则行列式的值为零。
( )8. 行列式中有两行元素相同,行列式的值为零。
( )9. 行列式中有两行元素成比例,行列式的值为零。
( ) 10.互换行列式的两行,行列式的值不变。
( ) 11. 行列式中某一行的公因子k 可以提到行列式符号之外。
( ) 12. 行列式中若所有元素均相同,则行列式的值为零。
( ) 13. 行列式的值等于它的任一行(列)的元素与其对应的代数余子式乘积。
( )14. 行列式某一行(列)的元素与另一行(列)的对应的元素的代数余子式乘积之和为零。
( ) 15. 齐次线性方程组的系数行列式0D ≠,则它仅有零解。
( )二、填空题1.=______x yyx -。
2.sin cos =______cos sin θθθθ-。
3. 123246=______345。
4.2-20310=______450。
5.=______a x xx b x x x c。
6. 211123=0______49x x x =,则。
7.222031,005D =-已知111213=______M M M -+则。
8.=______x y x y y x y x x y x y+++。
9.100110=______011001a b c d---。
10.222=______a b c a b c b c c a a b+++。
11. 已知21341023,15211152D =-则1323432=______A A A ++。
第九讲队列式单元测试题评论一、填空题(每题2 分,满分 20 分)1.全体 3 阶摆列一共有 6 个,它们是 123,132,213,231,312,321;2. 奇摆列经过奇数次对调变成偶摆列,奇摆列经过偶数次对调变成 奇 摆列;3. 队列式 D 和它的转置队列式D 相关系式 DD ;4. 互换一个队列式的两行(或两列) ,队列式 的值改变符号 ;5. 假如一个队列式有两行(或两列)的对应元素成比率,则这个队列式等于零 ;6. 一个队列式中某一行(列)全部元素的公因子能够提到队列式符号的外边;7. 把队列式的某一行 (列)的元素乘以同一数后加到另一行 (列)的对应元素上,队列式 的值不变 ;8. 队列式的某一行(列)的元素与另一行(列)的对应元素的代数余子式的乘积之和等于零 ;a11a 12La 1n0 a22La2na 11a 22 K a nn ;9. MMMMLann10.当 k= 214kk2时,45。
2k二、判断题(每题 3 分,满分 24 分)1. 若(i1i2i n )k,则 (i 2 i1i 3 i n ) k 1(∨)a11a12a1n2.设D a21a22a2n , 则D的一般项 a ij a i j2ai j的符号1 12n nan1an2ann是( 1)( j1 j2j n ).(×)3.若 n(n>2)阶队列式 D=0,则 D 有两行(列)元素同样 . (×) 4.若 n 阶队列式 D 恰有 n 个元素非 0,则 D≠0.(×) 5.关于线性方程组,只需方程个数等于未知数个数,就能够直接使用克莱姆法例求解。
(×)6.若队列式 D 的同样元素多于n2n 个,则D=0.(× )a11a12a13a13a23a337.a21a22a23a12a22a23(× )a31a32a33a11a21a31阶队列式主对角线上元素乘积项带正号,副对角线上元素乘积项带负号。
一、填空题1.设自然数从小到大为标准次序,则排列 1 3 … )12(-n 2 4 … )2(n 的逆序数为 ,排列 1 3 … )12(-n )2(n )22(-n …2的逆序数为 。
2.在6阶行列式中,651456314223a a a a a a 这项的符号为 。
3.所有n 元排列中,奇排列的个数共 个。
二、选择题1.由定义计算行列式nn 0000000010020001000 -= ( ).(A )!n (B )!)1(2)1(n n n -- (C )!)1(2)2)(1(n n n --- (D )!)1()1(n n n --2.在函数xx x xx x f 21123232101)(=中,3x 的系数是( ).(A )1 (B )-1 (C )2 (D)33.四阶行列式的展开式中含有因子32a 的项,共有( )个。
(A)4; (B)2; (C)6; (D )8。
三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式:1. 各项以行标为标准顺序排列;2. 各项以列标为标准顺序排列;3. 各项行列标均以任意顺序排列。
四、若n 阶行列式中,等于零的元素个数大于n n -2,则此行列式的值等于多少?说明理由。
一、填空题1.若D=._____324324324,13332313123222121131211111333231232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则2.方程229132513232213211x x --=0的根为___________ 。
二、计算题 1.8171160451530169144312----- 2.dc b a100110011001---3.ab b ba b b b a D n =(word 完整版)行列式练习题及答案4.111113213211211211211nn n n n a a a a x a a a a x a a a a xa a a a x D---+=5.计算n 阶行列式)2(212121222111≥+++++++++=n nx x x n x x x n x x x D n n n n 。
矩阵作业卷一、 判断1、若A 为n 阶方阵且A k kA k A =≠≠则,0,02、)()(B r AB r ≤3、若B 是满秩方阵,则r (AB )=r (A )4、设2222,B AB A B A n B A ++=+)阶方阵,则(均为5、设O B O A O AB n B A ===或,则阶方阵,且均为,6、 设r (A )= r ,则A 的 r 阶子式全不为零7、 若A 、B 均为n 阶方阵且A 、B 、A+B 均可逆, 则111)(---+=+B A B A8、 若AB=AC 且0≠A ,则B=C9、 设A 、B 为正交阵,则C=⎥⎦⎤⎢⎣⎡B O O A 也为正交阵。
10、设A 、B 为同阶方阵 , 则E BA E AB =⇔=二、 填空题1、设A 、B 为3阶可逆方阵,且, ,21)(则==-A A),( =*A )(,( ) 21==-n E A B A B 2、 ) (10011=⎥⎦⎤⎢⎣⎡-- 3、1010100001-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=( ) 4、12100110000200012-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=( ) 5、设A 为4⨯3矩阵且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==301020201,2)(B A r 则r(AB)=( )。
6、) (r(A) ,1101001100001100001100101=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=则A 7、设三阶方阵A、B满足关系式BA A BA A +=-61 ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=714131A ,则B=( )。
8、1543022001-*⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=),则(设A A =( )。
9、设A为n 阶方阵,则*A =( ),)(*A r =( )。
10、=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------1744418481( )。
11、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-413112131021100012001=( )。
线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 n 阶 行 列 式一.选择题1.若行列式 = 0,则[ C ]x52231521-=x (A )2 (B )(C )3(D )2-3-2.线性方程组,则方程组的解=[ C ]⎩⎨⎧=+=+473322121x x x x ),(21x x (A )(13,5)(B )(,5)(C )(13,)(D )()13-5-5,13--3.方程根的个数是[ C ]093142112=x x (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ](A ) (B ) 665144322315a a a a a a 655344322611a a a a a a (C ) (D )346542165321a a a a a a 266544133251a a a a a a 5.若是五阶行列式的一项,则的值及该项的符号为[ B ]55443211)541()1(a a a a a l k l k N -ij a l k ,(A ),符号为正; (B ),符号为负;3,2==l k 3,2==l k (C ),符号为正;(D ),符号为负2,3==l k 2,3==l k 6.下列n (n >2)阶行列式的值必为零的是 [ BD ](A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个二、填空题1.行列式的充分必要条件是1221--k k 0≠3,1k k ≠≠-2.排列36715284的逆序数是133.已知排列为奇排列,则r =2,8,5s = 5,2,8,t = 8,5,2397461t s r4.在六阶行列式中,应取的符号为 负 。
ij a 623551461423a a a a a a 三、计算下列行列式:1.=181322133212.=55984131113.yxyx x y x yyx y x +++332()x y =-+4.=100011000001001005.000100002000010n n -1(1)!n n -=-6.0011,22111,111 n n nn a a a a a a --(1)212,11(1)n n n n n a a a --=-线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第二节 行列式的性质一、选择题:1.如果, ,则 [ C ]1333231232221131211==a a a a a a a a a D 3332313123222121131211111232423242324a a a a a a a a a a a a D ---==1D (A )8(B )(C )(D )2412-24-2.如果,,则 [ B ]3333231232221131211==a a a a a a a a a D 2323331322223212212131111352352352a a a a a a a a a a a a D ---==1D (A )18(B ) (C )(D )18-9-27-3. = [ C ]2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (A )8 (B )2(C )0(D )6-二、选择题:1.行列式 12246000 2. 行列式-3=30092280923621534215=11101101101101112.多项式的所有根是0211111)(321321321321=+++++=x a a a a x a a a a x a a a a x f 0,1,2--3.若方程= 0 ,则225143214343314321x x --1,x x =±=4.行列式 5==2100121001210012D 三、计算下列行列式:1.2605232112131412-21214150620.12325062r r +=2.xa a a x a a a x 1[(1)]().n x n a x a -=+--线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第三节 行列式按行(列)展开一、选择题:1.若,则中x 的一次项系数是[D]111111111111101-------=x A A (A )1(B )(C )(D )1-44-2.4阶行列式的值等于 [D ]443322110000000a b a b b a b a (A ) (B )43214321b b b b a a a a -))((43432121b b a a b b a a --(C )(D )43214321b b b b a a a a +))((41413232b b a a b b a a --3.如果,则方程组 的解是 [B]122211211=a a a a ⎩⎨⎧=+-=+-0022221211212111b x a x a b x a x a (A ), (B ),2221211a b a b x =2211112b a b a x =2221211a b a b x -=2211112b a b a x =(C ), (D ),2221211a b a b x ----=2211112b a b a x ----=2221211a b a b x ----=2211112b a b a x -----=二、填空题:1.行列式 中元素3的代数余子式是 -6122305403--2.设行列式,设分布是元素的余子式和代数余子式,4321630211118751=D j j A M 44,j a 4则 =,=-6644434241A A A A +++44434241M M M M +++3.已知四阶行列D 中第三列元素依次为,2,0,1,它们的余子式依次分布为1-5,3,4,则D = -15,7-三、计算行列式:1.321421431432432112341234134101131010141201311123031111310131160.311-==---=-=-2.12111111111na a a +++ ==121111011101110111n a a a+++121111100100100na a a---211112111110010010n c c a a a a a+--+111223211111100001000na a cc a a a a++-+11121101111000000ni ni iia a a c a c a=+++∑1211()(1)nn i i a a a a =+∑或121123113111111000000nn a r r a r r a r r a a a a+------211211212311111000000na a aa a a c c a a a a+++--11122313311111100000ni in nnaa a c c a a a c c a a a a=++++∑1122()(1)nn i ia a a a a =++∑或11221121121110111110111111111(1).n n n n nn i ia a a a a a D a a a a a a a --=++++=+=+=+∑线性代数练习题 第一章 行 列 式系专业 班 姓名学号综 合 练 习一、选择题:1.如果,则 = [ C ]0333231232221131211≠==M a a a a a a a a a D 3332312322211312111222222222a a a a a a a a a D =(A )2 M(B )-2 M(C )8 M(D )-8 M2.若,则项的系数是[ A ]xxx x x x f 171341073221)(----=2x (A )34 (B )25 (C )74 (D )6二、选择题:1.若为五阶行列式带正号的一项,则 i = 2 j = 154435231a a a a a j i 2. 设行列式,则第三行各元素余子式之和的值为 8。
.第1 章行列式( 作业1)一、填空题1.设自然数从小到大为标准次序,则排列13⋯(2n1)24⋯(2n)的逆序数为,排列13⋯(2n1)(2n)(2n2)⋯2的逆序数为.2.在6阶行列式中,a23a42a31a56a14a65这项的符号为.3.所有n元排列中,奇排列的个数共个.二、选择题00010002001.由定义计算行列式=().n100000000nn(n1)(n1)(n2)(A)n!(B)(1)2n!(C)(1)2x x102.在函数1x23f(x)3x中,x3的系数是(22n!(D)(1)n(n1)n!).112x(A)1 (B)-1 (C)2 (D)33.四阶行列式的展开式中含有因子a32的项,共有()个.(A)4;(B)2;(C)6;(D)8.三、请按下列不同要求准确写出n阶行列式D det()定义式:aij1.各项以行标为标准顺序排列;2.各项以列标为标准顺序排列;3.各项行列标均以任意顺序排列.四、若n阶行列式中,等于零的元素个数大于n2n,则此行列式的值等于多少?说明理由.......第1 章行列式( 作业2) 一、填空题a11a12a134a112a113a12a13 1.若D=a21a22a231,则D14a212a213a22a23_____.a31a32a334a312a313a32a3311232.方程12x223的根为___________. 231=052319x2二、计算题2134a1001.419162 .1b10 3015456001c1 11718001da b bb a b3.D nb b a......x a1a2a n11a1x a2an114.a1a2x a n11D n1a1a2a3x1a1a2a3a n1x11x12x1nx21x22x2n(n2)。
5.计算n阶行列式D nxn1xn2xn n ......第1 章行列式(作业3)一、填空题0a12a13a1na120a23a2n1.当n为奇数时,行列式a13a230a3n=_________.a1n a2n a3n0x y0000x y002.行列式.000x yy000x二、选择题1.设D是n阶行列式,则下列各式中正确的是( ).[ A ij是D中a ij的代数余子式].(A)n(B)naijAij0,j1,2,,n;aijAij D,j1,2,,n; i1i1(C)n(D)na1jA2j D;aijAij0,i1,2,,n. j1j12.行列式结果等于(ba)(c a)(d a)(c b)(d b)(d c)的行列式是().111111111aa2a31000(A)abc d;(B)0bacad a;(C)1bb2b3;(D)1babb2 a2b2c2d20b c d1cc2c31cacc2a4b4c4d40b3c3d31dd2d31dadd2三、计算题15131.设A 1134A41A42A43A44,其中A(j1,2,3,4)是A中元素a的代,计算11234j4j 2234数余子式.......x10000x1002.a n 3.D n1 4.D2n00x1an1an2a2xa1a n(a1)n(an)na n1(a1)n1(an)n1a a1an111a nb na1b100c1d1c nd n第1章行列式( 作业4) 一、填空题......a1x1a2x2a3x3d11.已知关于变量x i(i1,3)的线性方程组b1x1b2x2b3x3d2,由克莱姆法则,当满足c1x1c2x2c3x3d3条件时,方程组有唯一解,且x3. a11x1a12x2a1n x n02.齐次线性方程组a21x1a22x2a2nxn0的系数行列式为D,那么D 0是该行列式有an1x1an2x2annxn0非零解的条件.二、求解下列行列式0123n11012n21.Dn2101n33210n4n1n2n3n40......1a111111a2, 其中a1a2a n0.2.D n111a n(1)x12x24x30三、问取何值时,齐次线性方程组2x1(3)x2x30有非零解?x1x2(1)x30......第1 章行列式 (检测题)一、填空题1.若排列i 1i 2i n 的逆序数为k ,则排列i n i n1 i 1的逆序数为. a 1 a 2 0 0 0 a 3a 4 0 0 0 2.Dc 1c 2 2 31. c 3 c 4 0 1 4 c 5c 6 4 5 0a1na2nan1nanna1n1 a2n2 an1n10 3.n 阶行列式=. a12 a22 0 0a110 0 1 2 2223 4.11 1 1=.1 4 42 4 31 5 5253二、选择题1 a 1 a2 an11 a1 x1 a2an11.设P(x) 1 a 1 a 2x2an1,其中a 1,a 2,,a n1是互不相同得实1a1a2 an1 xn1数,则方程P (x )=0()。
.第1章行列式(作业1) 一、填空题1.设自然数从小到大为标准次序,则排列13 ⋯(2n1)24 ⋯(2n)的逆序数为,排列13⋯(2n1)(2n)(2n 2)⋯2的逆序数为.2.在6阶行列式中,a23a42a31a56a14a65这项的符号为. 3.所有n元排列中,奇排列的个数共个.二、选择题00010002001.由定义计算行列式=().n100000000n(A)n(n1)!()(n1)(n2)()n!(B)(1)2C (1)2n! D (1)n(n1)n!nx x102.在函数1x23中,x3的系数是(). f(x)3x22112x(A)1 (B)-1 (C)2 (D)33.四阶行列式的展开式中含有因子a32的项,共有()个. (A)4;(B)2;(C)6;(D)8.三、请按下列不同要求准确写出n阶行列式 D det(a ij)定义式:1.各项以行标为标准顺序排列;2.各项以列标为标准顺序排列;3.各项行列标均以任意顺序排列.四、若n阶行列式中,等于零的元素个数大于n2n,则此行列式的值等于多少?说明理由.......第1 章 行列式 (作业2) 一、填空题a11 a12 a134a 11 2a 11 3a 12 a13 1.若D=a21 a22 a23 1,则D14a21 2a21 3a22 a23_____. a31 a32 a33 4a 312a 31 3a 32 a331 12 31 2 x 2 2 3的根为___________. 2.方程3 1 =0 2523 1 9 x 2二、计算题2 13 4a 1 0 0 4 1 9 161 b 1 01. 15 45 60 2.1 c 130 0 117 1 80 1 da b b b a b 3.Dnb ba.....x a1a2a1x a2a1a2x 4.D n1a1a2a3a1a2a3.an11a n11a n11x1a n1x11x12x1n x21x22x2n5.计算n阶行列式D n(n2)。
一、填空题1.设自然数从小到大为标准次序,则排列1 3 … 2 4 … 的逆序数为)12(-n )2(n ,排列1 3 … …2的逆序数为 .)12(-n )2(n )22(-n 2.在6阶行列式中,这项的符号为 .651456314223a a a a a a 3.所有n 元排列中,奇排列的个数共 个.二、选择题1.由定义计算行列式= ( ).nn 0000000010020001000 -(A ) (B ) (C ) (D )!n !)1(2)1(n n n --!)1(2)2)(1(n n n ---!)1()1(n n n --2.在函数中,的系数是( ).xx xx x x f 21123232101)(=3x (A )1 (B )-1 (C )2 (D )33.四阶行列式的展开式中含有因子的项,共有( )个.32a (A )4; (B )2; (C )6; (D )8.三、请按下列不同要求准确写出n 阶行列式定义式:)det(ij a D =1.各项以行标为标准顺序排列;2.各项以列标为标准顺序排列;3.各项行列标均以任意顺序排列.四、若n 阶行列式中,等于零的元素个数大于,则此行列式的值等于多少?说明理由.n n -2一、填空题1.若D=._____324324324,13332313123222121131211111333231232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 中2.方程=0的根为___________ .229132513232213211x x --二、计算题1.2.8171160451530169144312-----dc b a10011001101---3.ab b ba b b b aD n =4.111113213211211211211n n n n n a a a a x a a a a x a a a a x a a a a x D ---+=5.计算n 阶行列式。
一、填空1.自然数从小到大准次序,排列 1 3 ⋯ (2n1) 2 4 ⋯ ( 2n ) 的逆序数,排列 13⋯ ( 2n 1)( 2n ) ( 2n 2) ⋯ 2 的逆序数.2.在 6 行列式中,a23 a42a 31a56 a14a65的符号.3.所有 n 元排列中,奇排列的个数共个.二、00010002001. 由定算行列式= () .n100000000nn(n 1 )(n 1)( n2)( A)n!(B) ( 1)2!(C) ( 1)2n!(D) ( 1)n( n 1)n!nx x102.在函数1x23) .f ( x )3x中, x 3的系数是(22112x(A)1(B)-13.四行列式的展开式中含有因子(A)4;(B)2;( C)2(D)3a 32的,共有((C)6;(D)8.)个 .三、按下列不同要求准确写出n 行列式D det(a ij) 定式:1.各以行准序排列;2.各以列准序排列;3.各行列均以任意序排列.四、若 n 行列式中,等于零的元素个数大于n2n ,此行列式的等于多少?明理由.一、填空题a11a12a134a112a113a12a131.若 D= a21a22a231, 则D14a212a213a22a23_____.a 31a32a334a312a313a32a3311232.方程1 2 x 223的根为 ___________ . 231=052319 x2二、计算题2134a1001.419162.1b10 3015456001c1 11718001da b bb a b3.D nb b ax a1a2 a n11 a1x a2 a n114.a1a2x a n11Dn 1a1a2a3x1a1a2a3 a n1x11x 12x 1nx 21x 22x 2n2) 。
5.计算 n 阶行列式D n(nx n1x n2x n n第 1 章行列式 ( 作业 3)一、填空题0 a12a13a1na 120 a 23 a 2n1.当 n 为奇数时,行列式a13a23a 3n =_________.a 1n a 2na 3 nx y 0 0 0x y2.行列式.0 0 0 x yy0 0x二、选择题1.设 D 是 n 阶行列式 , 则下列各式中正确的是().[A ij 是 D 中 a ij 的代数余子式 ].nn(A)a ij A ij 0 , j1,2,,n;(B)a ij A ijD , j1,2, , n;i 1i 1nn(C)a 1 j A 2 j D ;(D)a ij A ij0 ,i1,2, , n .j 1j12.行列式结果等于 ( b a)( c a)(da)( c b)(db)( d c) 的行列式是( ).11 11( A )ab c d a2b 2c 2d 2a 4b 4c 4d 4三、计算题1 111 1 a a2 a 3100 0;(B ) 0b ac a da;( C )1b b 2b 3 ;(D )1 b a b b 2 0 b cd 1 c c 2c31 c a cc20 b 3c 3d 31 d d2 d 31 d a dd 21 5 1 31.设 11 3 4A ( j1,2,3,4)是 A 中元素 a 4 j 的代A,计算 A 41 A 42 A 43 A 44 , 其中1 2 4 j13 2 2 3 4数余子式 .x10000x1002.000x1a n a n 1a n 2a2x a1a n( a 1)n( a n)na n 1(a 1) n 1(a n )n 1 3.D n 1a a 1 a n111a nb n4.D2 na1b10 0d1c1c nd n第1章行列式(作业4)一、填空题a 1 x1 a 2 x 2a3 x3d11.已知关于变量x i( i 1,3)的线性方程组 b1 x1b2 x 2b3 x3 d 2,由克莱姆法则,当满足c1 x1c2 x 2c3 x3 d 3条件时,方程组有唯一解,且x 3.a 11 x1a12x2a1nxn02.齐次线性方程组a21x1a22x2a2 nxn0的系数行列式为D,那么D0 是该行列式有a n1 x 1a n 2 x 2a nn x n0非零解的条件 .二、求解下列行列式0123n11012n22101n3 1. D n210n4 3n 1n 2n 3n 401 a1111 1 a212.D n,其中 a1a 2 a n0 .11 1 a n(1) x12x 24x 30三、问取何值时,齐次线性方程组2x1(3)x 2x30 有非零解?x1x 2(1) x 30第 1 章行列式 ( 检测题)一、填空题1.若排列 i 1 i 2i n 的逆序数为 k ,则排列 i n i n 1 i 1 的逆序数为 .a 1 a 2 0 0 0 a 3 a 40 0 02. D c 1c 2 2 3 1 .c 3 c 4 0 1 4 c 5c 64 5 0a 1na 2na n 1na nna 1 n 1a2n 2an 1n 13. n 阶行列式= .a 12a 22 0 0a1112 2 2 2 34.11 11 = .1 4 4 24 3 15 5 25 3二、选择题1 a 1 a2 an 11 a 1x 1 a 2a n 11. 设 P(x) 1 a 1a 2 x 2 a n 1 , 其中 a 1 , a 2 , , a n 1 是互不相同得实1 a 1a 2a n 1x n 1数,则方程 P (x ) =0( )。
行列式试题库1(总35页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一. 判断题(易)1、n 阶行列式111212122212n n n n nna a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅是由2n 个数构成的n 行n 列的数表( ).答案:×(较容易)2、621621000000000λλλ=λλλ.( ). 答案:×(较容易)3、821821000000000k k k k k k=.( ). 答案: √(较容易)4.若方阵A 的各行元素之和为零,则0A = ( ) 答案: √ 二.填空题(中等)1.设1234577733324523332246523=A ,313233++=A A A _________,3435+=A A ________答案:0,0(中等)2.1234243141321432=D , 求11213141+++A A A A =________ 答案:0(较容易)3. 5阶行列式D 的第2列元素依次为1,1,0,2,1它们对应的余子式分别为-1,3,-2,0,1,则=D ________. 答案:3(较容易)4.dba c dbc a bdc a bd a c= . 答案:0(较容易)5. yx yx x y x yx yx x yx 323222 +++++= .答案:)(2y x xy +-(较容易)6. 6217213424435431014327427246-=答案:510294⨯-(中等)7.已知三阶行列式 987654321 =D ,它的元素ij a 的代数余子式为ijA (3,2,1,3,2,1==j i ),则与232221cA bA aA ++对应的三阶行列式为.答案: 987321 c b a(中等)8. 设行列式30402222,07005322D =-- 则第四行各元素余子式之和的值为 .答案:–28(较容易)9.111100111100 y y y x x x --= .答案:22x y(中等)10. 行列式1111111111111111--+---+---x x x x = .答案:4x(较容易)11. 当λ= 或μ= 时,齐次方程组⎪⎩⎪⎨⎧=+μ+=+μ+=++λ0200321321321x x x x x x x x x 有非零解.答案:1,0(较容易)2. 设222233331111a bcdD a b c da b c d =,则D=______________答案:()()()()()()d c d b d a c b c a b a ------(较容易)13. 已知四阶行列式D 的第二行元素分别为3, 1, -1, 2, 他们对应的余子式分别为1, 2, 2, -1, 则行列式=D ______ 答案:-1(较容易)14. 设A 是三阶方阵, 且3||=A , 则|)2(|1-A =_______ 答案:124(容易)15. A 为正交矩阵, 则=||A _____________ 答案:1或-1(较容易)16. 已知四阶行列式D 的第3列元素分别为1,3,-2,2,他们对应的余子式分别为3,-2,1,1,则行列式D=________ 答案:5(容易)17. 行列式25613412a 中元素a 的代数余子式 = _________答案:-4(较容易)18.四阶行列式D 的第二行的元素都是2,且第二行元素的代数余子式都是3,则D= _________ 答案:0(较容易)19.设A 是三阶行列式,且1A =,则2A A =______ 答案:512(较容易)20.设五阶矩阵A 的行列式2A =-,则其伴随矩阵*A 的行列式*A = ____ 答案:16(容易)21. 已知三阶行列式251102321-=D , 则第3行第2列元素的代数余子式32A =_____________ 答案:7(容易)22. 按自然数从小到大为标准顺序,排列4132的逆序数为 .. 答案:1(容易)23. 当=i =k 时排列1274i 56k 9为偶排列. 答案:8,3(容易)24. 排列1 3 …(12-n )2 4…(n 2)的逆序数为 _______ .答案:(1)2n n - (容易)25. 在五阶行列式中项5541322413a a a a a 前面应冠以 号(填正或负). 答案:负(容易)26. 四阶行列式中含有因子2311a a 且带负号的项为_____ 答案:44322311a a a a -(容易)27. 设A 为n 阶矩阵,且T A A E =,则必有________A = 答案:1 或-1(容易)28. 设A 为n 阶可逆矩阵,如果2A =,则*A =________ 答案:12n -(容易)29. 设A 为n 阶可逆矩阵,如果 2A =- ,则*A =________ 答案:1(2)n --(容易)30. 设A 为n 阶矩阵,且T A A E =,则必有TA =________ 答案:1 或-1(容易)31.设A 是n 阶方阵, *A 为其伴随矩阵, 若a A =||, 则||*A =__________ 答案:1n a -(容易)32.若2||44-=⨯A , 则=||*A _________ 答案:8(容易)33.设3211111410D -=-,则313233A A A ++=_____ 答案:0(较容易)34. 若0x a aa x a a a x=,则a =_____答案:2a -或0(较容易)35.已知3021111xy z=,则33332222xyzx y z x y z ++=+++_____答案:2(较容易)36.设122340000000000a a D a a =121340000200003004a a D a a =,则1D =_____2D答案:24(容易)37.1200340000540045D --==-- ____答案:-18(容易)38.1200340000130051D ==- ____ 答案:32(较容易)39.1111001100111001D == ____ 答案:0(较容易)40.若齐次线性方程组03030x y z x y z x y z λ+-=⎧⎪-+=⎨⎪-+=⎩有非零解,则λ=____答案:12λ=-(容易)41.行列式A 中元素ij a 的代数余子式ij A 与余子式ij M 之间的关系____答案:(1)i j ij ij A M +=-(较容易)42.若n 阶方阵A 的秩为n-1,在A =____ 答案:0(较容易)43.设A,B 是两个三阶的方阵,且1A =-,2B =,那么133()T A B -=____ 答案:278-(容易)44.设三阶方阵A 的不同特征值为-1,2,4 ,则A =____ 答案:-8(较容易)45.若A,B 为n 阶方阵,且1,32A B ==-,则*12A B --=____答案:12(1)3n +-(容易)为三阶方阵,2A =,则12A =____ 答案:14(较容易)47.设行列式2345246812035643D =,则414243442468A A A A +++=____ 答案:0(较容易)48.若3022111xy z=-,则413111111x y z ---=____答案:2(较容易)49.8276412549162523451111= ____答案:12(较容易)50. 如果3333231232221131211==a a a a a a a a a D ,则11121321222331323332623a a a a a a a a a ---= ____ 答案:-18(较容易)51. 如果3333231232221131211==a a a a a a a a a D ,则111213212223313233222222222a a a a a a a a a = ____ 答案:24(容易)52.已知三阶方阵A 的三个特征值为1,-2,3 ,则A =____ 答案:-6(容易)53. 01000020000100n D n n ==- 答案:1(1)!n n +-(容易)54. 0x y D xz y z =---=答案:0(容易)55.已知1253284013902106D ----=,23A =答案:-9(容易)56. efcfbf de cdbd aeacab ---= 答案:4abcdef(较容易)57. 33221111110011001b b b b b b D ------== 答案:1(较容易)行列式2001021001201002= 答案:9 三.选择题(容易)1. 如果⎩⎨⎧=-+=+-0)1(202)1(2121x k x x x k 仅有零解,则( ).A. 1≠k ,B. 1-≠k 或3≠k ,C. 3=k ,D. 1-≠k 且3≠k . 答案:D(较容易)2. 设,,D αβγ=, ,,αβγ分别表示行列式D 的三个列,则D =( )A. ,,γβαB. ,,αββγγα+++C. ,,αβγ---D. ,,ααβαβγ+++答案:D(较容易)3.四阶行列式D=112233440000000a b a b b a b a 的值等于( )A. 12341234a a a a b b b b -B. 12341234a a a a b b b b +C. 12123434 ()()a a bb a a b b --D. 23231414()()a a b b a a bb --答案:D(容易)4.如果1112132122233132332a a a a a a a a a =,则111213212223313233222222222a a a a a a a a a =( ) A. 2 B. 4 C. 12 D. 16 答案:D(较容易)5.已知4阶方阵A ,其第三列元素分别为1,3,-2,2,它们的余子式的值分别为3,-2,1,1则行列式A =( )A. 5B. -5C. -3D. 3 答案:A(中等)6.设231111111()114118xf x x x -=-,则方程()0f x =的三个根分别为( ) A. 1,-1,2 B. 1,1,4 C. 1,-1,8 D. 2,4,8 答案: A(较容易)7.行列式112233110a ba c ab ac a b a c ++++++=( )A. 0B. b c -C. 21()()c b a a --D. 21()b a a - 答案:C(容易)8.行列式132520103D -=--中元素32a 的代数余子式为( )A. 0B. -10C. 10D. 3 答案:B(容易)9.行列式21312201D -=中元素32a 的代数余子式为( ) A. 4 B. -4 C. 0 D. 2 答案:A(较容易)10.若1112132122233132331a a a a a a a a a = 则313233212223111213222333a a a a a a a a a ---=( ) A. -5 B. 6 C. -1 D. 1 答案: B(较容易)11.设22115()114723f x x x =+-,则方程()0f x =的根分别为( ) A. 1,1,3,3 B. -1,-1,3,3 C. -1,-1,-3,-3 D. 1,-1,3,-3 答案:D (较容易)12.已知111213212223313233a a a a a a d a a a =,则行列式313233111213211122122313333232323a a a a a a a a a a a a ---=+++( ) A. 6d - B. 6d C. 3d - D.3d 答案:A(较容易)13.1231231233a a a b b b c c c ⨯=( ) A. 123123123333a a a b b b c c c B. 123123123333333333a a a b b b c c c C. 123123123333a a a b b b c c c -D. 123123123333a a a b b b c c c 答案:D(较容易)14.行列式00030001002000100000002D -==--( ) A. -12 B. 12 C. -6 D. 6 答案:A(较容易)15.设det()n ij D a =,则0n D =的充分必要条件是( ) A. n D 中有两行(列)元素对应成比例 B. n D 中有一行(列)的元素均为零 C.11220()i j i j in jn a A a A a A i j ++⋅⋅⋅+== D. 11220()i j i j in jn a A a A a A i j ++⋅⋅⋅+=≠ 答案:C(中等)16.1223()71043171x x x xf x x--=--是( )次多项式 A. 4 B. 3 C. 2 D. 1 答案:C(较容易)17.四阶行列式D 的某行元素依次为-1,0,k,6, 它们的代数余子式分别为3,4,-2,0,且9D =-,则k =( ) A. 0 B. 3 C. 1 D. -1 答案:B(较容易)18.若1112132122233132331a a a a a a a a a =,则131112112321222133313231454545a a a a a a a a a a a a --=-( ) A. 5 B. -5 C. 20 D. -20 答案:A(容易)19.222a ab acab b bc ac bc c =( )A. abcB. 1C. 0D. 222a b c 答案:C(较容易)20. 设*1,A A -分别为n 阶方阵A 的伴随矩阵和逆矩阵,则*1A A -=( ) A. nA B. 1n A - C. 2n A- D. 3n A-答案:C(较容易)21.已知A 为三阶矩阵,其第三行元素分别为1,3,-2,它们的余子式分别为3,-2,1,则A =( )A. 5B. -5C. 7D. -7 答案:C(较容易)22.如果1112132122233132331a a a a a a a a a =,则111112132121222331313233423423423a a a a a a a a a a a a --=-( ) A. 8 B. -12 C. 24 D. -24 答案:B(较容易)23.行列式103100204199200395301300600=( )A. 1000B. -1000C. 2000答案:C(较容易)24.行列式40105022633070408D =的值为( ) A. -12 B. -24 C. -36 D. -72 答案:D(较容易)25.设A 为n 阶方阵,且0=A ,则( ) A. A 中必有两行(列)的对应元素成比例;B. A 中任意一行(列)向量是其余行(列)向量的线性组合;C. A 中必有一行(列)向量是其余行(列)向量的线性组合;D. A 中至少有一行(列)向量为零向量答案:C(较容易)26. 已知三阶矩阵A 的特征值为1,2,3,则行列式2A =( )A. 0B. 1C. 6D. 36 答案:D(较容易)27. 如果m a a a a a a a a a D ==333231232221131211,1312112322213332311333333333a a a a a a a a a D = 那么=1D ( ).A.m 3;B.m 3-;C. m 9;D. m 27-. 答案:D(较容易)28.已知0001000100010001000000001D⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅,则D=()A. 1B. -1C.(1)2(1)n n-- D.(1)(2)2(1)n n---答案:D29.行列式D非零的充要条件是()的所有元素都不为零至少有2n n-个元素不为零的任意两列元素之间不成比例D.以D为系数行列式的线性方程组有惟一解答案:D四.解答题(较难)1.123111111111111111(0,1,2,,)111111+++≠=+inaaa a i na解:123111111111111111111111++++na a a a 11213111111000000+-=--na a a a a a a 112131111110000000+---n a a a a a a a 11223111110000000=++=∑ni ina a a a a a 231120000100=⎡⎤=++=⎢⎥⎣⎦∑ni i na a a a a a 111(1)===+∑∏nni i i i a a(较难)2.12323413452121-n nn 解:12323413452121-nnn =1223123411245212121++++++++++++-n n n n nn =123011113410111(1)(12)14522011111211121------++++=-----n n n n n n n n n=1111111111(1)(1)211111111+---------+---------n n n n n n n n =110000(1)(1)20001111+-+----n n n nn n n=120000(1)(1)(1)2n nn n n n n n+-+--=(1)(4)11322(1)(1)(1)(1)(1)(1)(1)22-++--++----=-n n nn n n n n n n n(较难)3.-=------n xaa a a a xa a a D a axa a a a aax解:00--=+-------n x a a x a a a a x a a x a a D a a ax aa a aa=111000()()()0000---+-+--+=-+++---n n n x a a x x a a x x a D x a D a x a x aaaaa由递推关系有1()()2⎡⎤=++-⎣⎦n n n D x a x a (较难)4.111111-=--n n D n n解:10100111001011111+----==+------n nn nn Dn n n n=111(1)(1)01010+---------n n n n n=12001(1)(1)(1)(1)010111+------------n n n n n n n=254113112(1)(1)(1)(1)(1)(1)(1)(1)+-+----------=-+n n n n n n n n n=222(1)1122(1)(1)(1)(1)(1)++-----+=-+n nn n n n n n n(中等)5. 写出四阶行列式2030740101201035--=D 中元素4,13323=-=a a 的代数余子式,并求其值.解: 230701135)1(3223-⨯-=+A 237013430--- .96102623343=+-=--=2015)1()2(230020135)1(223333++-⨯-=--⨯-=A.2010)2(-=⨯-=.176)20(4960033332323-=-⨯+-=+++=A a A a D(中等)6. 计算行列式7325254346323214-----解: 7325254346323214----- = 13723103419503100010------1373103195010)1(121----⨯=+137231031500-----.310625)697(5723315=⨯=+-=--=(中等)7. 计算(2)≥n n 阶行列式00010000001000aa D a a = 解: 按第一行展开,得()1000000000001000001na aa a D aa a +=+-.再将上式等号右边的第二个行列式按第一列展开,则可得到()()()()1112222111nn n n n n n D a a a a a a +-+---=+--=-=-(中等)8.计算行列式ab b b ba b b D bb a b bbba= 解: D =()()()()1111a n b b b b a n ba b b a n bb a b a n bbba+-+-+-+- []11(1)11b b ba b ba nb b a b bba=+-=[]1(1)b b ba ba nb a ba b -+---(较容易)9.计算行列式 .2143000012009687843415089715032-=D 解:231509750821001414437896823034(83)0340021014102102000340012141111(412)1116176.34D --===+⋅--=⋅=+=⨯=(较容易)10. k 取何值时,下列齐次线性方程组有非零解:⎪⎩⎪⎨⎧=+-=++-=++.02,0,0321321321x x x x kx x kx x x 解: 方程组有非零解的必要条件是系数行列式等于零.2111111--=k kD k k k k--++22011011kkk --+22011011)1(11(1)011004kk k+-).4)(1(k k -+=即 .0)4)(1(=-+k k所以当1-=k 或4=k 时,齐次线性方程组可能有非零解.(中等)11. 计算行列式1314211311023351-----=D .解: 1192101110160551003351-----=D 11103200112033515----=1120320011103351)5(-----= 1300320011103351)5(------=211000320011103351)5(-----=55-= (中等)12. 计算行列式xa a ax a a a x D n =.解: x a a a x a a n x D n r r r n 111])1([)(21-+=+++a x a x a n x ---+= 0000111])1([ 1)]()1([---+=n a x a n x(中等)13. 计算行列式的值1118101711101325--=D 解:10113-D=181071352101--001==8200712055100111⨯---82001790055100111-- 410017900551001112--=179004100551001112---=38190004100551001112-=----=(难)4. 计算n 阶行列式的值52 (00)35...000..................00...52000...35200...035=n D解 按第一行展开,得:21116552...35...000..................00 (520)0...35000 (0323)5-----=-=n n n n n D D D D 按第一列展开得到递推式:2165---=n n n D D D写作)(211232----=-n n n n D D D D ,可得)(1221232D D D D n n n -=--- 写作)(211323----=-n n n n D D D D ,可得)(1221323D D D D n n n -=--- 而195235,521===D D ⎪⎩⎪⎨⎧=-=-∴--nn n nn n D D D D 233211 解之得1123++-=n n n D (中等)15. 计算n 阶行列式xyy x y x y x y x D 0 (00)...0000.....................00...0000...0000...00=的值解 按照第一列展开nn n n n n n n n y x y y x x y y x y x y y x x y x y x x D 111111111)1()1( (00)... 0 (00)...00...00)1( (00)... 0...000...00...0)1(+-+--+-+-+=⨯-⨯+⨯=-⨯+-⨯=(较容易)16. 问λ,μ取何值时,齐次线性方程组 1231231230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解?解:齐次方程组有非零解的必要条件是系数行列式等于零,故11011111111(1)012200λλμλλμλμμμλμμμ----===--即0μ=或1λ=齐次线性方程组有非零解。
第一章 行列式一、单项选择题1.=0001001001001000( ). (A) 0 (B)1- (C) 1 (D)22. =0001100000100100( ). (A) 0 (B)1- (C) 1 (D)23. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 4.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-5. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 26. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A)1- (B)2- (C)3- (D)07. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D)08. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. 行列式=0100111010100111.2.行列式=-0100002000010 n n .3.行列式=--001)1(2211)1(111 n n n n a a a a a a .4.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .5.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.6.行列式=--+---+---1111111111111111x x x x .7.n 阶行列式=+++λλλ111111111.8.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3, 2, 1,则该行列式的值为.9.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .10.已知db c a cca b b a b c a c ba D =, D 中第四列元的代数余子式的和为.11.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .12.已知行列式nn D001031002112531-=,D 中第一行元的代数余子式的和为.13.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.14.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1. cb a db a dc a dc bd c b a d c b a d c b a++++++++33332222; 2.yxyx x y x y y x y x+++;3.解方程11011101110=x x x x ; 4.na a a a 111111111111210(n j a j ,,1,0,1 =≠);5. bn b b ----)1(1111211111311116. na b b b a a b b a a a b 321222111111111; 7.xa a a a x a a a a x a a a a x n nn321212121; 8.2212221212121111nn n nn x x x x x x x x x x x x x x x +++;9.211200000210012100012; 10.aa a aa a a a a D ---------=1101100011000110001.参考答案一. 单项选择题C C A B CD B B 二.填空题 1.0; 2.!)1(1n n --; 3.1)1(212)1()1(n n n n n a a a ---; 4.M 3-; 5.160-; 6.4x ;7.1)(-+n n λλ; 8.2-; 9.0; 10.0; 11.9,12-; 12.)11(!1∑=-nk kn ;13.3,2-≠k ; 14.7=k 三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4. )111()1(00∑∏==-+-nk knk k a a ; 5. ))2(()1)(2(b n b b ---+- ; 6. ∏=--nk k kna b1)()1(;7. ∏∑==-+nk k nk k a x a x 11)()(; 8. ∑=+nk k x 11; 9. 1+n ;10. )1)(1(42a a a ++-.。
第九讲
行列式单元测试题点评
一、填空题(每小题2分,满分20分)
1.全体3阶排列一共有 6 个,它们是123,132,213,231,312,321;
2. 奇排列经过奇数次对换变为 偶 排列,奇排列经过偶数次对换变为 奇 排列;
3. 行列式D 和它的转置行列式D '有关系式D D '= ;
4. 交换一个行列式的两行(或两列),行列式的值改变符号;
5. 如果一个行列式有两行(或两列)的对应元素成比例,则这个行列式等于 零 ;
6. 一个行列式中某一行(列)所有元素的公因子可以提到 行列式符号的外边;
7. 把行列式的某一行(列)的元素乘以同一数后加到另一行(列)的对应元素上,行列式 的值不变 ;
8. 行列式的某一行(列)的元素与另一行(列)的对应元素的代数余子式的乘积之和等于 零 ;
9. 1112122211220;
0n n
nn nn
a a a a a a a a a =L
L
K M
M M M L
10.当
k=22
±时,542k k k =。
二、判断题(每小题3分,满分24分)
1.1)(,)(31221±==k i i i i k i i i n n ΛΛππ则若 (∨)
的符号
的一般项则设n n j i j i j i nn
n n n
n
a a a a a a a a a a a a D ΛΛ
M
M M M ΛΛ2211D ,.221
2222111211=
.)
1()
(21n j j j Λπ-是 (×)
3. 若n(n>2)阶行列式D=0,则D 有两行(列)元素相同. (×) 4.若n 阶行列式D 恰有n 个元素非0,则D ≠0. (×)
5.对于线性方程组,只要方程个数等于未知数个数,就可以直接使用克莱姆法则求解。
(×)
6.若行列式D 的相同元素多于2n n -个,则D=0. (×)
7.
11
121313233321222312
222331
32
33
11
21
31
a a a a a a a a a a a a a a a a a a = (×)
8.n 阶行列式主对角线上元素乘积项带正号,副对角线上元素乘积项带负号。
(×)
三、单项选择题(每小题4分,满分20分)
1.位于n 级排列12111k k n i i i i i -+L L 中的数1与其余数形成的反序个数为( A )
(A )k-1 (B) n-k-1 (C) k n C (D) 2
n C k -
2.设12n i i i L 是奇排列,则121n n i i i i -L 是(C ) (A )奇排列; (B ) 偶排列;
(C )奇偶性不能仅由n 的奇偶性确定的排列; (D )奇偶性仅由n 的奇偶性确定的排列。
3.一个不等于0的n 阶行列式中非零元素个数至少为(D ); 4.以下数集作成数环的是( C )
(1) S={}
Z ∈; (2) S={}
0a a Q ≠∈;
(3) S={},a b Z +∈; (4)
S={}
,a a b Q +∈. (A )(1)、(3) (B )(2)、(4) (C )(3)、(4) (D )(1)、(4)
5.行列式000
000
a e b
f g
c h d
中元素f 的代数余子式是( C ) 四、计算下列各题(每小题5分,满分20分)
1.计算(
)πL (2k)1(2k-1)2(k+1)k ; 3.计算行列式
D=
2223
3
3
4
4
4
3453453
4
5
345的值。
4.计算行列式 1
2
3
11100
0220
000011n n
n n
--=---L
L
L
M M M M M L n D 的值。
五、证明下列各题(满分16分)
1212,F F F F I 1.设均为数域,证明也是数域。
(5分) 2.已知a,b,c 均不为0,证明ay bx c
cx az b bz cy a +=⎧⎪
+=⎨⎪+=⎩
有唯一解。
(5分)
证明 因为方程组的系数行列式
所以有克莱姆法则知,方程组有唯一解。
3.设a,b,c是一个三角形的三边,证明0
0.
a b c
a c b
b c a
c b a
<(6分)证明
(因为a,b,c是三角形的三边)本讲作业:
(一)解答下列各题
1.计算行列式
123
113
121
1231
n
x n D x n
x
+
=+
+
L
L
L
M M M O M
L
2.计算n阶行列式
51000
65100
06500
00051
00065
D=
L
L
L
M M M O M M
L
L
2222
2222
2222
2222
123
12(1)
(1)1(2)
2341
n
n n
n n n
-
--
L
L
L
M M M L M
L
说明:此行列式称为循环行列式,以后见到以下类型的行
列式计算,可直接利用这一结果。
例如计算行列式 D=
(二)阅读教材P49-60,并回答什么是矩阵、矩阵的相等?矩阵有哪些运算和性质?有哪些
特殊矩阵和特殊性质?。