systemview对通信系统的仿真
- 格式:doc
- 大小:1.04 MB
- 文档页数:24
1引言随着信息的飞速发展,在当今社会,通信已经成为整个社会的高级“神经中枢”。
通信技术也变得越来越重要,以致其在社会的生产和生活中起着越来与重要的作用。
同时,培养新世纪的技术人才也显得格外重要。
通信原理理论课程的学习使我们对通信系统有了初步的了解。
实现信息传递所需的一切技术设备和传输媒质的总和称为通信系统。
以基本的点对点通信为例,通信系统的组成,如图1-1所示。
图1-1通信系统的组成通信系统是由信源、发送设备、信道、接收设备、信宿组成。
一般发送端要有调制器,接收端要有解调器,这就用到了调制与解调技术。
调制可分为模拟调制和数字调制。
模拟调制常用的方法有AM调制、DSB调制、SSB调制;数字调制常用的方法有2ASK调制、2FSK调制、2PSK调制及2DPSK调制等。
经过调制不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于信道传输或便于信道多路复用的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响。
调制方式往往决定着一个通信系统的性能。
本次课程设计主要对常见的模拟和数字调制解调、抽样定理、增量调制系统和数字基带传输系统进行设计与仿真分析。
通过Systemview仿真软件,可以实现这些通信系统的设计与仿真,并进一步对其进行性能分析,巩固通信原理所学过的知识。
随着通信技术的发展日新月异,通信系统也日趋复杂。
因此,在通信系统的设计研发过程中,通信系统的软件仿真已成为必不可少的一部分。
为了使复杂的设计过程更加便捷高效,使得分析与设计所需的时间和费用降低,美国Elanix公司推出了基于PC机Windows平台的SystemView动态系统仿真软件。
这款软件很好的解决了通信系统设计过程的效率较低的问题。
为了更好的掌握SystemView动态仿真软件,加深对理论知识的理解,学校专门安排了一周的通信原理课程设计,目的在于:1.学习SystemView仿真软件的基本使用方法;2.利用SystemView建立简单调制解调系统的仿真模型;3.利用计算机对系统进行分析,能够更直观的了解其系统的工作流程;4.通过系统仿真加深对通信课程理论的理解。
SystemView通信网络仿真软件概述随着通信技术的发展,MATLAB、OPNET、SystemView等通信网络仿真软件的对通信技术的发展做出巨大的作用。
下面就介绍一下SystemView.System View仿真软件是EDA(电子设计自动化)最常用的工具之一,在科研、教学方面发挥着重要的作用。
在System View环境下,可以构造各种复杂的模拟、数字、数模混合系统和各种速率的系统,可用于线性或非线性控制、通信系统的设计和仿真。
System View 有诸多优点:直观、简单、易用;可扩展性等。
SystemView是基于Windows环境下运行的用于系统仿真分析的可视化软件工具,它使用功能模块(Token)去描述程序,无需与复杂的程序语言打交道,不用写一句代码即可完成各种系统的设计与仿真,快速地建立和修改系统、访问与调整参数,方便地加入注释。
利用System View,可以构造各种复杂的模拟、数字、数模混合系统,各种多速率系统,因此,它可用于各种线性或非线性控制系统的设计和仿真。
用户在进行系统设计时,只需从System View配置的图标库中调出有关图标并进行参数设置,完成图标间的连线,然后运行仿真操作,最终以时域波形、眼图、功率谱等形式给出系统的仿真分析结果。
1.能仿真大量的应用系统能在DSP、通讯和控制系统应用中构造复杂的模拟、数字、混合和多速率系统。
具有大量可选择的库,允许用户有选择地增加通讯、逻辑、DSP和射频/模拟功能模块。
特别适合无线电话(GSM,CDMA,FDMA,TDMA,DSSS)、无绳电话、寻呼机和调制解调器以及卫星通信系统(GPS,DVBS,LEOS)等的设计;能够仿真(C3x,C4x等)DSP结构;可进行各种系统时域/频域分析和谱分析;对射频/模拟电路(混合器,放大器,RLC电路和运放电路)进行理论分析和失真分析。
2.快速方便的动态系统设计与仿真使用熟悉的Windows界面和功能键(单击、双击鼠标的左右键),System View可以快速建立和修改系统,并在对话框内快速访问和调整参数,实时修改实时显示。
1 前言通信按照传统的理解就是信息的传输,信息的传输离不开它的传输工具,通信系统应运而生,我们此次课题的目的就是要对调制解调的通信系统进行仿真研究。
有调制器,接收端要有解调器,这就用到了调制技术,调制可分为模拟调制和数字调制,模拟调制。
模拟调制常用的方法有AM调制、DSB调制、SSB调制;数字调制常用的方法有BFSK调制等。
经过调制不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于信道传输或便于信道多路复用的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响。
调制方式往往决定着一个通信系统的性能。
随着通信技术的发展日新月异,通信系统也日趋复杂。
因此,在通信系统的设计研发过程中,通信系统的软件仿真已成为必不可少的一部分。
目前,电子设计自动化EDA(Electronic Design Automatic)已成为通信系统设计的主潮流。
为了使复杂的设计过程更加便捷高效,使得分析与设计所需的时间和费用降低。
美国Elanix 公司推出的基于PC机Windows平台的SystemView动态系统仿真软件,是一个比较流行的,优秀的仿真软件。
SystemView是一个信号级的系统仿真软件,主要用于电路与通信系统的设计、仿真、能满足从信号处理、滤波器设计,到复杂的通信系统等要求。
SystemView借助大家熟悉的Windows窗口环境,以模块化和交互式的界面,为用户提供一个嵌入式的分析引擎。
SystemView仿真系统的主要特点有:能仿真大量的应用系统;能快速方便地进行动态系统设计与仿真;在本文中可以方便地加入SystemView的结果;完备的滤波和线性设计;先进的信号分析和数据处理;完善的自我诊断功能等。
SystemView由两个窗口组成,分别是系统设计窗口的分析窗口。
系统设计窗口,包括标题栏、菜单栏、工具条、滚动条、提示栏、图符库和设计工作区。
所有系统的设计、搭建等基本操作,都是在设计窗口内完成。
基于SystemView的通信系统仿真实验指导书目录第一部分SystemView简介 (1)1.1 SystemView的基本特点 (1)1.2 SystemView各专业库简介 (2)1.3 System View的基本操作 (5)第二部分通信原理实验 (9)2.1 常规调幅(AM) (9)2.2 双边带调制(DSB) (12)2.3 单边带调制(SSB) (14)第一部分SystemView简介System View是由美国ELANIX公司推出的基于PC的系统设计和仿真分析的软件工具,它为用户提供了一个完整的开发设计数字信号处理(DSP)系统,通信系统,控制系统以及构造通用数字系统模型的可视化软件环境。
1.1 SystemView的基本特点1.动态系统设计与仿真(1) 多速率系统和并行系统:SYSTEMVIEW允许合并多种数据速率输入系统,简化FIR FILTER的执行。
(2) 设计的组织结构图:通过使用METASYSTEM(子系统)对象的无限制分层结构,SYSTEMVIEW能很容易地建立复杂的系统。
(3) SYSTEMVIEW的功能块:SYSTEMVIEW的图标库包括几百种信号源,接收端,操作符和功能块,提供从DSP、通信信号处理与控制,直到构造通用数学模型的应用使用。
信号源和接收端图标允许在SYSTEMVIEW内部生成和分析信号以及供外部处理的各种文件格式的输入/输出数据。
(4) 广泛的滤波和线性系统设计:SYSTEMVIEW的操作符库包含一个功能强大的很容易使用图形模板设计模拟和数字以及离散和连续时间系统的环境,还包含大量的FIR/IIR滤波类型和FFT类型。
2.信号分析和块处理SYSTEMVIEW分析窗口是一个能够提供系统波形详细检查的交互式可视环境。
分析窗口还提供一个完成系统仿真生成数据的先进的块处理操作的接收端计算器。
接收端计算器块处理功能:应用DSP窗口,余切,自动关联,平均值,复杂的FFT,常量窗口,卷积,余弦,交叉关联,习惯显示,十进制,微分,除窗口,眼模式,FUNCTION SCALE,柱状图,积分,对数基底,数量相,MAX,MIN,乘波形,乘窗口,非,覆盖图,覆盖统计,解相,谱,分布图,正弦,平滑,谱密度,平方,平方根,减窗口,和波形,和窗口,正切,层叠,窗口常数。
[实验二] 滤波器与线性系统
一、实验目的
1、掌握滤波器的各种设计方法。
2、掌握各种滤波器的参数设计。
3、掌握系统的根轨迹图和波特图。
二、实验内容
设计一带通滤波器,带宽为180Hz、中心频率为2100Hz,用巴特沃斯和切比契夫两种方式完成。
要求:
(1)学习线性系统的参数设计。
(2)学习FIR滤波器和模拟滤波器的设计。
(3)观察系统的根轨迹图和波特图。
(4)分别用2种方法设计2个滤波器系统,观察仿真结果。
三、实验结果
1、巴特沃斯带通滤波器仿真原理图如下:
结果如下:
未经巴特沃斯带通滤波器滤波的信号波形
未经巴特沃斯带通滤波器滤波的信号频谱
巴特沃斯带通滤波器滤波后输出信号的波形
巴特沃斯带通滤波器滤波后输出信号的频谱
结果分析:由频谱图可知,经过巴特沃斯带通滤波器滤波后,频率为1800Hz的信号被滤掉,频率为2100Hz的信号通过。
2、切比契夫带通滤波器仿真原理图如下:
结果:
未经切比契夫带通滤波器滤波的信号波形
未经切比契夫带通滤波器滤波的信号频谱
切比契夫带通滤波器滤波后输出信号的波形
切比契夫带通滤波器滤波后输出信号的频谱
结果分析:由频谱图可知,经过切比契夫带通滤波器滤波后,频率为1800Hz的信号被滤掉,
频率为2100Hz的信号通过。
数字信号基带传输系统————用根升余弦滤波器实现一、设计目的1.熟悉使用System View软件,了解各功能模块的操作和使用方法。
2.通过实验进一步掌握、了解数字基带传输系统的构成及其工作原理。
3.观察数字基带传输系统接受端的眼图,掌握眼图的主要性能指标。
二、设计内容—用根升余弦滤波器实现用System View建立一个数字基带传输系统仿真电路,信道中加入高斯白噪声(均值为0,均方差可调),分析理解系统各个模块的功能,并通过观察眼图,判断系统信道中的噪声情况。
三、设计原理(一)数字信号基带传输系统原理通信的根本任务是远距离传递信息,因而如何准确地传输数字信息是数字通信的一个重要组成部分。
在数字传输系统中,其传输对象通常是二进制数字信息,它可能来自计算机、网络或其它数字设备的各种数字代码。
也可能来自数字电话终端的脉冲编码信号,设计数字传输系统的基本考虑是选择一组有限的离散的波形来表示数字信息。
这些离散波形可以是未经调制的不同电平信号,也可以是调制后的信号形式。
由于未经调制的脉冲电信号所占据的频带通常从直流和低频开始。
因而称为数字基带信号。
在某些有线信道中,特别是传输距离不太远的情况下,数字基带信号可以直接传送,我们称之为数字信号的基带传输。
而在另外一些信道,特别是无线信道和光信道中,数字基带信号则必须经过调制,将信号频谱搬移到高频处才能在信道中传输。
我们把这种传输称为数字信号的调制传输(或载波传输)。
如果把调制与解调过程看作是广义信道的一部分,则任何数传输系统均可等效为基带传输系统。
因此掌握数字信号的基带传输原理是十分重要的。
通过SystemView 提供的仿真环境对数字基带传输中的某些问题加以仿真、分析,能帮助我们进一步加深对这些抽象概念的理解,并加深感性认识。
二进制数字基带波形都是矩形波,在画频谱时通常只画出了其中能量最集中的频率范围,但这些基带信号在频域内实际上是无穷延伸的。
如果直接采用矩形脉冲的基带信号作为传输码型,由于实际信道的频带都是有限的,则传输系统接收端所得的信号频谱必定与发送端不同,这就会使接收端数字基带信号的波形失真。
t c ωcos 图3-1线性调制系统的一般模型 3 模拟调制系统的设计与分析模拟调制系统可分为线性调制和非线性调制,本课程设计只研究线性调制系统的设计与仿真。
线性调制系统中,常用的方法有AM 调制,DSB 调制,SSB 调制。
线性调制的一般原理:载波:)cos()(0ϕω+=t A t s c调制信号:)cos()()(0ϕω+=t t Am t s c m式中()t m —基带信号。
线性调制器的一般模型如图3-1在该模型中,适当选择带通滤波器的冲击响应()t h ,便可以得到各种线性调制信号。
线性解调器的一般模型如图3-2图3-2线性解调系统的一般模型其中()t s m —已调信号,()t n —信道加性高斯白噪声3.1 AM 调制3.1.1 AM 调制解调原理标准调幅就是常规双边带调制,简称调幅(AM)。
假设调制信号()t m 的平均值为0,将其叠加一个直流分量0A 后载波相乘(图3-3),即可形成调幅信号。
其时域表达式为()()00cos cos cos AM c c c S A m t t A t m t t ϖϖϖ=+=+⎡⎤⎣⎦式中:0A 为外加的直流分量;()t m 可以是确知信号,也可以是随机信号。
设计的AM 调制模型如图3-3图3-3 AM 调制模型本电路采用了相干解调的方法进行解调,其组成方框图如图3-43.1.2 AM 调制解调仿真电路根据以上原理用SystemView 仿真出来的电路图如图3-5具体参数:调制信号幅值:1Vt s图3-4相干解调法组成框图图3-5 AM 调制系统的仿真图调制信号频率:10H Z载波频率:450H Z在此设计的通信系统中,信道内无高斯白噪声。
3.1.3 AM调制解调仿真仿真波形仿真后的波形如图3-6图3-6 AM调制系统仿真波形其中基带信号频谱、已调信号频谱及解调后信号频谱如下图3-7所示图3-7频谱比较图3.1.4 AM 调制系统仿真结果分析AM 调制为线性调制的一种,由图3-6可以看出,在波形上,已调信号的幅值随基带信号变化而呈正比地变化;由图3-7可以看出,在频谱结构上,它完全是基带信号频谱结构在频域内的简单搬移。
基于SystemView的数字通信系统的仿真设计引言通信的根本任务是远距离传输信息,准确地传输数字通信中的一个重要环节。
设计数字传输系统的基本考虑是选择一组有限的离散波形来表示数字信息。
这些离散波形可以是未经调制的不同电平信号,也可以是调制后的信号形式。
由于未经调制的脉冲电信号所占据的频带通常从直流和低频开始,因而称为数字基带信号。
在某些有线信道中,数字基带信号可以直接传输,这种传输方式称为数字信号的基带传输;而在另外一些信道想,数字基带信号必须经过调制,将信号频谱搬移到高频段才能在信道中传输,然后在收端用解调器把信道中传输的已调信号还原成基带信号,这种传输方式称为数字信号的频带传输(或载波传输)。
基带传输包含着数字通信技术的许多问题,频带传输是基带信号调制后再传输的,因此频带传输也存在基带问题,基带传输的许多问题,频带传输同样需考虑。
如果把调制与解调过程看做是广义信道的一部分,则任何数字传输系统均可等效为基带传输系统。
理论上还可证明,任何一个采用线性调制的频带传输系统,总可以由一个等效的基带传输系统来代替。
下面我们将介绍一些解决数字通信系统中的实际问题的一些方法。
第1章课程设计目的和要求及原理1.1 本课程设计的目的(1)使学生掌握系统各功能模块的基本工作原理;(2)培养学生掌握电路设计的基本思路和方法;(3)能提高学生对所学理论知识的理解能力;(4)能提高和挖掘学生对所学知识的实际应用能力和创新能力;(5)提高学生的科技论文写作能力。
1.2 课程设计的任务及要求1)基本要求:(1)学习SystemView仿真软件;(2)对需要仿真的通信系统各功能模块的工作原理进行分析;(3)提出系统的设计方案,选择合适的模块;(4)对所设计系统进行仿真;(5)并对仿真结果进行分析。
2)创新要求:在基本要求达到后,可进行创新设计,完善系统的性能。
3)课程设计论文编写要求:(1)要按照书稿的规格打印誊写课程设计论文;(2)论文包括目录、绪论、正文、小结、参考文献、谢辞、附录等;(3)课程设计论文装订按学校统一要求完成。