感生电动势与感生电场
- 格式:ppt
- 大小:2.08 MB
- 文档页数:21
第九周学习内容第33讲感生电动势及感生电场第34讲感生电动势例题第35讲涡电流及电磁阻尼第36讲自感与互感第33讲 感生电动势及感生电场 第34讲 感生电 动势例题感生电动势:回路中单纯由磁场变化产生的感应电动势。
d ∂∂LSBEl St d ⋅=-⋅⎰⎰感生感LEli d ε=⋅⎰i SBSt t d d d Φε∂=-=-⋅∂⎰感生电场 :产生感生电动势的非静电起源的作用力本质上是一种电场力。
感Ed d LSBE l St ⋅=-⋅⎰⎰感生∂∂d 0SE S ⋅=⎰感生感应电场为非保守场、无源场、涡旋场实际电场感生静电E E E +=d d LSBE l St ⋅=-⋅⎰⎰∂∂环路定理: d 0Sq E ε∑⋅=⎰内S 高斯定理:感生电场的计算:当磁场分布于圆柱形区域内且具有轴对称性时,可利用感生电场的环路定理计算出感生电场的空间分布。
d d LSBE l St ⋅=-⋅⎰⎰感生∂∂)(t B RLr d d 2r B E t=-感生当 r < R 时, d d 22R B E r t=-感生当 r > R 时,感生电场线为以对称轴为中心的同心圆环。
关于感生电场的方向和感生电场环路中负号的讨论。
d d LSBE l St ⋅=-⋅⎰⎰感生∂∂ 负号源自法拉第电磁感应定律,与感生电场的方向有关。
i d d d 感LE l tΦε=⋅=-⎰由楞次定律,负号可理解为感生电场及相应的感应电流的效果总是反抗或阻止引起它的原因。
由于电流激发磁场遵循右手螺旋定则,自然地,磁场变化的方向与其所激发感生电场的方向间就构成左手螺旋关系。
由于环路积分的方向与面积分中面元矢量的正法线方向满足右手螺旋定则,其中的负号当然就说明的方向与 的方向满足左手螺旋定则。
∂∂B t E 感生在感生电场中电磁感应定律可写成式中 为感应电场中的电场强度。
此式表明: (A) 闭合曲线 L 上处处相等。
(B) 感应电场是保守电场。
第二十六讲: §7.3感生电动势和感生电场一、感生电动势 涡旋电场1、感生电动势:由于dtm φd 所产生的感应电动势。
2、感生电场(涡旋电场):变化的磁场所激发的电场为感生电场。
其特点:①感生电场是非保守场;②电场线是闭合的。
3、感生电场与静电场的比较①相同点:都是电场(物理场,物质性,具有能量,即对电荷有电场力的作用)。
②不同点:⑴激发方式不同,感生电场是由变化的磁场激发的;静电场是由相对观察者静止的带电体激发的。
⑵感生电场电场线是闭合的,静电场电场线是非闭合的。
⑶感生电场是非保守场,静电场是保守场。
因为静电力是保守力,故而静电场力沿闭合路径的积分等于零, 由0W =⋅=⋅=⎰⎰ d q d 静静 ⑴看出, ∵ 0≠q ∴ 0=⋅⇒⎰d 静 静电场为保守场。
由0≠-=⋅=⎰dt d d m i φε 涡看出, 当 0dtd ≠m φ为变化的磁场, 则 0≠⋅⇒⎰ d 涡 也可推出0≠⋅=⇒⎰ d q W 涡⑵比较⑴、⑵式可推出感生电场是非保守场。
4、感生电场与磁场的关系式d m ⋅=⎰φ ; d dtd dt d m ⋅=⎰φ ; d t d S i ⋅∂∂-=⋅=⎰⎰ 涡ε ☆ 5、与涡E 、()i i I ε方向的确定注意:与绕行方向满足右手螺旋法则 当0d dt B 时,0 dS dtdB S i ⎰-=⇒ε i ε与绕行方向相反; 当0d dt B 时,0 dS dtdB S i ⎰-=⇒ε i ε与绕行方向相同。
P264例题7-5已知:如图所示,R,=dt B d 正常数 求:⑴1涡;⑵2E 涡解: ⑴∵d td S i ⋅∂∂-=⋅=⎰⎰ 涡ε R r 21r 2r t B E ππ∂∂-=⋅⇒涡 tB E ∂∂=⇒2r -1涡 R r 22r 2R t B E ππ∂∂-=⋅⇒涡 tB r E ∂∂=⇒2R -22涡 涡电场线绕行方向相反,如上图所示。
P264例题7-6 已知:0d dtB ,L ab = ,h 求:ab ε解:解法一:利用法拉第电磁感应定律S d t dt d S m ⋅∂∂-=-=⎰B i φεtB hL S t B t B i ∂∂=⋅∂∂=⋅∂∂=⎰2ε∵Oa 和Ob 沿径向,而涡E 与径向垂直。
感生电动势一、感生电动势当一个相对静止的导体闭合回路处于随时间变化的磁场中时,穿过导体闭合回路的磁通量也会发生变化,导体中产生感应电动势,称为感生电动势。
二、感生电场1、麦克斯韦假设相对静止的导体闭合回路因磁场变化能产生感生电动势,这说明回路中的电荷由于磁场的变化受到了某种力的作用。
电荷受力的作用分为两种,一种是静电场所施的库仑力,另一种是施于运动电荷的洛仑兹力。
然而,在产生感生电动势的过程中,即没有静电场也没有电荷的运动。
因此,感应电动势的非静既不是静电场的静电力,也不是洛仑兹力,我们用以前学过的知识已无法解释感生电动势的微观机制。
为了解释感生电动势非静电力的起源,英国科学家麦克斯韦提出一个假设:变化磁场在其周围空间会激发一种电场,这种电场称为感生电场或涡旋电场。
这种电场不管空间有无导体或导体回路,不管是介质还是真空它都存在。
这种感生电场对导体中电荷的作用力就是构成感应电动势的非静电力。
麦克斯韦的这一假设已被许多实验所证实。
2、感生电场的性质电场从起源上分为两种:一种是由电荷激发的静电场(库仑电场),用表示;另一种是由变化磁场激发的感生电场,用表示。
这两种电场有一个共同的特点,即对处于电场中的电荷有作用力。
但感生电场的电场力不同于库仑电场的电场力,它是一种非静电力。
如果在感生电场中放入导体,则导体中的在感生电场力的作用下将发生定向运动,在导体中形成电动势;如果导体构成闭合回路,就产生感应电流。
因此,感生电动势的非静电力就是感生电场力,它是形成感生电动势的起因和本质。
根据定义,感生电动势等于感生电场沿某一闭合曲线的线积分,即根据法拉第电磁感应定律,有其中是穿过闭合曲线所包围曲面上的磁通量,即则由于和静止不动,故上式右边对曲面的积分和对时间的积分次序可以互换,因而有感生电场沿的积分方向就是感生电动势是正方向,它与回路法线矢量构成右手螺旋关系。
一般情况下,空间可能既存在电荷,又存在变化的磁场,因而它们激发的两种电场也就可能同时存在。
克斯韦感能生电场和感应电动势的关系感生电场和感应电动势是电磁学中重要的概念,它们对于理解电磁现象和应用电磁原理具有重要意义。
克斯韦定律是描述感生电场和感应电动势之间关系的基本原理,本文将从理论和实际应用两个方面详细阐述克斯韦定律对感生电场和感应电动势的影响。
一、克斯韦定律的理论基础克斯韦定律是基于麦克斯韦方程组推导得出的,它描述了磁场的变化会在空间中感生电场,从而引起感应电动势。
具体而言,克斯韦定律可以表述为:当磁场穿过一个闭合线圈时,产生的感应电动势与磁场的变化率成正比。
这一关系可以用数学公式表示为:ɛ = -dΦB/dt,其中ɛ表示感应电动势,ΦB表示磁通量,t表示时间。
克斯韦定律的理论基础在于磁场的变化会导致电场的产生,这一原理是电磁学的基本原理之一,也是电磁感应现象的重要表现。
通过克斯韦定律,我们可以深入理解磁场和电场之间的耦合关系,为电磁学的研究和应用提供了重要的理论依据。
二、克斯韦定律在应用中的意义克斯韦定律不仅在理论研究中具有重要意义,在实际应用中也具有广泛的应用价值。
克斯韦定律可以用来解释和分析感应电动势产生的机制,在发电机、变压器等电气设备中起着重要作用。
克斯韦定律也可以应用于感应加热、感应熔炼等热能转换技术中,实现能量的转换和利用。
克斯韦定律还可以用来探测地下矿藏、地壳构造等大地物理勘探领域,在石油、矿产勘探中具有重要作用。
克斯韦定律在实际应用中的意义主要体现在以下几个方面:1. 工程设计:在发电机、变压器、感应加热设备等电气设备中,克斯韦定律可以用来分析电磁感应现象,指导设备的设计和优化。
2. 能源转换:在能源转换领域,克斯韦定律可以应用于感应加热、感应熔炼等技术,实现能量的高效转换和利用。
3. 地球勘探:在地球物理勘探领域,克斯韦定律可以用来探测地下矿藏、地壳构造等地质信息,为资源勘探和开发提供重要依据。
三、克斯韦定律的局限性和发展虽然克斯韦定律在描述感生电场和感应电动势之间的关系方面有着重要的意义,但也存在一定的局限性。