循环水余热利用(热泵)技术改造
- 格式:doc
- 大小:73.00 KB
- 文档页数:5
浅析回收热电厂循环水余热的吸收式热泵设计方案摘要:文章结合某热电厂的工程项目实例,对回收热电厂循环水余热的吸收式热泵设计方案进行了具体的探讨与分析,主要从蒸汽与疏水、热网循环水、冷却循环水系统三个方面对吸收式热泵设计参数进行了确定;确定了热泵机组余热回收量;从热网水系统、热源水系统、蒸汽凝结水系统三大系统的角度确定了热泵机组系统形式;在确定吸收式热泵机组之后,分析了吸收式热泵机组的节能效益与环保效益。
关键词:热电厂循环水余热吸收式热泵在很多供热电厂中,凝汽器的蒸汽余热普遍需要经过冷却塔然后排入大气中,随着城市建设进程的加快与城市一日千里的发展,城市集中供热负荷的增长始终居高不下,与日俱增的供热负荷增长需求与当前电厂供热能力之间的矛盾越来越突出,影响了人们的正常生活秩序,制约了城市的经济发展。
为了解决这一尖锐的矛盾问题,必须寻找一种电厂内部潜能挖掘的有效方法,在短期内缓解热负荷增长问题。
通过对热能利用原理分析可知,介质温度与环境温度直接影响着热能的利用率,介质与环境的温差值越大,其热能利用率越高。
介质温度越接近环境温度,热能利用难度越大,利用价值也越低。
在热电厂中,热源水的温度通常在25℃~35℃区间内,一年四季的温度都高于大气环境温度,又因其流量巨大,蕴藏其中的热量更是十分可观和庞大,在节约能耗的同时,也降低了一氧化硫、二氧化碳、氧化氮、烟尘等污染物的排放量,是一种利用价值较高的低位热源。
要吸收热电厂循环水的余热量,必须要对吸收式热泵进行改造设计。
本文将对此展开具体探讨与论述。
一、吸收式热泵技术简述热泵是一种通过利用热转换技术来对余热进行回收的转换装置。
以热泵的驱动力为划分依据,可以将工程中广为应用的转换装置划分为蒸汽压缩式热泵装置与热力驱动的吸收式热泵装置。
其中吸收式热泵吸装置又可以划分为第一类吸收式热泵装置与第二类吸收式热泵装置。
第一类吸收式热泵为增热型热泵,以少量的蒸汽、高温热水以及可燃性气体燃烧热等高温热源为驱动力,能够将低温热源的热能提高到中温,产生大量的中温有用热能,极大地提高了热能的利用率。
浅析火电厂循环水余热利用改造火电厂是常见的一种发电方式,其通过燃烧燃料产生蒸汽驱动涡轮发电机组工作,同时也会产生大量余热。
这些余热如果不能得到有效利用,不仅会导致能源浪费,也会造成环境污染。
为了有效利用这些余热,火电厂循环水余热利用改造成为一种可行的解决方案。
火电厂循环水余热包含锅炉烟气余热和汽轮机排气余热。
锅炉烟气余热是指锅炉烟气中的高温烟气在排放之前被收集利用的过程,汽轮机排气余热是指发电机组通过减速器或其他传动装置将抽汽机或汽轮机转速降低为发电机组同步转速后所产生的余热。
循环水余热利用改造的核心是通过余热回收系统将烟气或排气所含余热回收到循环水中,然后将余热利用在火电厂的各个环节中。
具体来说,火电厂循环水余热利用改造可通过以下方式进行:1.余热回收系统的建立余热回收系统包括烟气或排气余热回收设备、循环水管道、换热器和控制系统等组成。
其中,烟气或排气余热回收设备主要有余热锅炉和余热发电机组。
余热锅炉利用锅炉烟气余热加热循环水,提高热效率;余热发电机组则利用汽轮机排气余热发电。
2.循环水加热系统的改造循环水加热系统包括锅炉、给水系统、循环水系统和冷却水系统等。
在改造过程中,需要针对不同的系统进行相应的改造设计。
例如,对于锅炉来说,可通过增设余热回收设备将烟气余热回收到循环水中,提高锅炉的热效率。
对于循环水系统来说,可通过增设通风挡板将循环水的流量分配到不同的地方,从而实现循环水的最优控制。
3.余热利用于供热和制冷利用余热进行供热和制冷是循环水余热利用改造的常见方法。
在供热方面,可通过余热加热循环水后将其输送到供热系统中供热;在制冷方面,可通过余热制冷机将余热转化为制冷量进行制冷。
这样不仅能够充分利用余热,还能提高火电厂的经济效益。
总的来说,火电厂循环水余热利用改造是一项有益于环保和节能的工作。
通过余热回收和利用,不仅能够提高火电厂的热效率和经济效益,还能够降低其对环境的影响,实现“节能减排、循环利用”的目标。
******技术发展有限公司******热电厂循环水利用方案(溴化锂吸收式热泵)联系人:手机:联系电话:传真:信箱:2013年8月18日目录1 项目简介 (3)1.1 吸收式热泵方案 (3)1.2 吸收式热泵供暖工艺流程设计 (3)1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃) (4)1.4 节能运行计算 (4)1.5 初投资与回报期计算 (5)2 热泵机组简介 (6)2.1 吸收式热泵供暖机组 (6)2.2 溴化锂吸收式热泵采暖技术特点 (7)2.3 标志性案例介绍 (7)1 项目简介********热电厂,采暖季有温度为26.3~19.6℃的循环冷却水2800m3/h,需要通过降低汽轮机组凝汽器真空或提高汽轮机背压,使得冷却循环水的温度提升到到31.7℃,然后利用溴化锂吸收式热泵机组提取凝汽器冷却循环水中的热量,将循环冷却水温度降低到25℃,可以制备供水温度为74.7/55℃热网水2400 m3/h,对建筑物进行供暖,供暖期为152天。
提高汽轮机背压大约2KPa左右,汽轮机的轴向推力几乎不变,对发电量影响不大。
1.1 吸收式热泵方案采用蒸汽型吸收式热泵机组,通过0.49MPa的饱和蒸汽作为驱动热源,在冬季采暖期,将2800m3/h的循环冷却水从31.7℃降低到25℃,可以从循环冷却水中提取21.82MW的热量用于建筑物采暖。
1.2 吸收式热泵供暖工艺流程设计使用吸收式热泵加热,供暖系统流程原理图如下:由上图可以看出,实际应用流程非常简单,只是把工艺循环水引到热泵机房,把原来通过冷却塔排放到环境中的冷凝废热,通过溴化锂吸收式热泵机组将热量传递给供暖回水。
此系统改造不影响循环水原系统的稳定性,节省大量的蒸汽,同时带来了大量的经济效益。
1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃)通过溴化锂吸收式热泵产品,利用饱和蒸汽压力为0.49MPa的蒸汽50400kg/h,可将2800 m3/h的循环冷却水,从31.7℃降低到25℃,将2400m3/h采暖55℃回1.4 节能运行计算能源价格:电价:0.7元/kWh。
循环水供暖供暖可研报告第—一章总论 (1)第一节项目名称及承办单位 (1)第二节项目建设单位 (1)第三节可研报告编制依据 (3)第四节可研报告编制范围 (4)第五节可研报告结论 (5)第二章项目提出背景与建设必要性 (7)第一节某城区概况 (7)第二节项目提出背景 (9)第三节项目建设必要性 (11)第三章建设地点与建设条件 (15)第一节建设地点............................................第二节建设条件............................................第四章热负荷分析 (21)第一节供热现状......................................... 2 1第二节热负荷分析 (21)第三节设计热负荷 (24)第五章供热热源 (25)第六章工程改造技术方案 (28)第一节供热介质与设计参数的确定 (28)第二节供热机组改造方案 (29)第三节热力管网改造方案 (35)第四节土建工程 (39)第五节电气工程 (42)第六节热网微机监控系统 (44)第七节供热系统与设备选型 (46)第七章环境保护 (51)第一节分析依据及标准 (51)第二节环境保护 (52)第八章节约和合理利用能源 (61)第一节用能标准与节能规范 (61)第二节节能设计原则 (63)第三节低温循环水供热节能量计算 (63)第四节节能措施综述 (67)第五节节能管理分析 (70)第六节节能综合评价 (74)第九章消防、劳动安全与工业卫生 (75)第十章项目组织管理和劳动定员 (78)第十一章项目实施计划 (81)第十二章投资估算与财务评价 (84)第一节投资估算 (84)第二节财务评价 (86)第十三章工程招标 (89)第一节招投标基本原则 (89)第二节招标................................................ 9 0第十四章结论与建议.. (92)附图、附表目录一、附图1、某城区源能热电西厂区平面布臵图(Z-01)2、热负荷分布及管线平面布臵图(Z-02)3、原则性热力系统图(J-01)4、首站设备平面布臵图(J-02)二、附表附表-01项目总投资使用计划与资金筹措表附表-02流动资金估算表附表-03营业收入、营业税金及附加和增值税估算表附表-04总成本费用估算表(要素成本法)附表-04-1外购燃料和动力费估算表附表-05固定资产折旧费估算表附表-06无形资产和其他资产摊销估算表附表-07项目投资现金流量表附表-08项目资本金现金流量表附表-06利润与利润分配表附表-07项目投资现金流量表附表-10财务计划现金流量表附表-11资产负债表第一章总论第一节项目名称及承办单位一、项目名称某城区某热电公司循环水余热利用技术改造项目二、项目承办单位某城区某热电公司三、项目拟建地点某城区某热电公司现有厂区内四、可行性研究报告编制单位某省级工程咨询院工程咨询资格证书等级:甲级资格证书编号:工咨甲发证机关:国家发展和改革委员会第二节项目建设单位一、单位基本情况本项目由某城区某热电公司投资建设。
循环水中的低位热能回收利用方案摘要--华能营口热电厂节能改造1.前言:1.1:热能回收的必要性:当前全国各个火力发电厂凝汽器的冷却基本是采用传统生产工艺,冷却水进入电厂冷却水塔,通过风冷将水中的凝汽热量散发到大气中,水循环利用,从而产生了热能损失同时产生了蒸发水损失。
利用热泵技术将电厂排汽冷却水作为低温热水源,汲取以往被当作工业废热排放的凝汽热量,提升回热凝结水以及热网水温度。
这样既有利于电厂冷却循环水侧形成闭式循环,减少水量蒸发损失,又能够提高整体发电效率降低煤耗。
在能源日益紧张环境污染日趋严重的当今,节能减排迫在眉睫。
我2X330mw机组的热能损失为135MW(此数据来源于北京华电博欣节能技术有限公司和大连热电工程设计有限公司可行性报告),循环水蒸发损失为10000吨/天(此数据来源于我厂统计);1.2:热能回收的可行性:热泵是一种能从自然界的空气、水或土壤中获取低品位热,经过电力做功,输出能用的高品位热能的设备,热泵的理论基础是分子运动及能量守恒原理。
热泵的历史可以追朔到1912年瑞士的一个专利,而热泵真正意义的商业应用也只有近十几年的历史。
如美国,截止1985年全国共有14,000台地源热泵,而1997年就安装了45,000台,到目前为止已安装了400,000台,而且每年以10%的速度稳步增长。
目前国内外已经有利用低温(2-5℃)水的热能,把水加热到70-90℃的高温热泵,并且能效比COP>3.5。
热泵技术的日臻成熟为本方案提供了基础。
如果我厂用热泵技术回收余热进行供热,那么2X330 Mw的机组供热时发电与供热总的能力(煤耗不变的前提下)至少可以达到发电2X250 Mw +供热465(465=3*155) Mw的效果;2.本项目循环水中的低位热能回收利用方案预期结果:如果我厂用热泵技术回收余热进行供热,那么2X330 Mw的机组供热时发电与供热总的能力(煤耗不变的前提下)至少可以达到发电(2X330-155) Mw +供热465(465=3*155) Mw的效果;初步计算,通过利用热泵技术进行循环水中的低位热能回收,可以提高全厂能效利用率5%以上,当冬季供热时,可以提高全厂能效利用率10%以上,平均每天可以减少蒸发量损失2X330MW 机组10000吨/天;具体如下:2.1:本方案可以将循环水内(20000 T/h ,温度25 °C 温升6°C)的低位热能提取出来。
浅析火电厂循环水余热利用改造随着国家节能减排政策的推进,火电厂循环水余热利用改造已经成为一种必然趋势。
循环水余热是指在燃煤火力发电过程中,由于热机效率低而产生的未被充分利用的热能,约占总热能的20%~25%。
如何将这些余热利用起来,不仅可以为企业节约能源开支,还能大大降低二氧化碳等温室气体的排放,达到可持续发展的目的。
1.改造循环水系统,提高热效率。
循环水系统是火电厂的重要组成部分,也是循环水余热利用的核心。
改造循环水系统,采用热交换器等技术设备,将循环水中的余热传递到其他水体或输送到热用户处,实现热能转换。
2.改进锅炉技术,减少热损失。
锅炉是燃煤火力发电的核心设备,将燃料燃烧产生的热能转化为蒸汽能源。
通过改进锅炉技术,提高锅炉效率,减少热损失,可以进一步提高循环水余热的利用效率。
3.开发稳定的余热利用项目。
火电厂循环水余热的利用涉及多个领域,如城市供暖、工业制造、农业生产等。
因此,需要针对实际情况,针对性地开发稳定、可行的余热利用项目,打造具有协同效应和经济效益的利用模式。
4.积极引入第三方合作伙伴。
火电厂的循环水余热利用需要配套设备和技术支持,同时也需要对接市场需求,寻找合适的供需对接。
引入第三方合作伙伴,针对不同业务领域,形成合作联盟,可以高效地对接市场需求,推动余热利用的规模化和普及化。
总之,火电厂循环水余热利用改造是一个长期而复杂的过程,需要政府、企业、技术机构等多方参与,共同推进。
通过利用循环水余热,既可以降低企业能源成本,又可以实现节能减排,为经济发展和环境保护做出贡献。
热电厂低温循环水余热回收利用工程实践摘要:进入新时期以来,我国各项事业均快速发展,取得了十分理想的成绩,特别是热电厂以惊人的速度向前发展。
随着煤炭价格逐年升高,热电厂经营压力巨大,且电力行业是一次能源消耗大户和污染排放大户,也是国家实施节能减排的重点领域。
电厂循环冷却水余热属于低品位热能,一般情况下,直接向环境释放,造成了巨大的能源浪费。
热泵是利用一部分高质能从低位热源中吸取一部分热量,并把这两部分能量一起输送到需要较高温度的环境或介质的设备。
火电厂循环水中存在大量余热,利用热泵技术有效回收这部分热量用于冬季供暖或常年加热凝结水。
关键词:热电厂;低温循环水;余热回收;利用工程引言低温循环水余热即是可回收再利用的一种资源。
热电厂生产中需要大量能源,这些能源因生产工艺等原因,无法全部利用,因此就产生了大量的各种形式的余热,能源浪费严重。
1热泵技术的分类热泵技术是基于逆卡诺循环原理实现的。
按照驱动力的不同,热泵可以分为压缩式热泵和吸收式热泵。
压缩式热泵主要由蒸发器、压缩机、冷凝器和膨胀阀组成,通过让工质不断完成蒸发一压缩一冷凝一节流一再蒸发的热力循环过程,将低温热源的热量传递给热用户。
吸收式热泵主要由再生器、吸收器、冷凝器、蒸发器、溶液热交换器等组成,是利用两种沸点不同的物质组成的溶液的气液平衡特性来工作的。
根据热泵的热源介质来分,可分为空气源热泵和水源热泵等:空气源热泵是以空气为热源,因空气对热泵系统中的换热设备无腐蚀,理论上可在任何地区都可运用,因此是目前热泵技术应用最多的装置;水源热泵是以热水为热源,因水源热泵的热源温度一般为15~35°C,全年基本稳定,其制热和制冷系数可达3.5-4.5,与传统的空气源热泵相比,要高出30%左右。
2驱动蒸汽参数偏低工况当蒸汽参数偏低,不能满足热泵正常工作需要时,对高参数蒸汽减温减压后送入热泵,这种方法没有对高参数蒸汽的能量进行梯级利用。
研究采用蒸汽引射器方案,即利用高参数蒸汽引射低参数蒸汽,产生满足热泵需求的蒸汽,实现高、低压蒸汽的高效利用。
热电厂循环水余热利用方案摘要利用制冷剂循环水余热利用技术在热电厂中进行电力发电,可以有效提高电厂热效率,提高发电量,缩小单位电量的电耗。
本文重点探讨了制冷剂循环水余热利用系统的工作原理、节能经济分析和详细方案等内容。
通过分析,可以看出,制冷剂循环水余热利用技术在热电厂中的应用具有可行性,可以在热电厂中进行发电,提高电厂热效率,降低单位发电量的电耗以及提高整体的投资回收期等经济利益。
关键词:制冷剂循环;水余热;利用技术;热电厂IntroductionWorking PrincipleThis technology implements that, in the pro-cess ofelectricity generation in a power plant, the condensed water cooling system will be routed to the generator cooling system, and then the cooling cycle water is collected into a waste heat recovery system for reheating power generation. The system consists of cooling cycle water waste heat recovery device, reheater and auxiliary. When water in the condenser is cooled,the heat absorbed by the cooling cycle water can be recovered by the waste heat recovery equipment and sent to the heater of the steam turbine cycle and then goes into the reheater. In this way, the amount of steam extracted from the turbine reduces, and theexhaust pressure before the turbine increases, resulting in an increase in the electrical efficiency of the power plant.Analysis of Energy-saving and Economical BenefitsThe application of cooling cycle water waste heatutilization technology in power plants can effectively improve the thermal efficiency of the power plants and increase power generation. The unit electrical consumption can be reduced and the economic benefits of the project can be improved. Therefore, it is of great significance for the development of energy saving and efficiency of a power plant to utilize the cooling cycle water waste heat.The economic analysis results show that, after the application of cooling cycle water waste heat utilization technology, the power plant's thermal efficiency can be increased by 4.6%, the power generation increased by 7.2%, and the unit power consumption decreased by 10.6%. And the annual energy saving is 4.48 x 104 tons of standard coal. In addition, the payback period of the investment is 1.4 years.Detailed Scheme2. Reheater selection.In the rehe。