排列组合中关于捆绑法、插空法、插隔板法的应用 (1)
- 格式:doc
- 大小:47.50 KB
- 文档页数:2
排列组合问题,首先要弄清什么叫做完成事情,这件事是“分类”还是“分步”完成,要考虑“有序”或“无序”,即分清是排列还是组合,并掌握一些典型例题和特定的方法。
1.特元特位法:优先解决有特殊要求的元素或者位置,如组数问题中最高位的限制或者排队问题中有特殊要求的元素2.捆绑法:也称“大元法”,是相邻问题的常用方法,将相邻元素视为一个元素与其余元素进行排列,注意内部的顺序。
3.插空法:解决不相邻问题的常用方法,排列时让没有要求的元素先排列,然后不相邻的元素再插空。
4.隔板法:分相同元素的一种特殊方法,n个相同小球放入m(m≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n个相同小球串成一串从n-1空中选m-1个空放入m-1板使之隔成m段,有种方法.5.间接法:从总体中排除不符合条件的方法数,这是一种间接解题的方法.6.分类讨论法:对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。
两种特殊的排列组合问题1.分组(堆)问题的六个模型:①有序不等分;②有序等分;③有序局部等分;④无序不等分;⑤无序等分;⑥无序局部等分;2.错位排列:编号为1至n的n个小球放入编号为1到 n的n个盒子里,每个盒子放一个小球.要求小球与盒子的编号都不同,这种排列称为错位排列.特别当n=2,3,4,时的错位数各为1,2,9. 本周例题:1.已知是集合到集合的映射(1)不同的映射有多少个?(2)若要求则不同的映射有多少个?(3)满足的映射有多少个?分析:(1)确定一个映射,需要确定的像(2)的象元之和为4,则加数可能出现多种情况,即4有多种分析方案,各方案独立且并列需要分类计算(3)用间接法相对方便一些。
解:(1)A中每个元都可选0,1,2三者之一为像,由分步计数原理,共有个不同映射(2)根据对应的像为2的个数来分类,可分为三类:第一类:没有元素的像为2,其和又为4,必然其像均为1,这样的映射只有一个;第二类:一个元素的像是2,其余三个元素的像必为0,1,1,这样的映射有个;第三类:二个元素的像是2,另两个元素的像必为0,这样的映射有个由分类计数原理共有1+12+6=19(个)(3)由(1)知所有的81个映射中,象集中没有“0”元素有个,所以象集中含有“0”的共有81-16=65个。
1 10.3 组合六教学目标: 1掌握组合数的性质并能应用组合数的性质解题. 2培养学生应用公式、性质的能力. 教学重点: 隔板法、插入法、捆绑法解决组合问题. 教学难点: 隔板法、插入法、捆绑法. 教学过程: 讲授新课例1有10个相同的小球放入编号为1、2、3的三个不同盒子�7�6要求每个盒子非空共有多少种放法�7�7要求每个盒子放入的小球数不少于盒子的编号数共有多少种放法方法一:�7�6设xyz10 x≥y≥z 其正整数解为x8y1z1x7y2z1 x6y3z1x6y2z2x5y4z1x5y3z2 x4y4z2x4y3z3 则放法有:.36443313AA �7�7先将1个、2个小球分别放入第2、3个盒子再按�7�6放入每个盒子的小球数gt 0 设xyz7 x≥y≥z 其正整数解为x5y1z1x4y2z1 x3y3z1x3y2z2 则放法有:.1533313AA 方法二隔板法.如: 对应: �7�63629C �7�71526C 答:�6�7 练习1.某中学从高中7个班中选出12名学生组成校代表队参加市中学数学应用题竞赛活动使代表中每班至少有1人参加的选法有多少种611C462 练习2. 6人带10瓶汽水参加春游每人至少带1瓶汽水共有多少种不同的带法12659C 练习3.北京市某中学要把9台型号相同的电脑送给西部地区的三所希望小学每所小学至少得到2台共有种不同送法. 例2. 已知方程xyzw100求这个方程的正整数解的组数. 练习4. 已知方程x1x2x350求这个方程有多少组非负整数解. 1号2号3号1号2号3号1号2号3号2 隔板法就是把“”当成隔板把考察的对象分成若干份例3. 一座桥上有编号为123�6�710的十盏灯为节约用电又不影响照明可以把其中的三盏关掉但不能关掉相邻的两盏或三盏也不能关掉两端的路灯问不同的关灯方法有多少种练习5. 一条长椅上有9个座位3个人坐若相邻2人之间至少有2个空椅子共有几种不同的坐法例4. 一条长椅上有七个座位四人坐要求三个空位中有两个空位相邻另一个空位与这两个相邻空位不相邻共有几种坐法课堂小结 1. 隔板法2. 插入法3. 捆绑法. 捆绑法和插空法是解排列组合问题的重要方法之一主要用于解决quot相邻问题quot及quot不邻问题quot。
排列组合问题经典题型与通用方法(一)排序问题1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,则不同的排法有()A、60种B、48种C、36种D、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.A,B,C,D,E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有()A、24种B、60种C、90种D、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
例11.现有1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?解析:老师在中间三个位置上选一个有13A 种,4名同学在其余4个位置上有44A 种方法;所以共有143472A A =种。
12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。
例12.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是()A、36种B、120种C、720种D、1440种(2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?解析:(1)前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共66720A =种,选C .(2)解析:看成一排,某2个元素在前半段四个位置中选排2个,有24A 种,某1个元素排在后半段的四个位置中选一个有14A 种,其余5个元素任排5个位置上有55A 种,故共有1254455760A A A =种排法.16.圆排问题单排法:把n 个不同元素放在圆周n 个无编号位置上的排列,顺序(例如按顺时钟)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在于只计顺序而无首位、末位之分,下列n 个普通排列:12323411,,,;,,,,,;,,,n n n n a a a a a a a a a a a - 在圆排列中只算一种,因为旋转后可以重合,故认为相同,n 个元素的圆排列数有!n n种.因此可将某个元素固定展成单排,其它的1n -元素全排列.例16.有5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同站法?解析:首先可让5位姐姐站成一圈,属圆排列有44A 种,然后在让插入其间,每位均可插入其姐姐的左边和右边,有2种方式,故不同的安排方式5242768⨯=种不同站法.说明:从n 个不同元素中取出m 个元素作圆形排列共有1m nA m种不同排法.17.可重复的排列求幂法:允许重复排列问题的特点是以元素为研究对象,元素不受位置的约束,可逐一安排元素的位置,一般地n 个不同元素排在m 个不同位置的排列数有nm 种方法.例17.把6名实习生分配到7个车间实习共有多少种不同方法?解析:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.14.选排问题先取后排:从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先取后排法.例14.(1)四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?(2)9名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同的分组方法?解析:先取四个球中二个为一组,另二组各一个球的方法有24C 种,再排:在四个盒中每次排3个有34A 种,故共有2344144C A =种.解析:先取男女运动员各2名,有2254C C 种,这四名运动员混和双打练习有22A 种排法,故共有222542120C C A =种.4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()A、6种B、9种C、11种D、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .22.全错位排列问题公式法:全错位排列问题(贺卡问题,信封问题)记住公式即可瑞士数学家欧拉按一般情况给出了一个递推公式:用A 、B 、C……表示写着n 位友人名字的信封,a 、b 、c……表示n 份相应的写好的信纸。
排列组合问题的解题策略关键词:排列组合,解题策略①分堆问题;②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法). 一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。
评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。
二、不相临问题——选空插入法例2.7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 .评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。
三、复杂问题——总体排除法在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。
排列组合问题——插板法分组、插空法不相邻、捆绑法相邻插板法m为空的数量基本题型有n个相同的元素,要求分到不同的m组中,且每组至少有一个元素,问有多少种分法图中“”表示相同的名额,“”表示名额间形成的空隙,设想在这几个空隙中插入六块“挡板”,则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含的名额数分给第一、二、三……七所学校,则“挡板”的一种插法恰好对应了10 个名额的一种分配方法,反之,名额的一种分配方法也决定了档板的一种插法,即挡板的插法种数与名额的分配方法种数是相等的,总结需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素的n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法;注意:这样对于很多的问题,是不能直接利用插板法解题的;但,可以通过一定的转变,将其变成符合上面3个条件的问题,这样就可以利用插板法解决,并且常常会产生意想不到的效果;插板法就是在n个元素间的n-1个空中插入若干个b个板,可以把n个元素分成b+1组的方法.应用插板法必须满足三个条件:1 这n个元素必须互不相异2 所分成的每一组至少分得一个元素3 分成的组别彼此相异举个很普通的例子来说明把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况问题的题干满足条件12,适用插板法,c9 2=36下面通过几道题目介绍下插板法的应用e 二次插板法例8 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况-o - o - o - o - o - o - 三个节目abc可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位所以一共是c7 1×c8 1×c9 1=504种基本解题思路将n个相同的元素排成一行,n个元素之间出现了n-1个空档,现在我们用m-1个“档板”插入n-1个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素可能是1个、2个、3个、4个、….,这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为插板法;基本题型例题例1 共有10完全相同的球分到7个班里,每个班至少要分到一个球,问有几种不同分法解析:我们可以将10个相同的球排成一行,10个球之间出现了9个空隙,现在我们用6个档板”插入这9个空隙中,就“把10个球隔成有序的7份,每个班级依次按班级序号分到对应位置的几个球可能是1个、2个、3个、4个,这样,借助于虚拟“档板”就可以把10个球分到了7个班中;基本题型的变形一也就是组中可以为空的;对于这样的题,我们就首先将每组都填上1个,这样所要元素总数就m个,问题也就是转变成将n+m个元素分到m组,并且每组至少分到一个的问题,也就可以用插板法来解决;例2有8个相同的球放到三个不同的盒子里,共有种不同方法.A.35 B.28 C.21 D.45解答:题目允许盒子有空,则需要每个组添加1个,则球的总数为8+3×1=11,此题就有C10,2=45种分法了,选项D为正确答案;基本题型的变形二题型:有n个相同的元素,要求分到m组,要求各组中分到的元素至少某个确定值Ss>1,且每组的s值可以不同,问有多少种不同的分法解题思路:这种问题是要求组中分到的元素不能少某个确定值s,各组分到的不是至少为一个了;对于这样的题,我们就首先将各组都填满,即各组就填上对应的确定值s那么多个,这样就满足了题目中要求的最起码的条件,之后我们再分剩下的球;这样这个问题就转变为上面我们提到的变形一的问题了,我们也就可以用插板法来解决;例315个相同的球放入编号为1、2、3的盒子内,盒内球数不少于编号数,有几种不同的放法解析:编号1:至少1个,符合要求;编号2:至少2个:需预先添加1个球,则总数-1编号3:至少3个,需预先添加2个,才能满足条件,后面添加一个,则总数-2则球总数15-1-2=12个放进3个盒子里所以C11,2=55种例10 个学生中,男女生各有5 人,选4 人参加数学竞赛;1至少有一名女生的选法种数为_______________;2A、B 两人中最多只有一人参加的选法种数为___________解法1:10 名中选4 名代表的选法的种类:C排除4名参赛全是男生:C54 排除法C10C54=20510解法2:选1女生时,选2个女生时,选3、4个女生时的选法,分别相加2010年国考真题某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料;问一共有多少种不同的发放方法解析:每个部门先放8个,后面就至少放一个,三个部门则要先放8×3=24份,还剩下30-24=6份来放入这三个部门,且每个部门至少发放1份,则C5,2=10插空法插空法就是对于解决某几个元素要求不相邻的问题时,先将其他元素排好,再将所指定的不相邻的元素插入它们的间隙或两端位置;首要特点就是不相邻;下面举例说明;一. 数字问题例把1,2,3,4,5组成没有重复数字且数字1,2不相邻的五位数,则所有不同排法有多少种解析:本题直接解答较为麻烦,因为可先将3,4,5三个元素排定,共有种排法,然后再将1,2插入四个空位共有种排法,故由乘法原理得,所有不同的五位数有二. 节目单问题例在一张节目单中原有六个节目,若保持这些节目的相对顺序不变,再添加进去三个节目,则所有不同的添加方法共有多少种解析:-o - o - o - o - o - o -六个节目算上前后共有七个空位,那么加上的第一个节目则有种方法;此时有七个节目,再用第二个节目去插八个空位有种方法;此时有八个节目,用最后一个节目去插九个空位有种方法;由乘法原理得,所有不同的添加方法为:;三. 关灯问题例一条马路上有编号1,2,3,4,5,6,7,8,9的九盏路灯,为了节约用电,可以把其中的三盏灯关掉,但不能同时关掉相邻两盏或三盏,则所有不同的关灯方法有多少种解析:如果直接解答须分类讨论,故可把六盏亮着的灯看作六个元素,然后用不亮的三盏灯去插七个空位用不亮的3盏灯去插剩下亮的6盏灯空位,就有7个空位共有种方法,因此所有不同的关灯方法为种;四. 停车问题例停车场划出一排12个停车位置,今有8辆车需要停放,要求空位置连在一起,不同的停车方法有多少种解析:先排好8辆车有种方法,要求空位置连在一起剩下4个空位在一起,来插入8辆车,有9个空位可以插,将空位置插入其中有种方法;所以共有种方法;五. 座位问题例 3个人坐在一排8个椅子上,若每个人左右两边都有空位,则坐法的种类有多少种解法:先拿出5个椅子排成一排,在5个椅子中间出现4个空,再让3个人每人带一把椅子去插空,于是有种;捆 绑 法 解答:根据题目要求,则其中一个盒子必须得放2个,其他每个盒子放1个球,所以从6个球中挑出2个球看成一个整体,则有26C ,这个整体和剩下4个球放入5个盒子里,则有55A ;方法是26C 55A 排列组合中的解题方法之插板法一、基础理论:插板是一个无形的东西即板子,它不能代表一个元素,它区别于插空法;插板法是用于解决“相同元素”分组问题;判断插板法的题目主要看题干中的两个词语:①相同元素②至少为1,如果有这样两个词语一般此题就可以直接插板进行解题;引例说明:春节前单位慰问困难职工,将10份相同的慰问品分给6名职工,每名职工至少要分得1份慰问品,分配方法共有:种种种种分析此题第一眼给人的感觉是能用列举法进行分类解题,但是细一思考分类的情况太多了,不易计算,因为想用插板法解题一般是分两类或三类;而插板法就可以使这种为题迎刃而解;利用无形的板子把其分割开来;解析“10份慰问品相同且每人至少得1份”,满足插板法的两个前提①相同元素②至少为1,故可直接使用插板法;将10份慰问品依次排成一条直线,我们用插板的形式把慰问品分给6名职工,中间形成9个空,插上第1个板子,则第一个板子之前的分给第一名职工,在后面又插了一个板子,表示第1个板子和第2个板子之间的分给第二名职工,依次类推,因为要分给6个人,所以要插5个板子,第5个板子之后的分给第六名职工,所以只要板子固定了,那么每名职工分几份慰问品就固定了;所以10分慰问品中间形成了9个空;分给6个人,插入5个板;共有=126种分配方法;注:估计有的同学会问,为什么第一个慰问品之前的位置和最后一个慰问品之后的位置不能放板子;其实原因在于“每名员工至少分1份慰问品”,如果在第一个慰问品之前的位置放板子那么第一名职工就一份分不到了,如果在最后一个慰问品之后的位置放板子那么最后一名职工就一份分不到了;二、真题举例:例1、假设x、y、z是三个非零自然数,且有x+y+z=36,则共有多少组满足条件的解分析此题可以看做是36块糖排成一排,即元素相同;由于x、y、z是非零自然数,即至少为1,问题:x+y+z=36,顺便看成3个人来分这36块糖;满足插板法应用条件;解析根据题意,36块糖内部形成35个空位,分给三个人,需要插两个板子,故有=595种,而一种分法对应着一组解,如x=1,y=1,z=34,就是一组解;共有595组解;因此,选D;例2、将10本没有区别的图书分到编号为1、2、3的图书馆,要求每个图书馆分得图书数量不小于其编号数,问共有多少种不同的分法分析根据题意,“10本没有区别的图书”即相同元素,“要求每个图书馆分得图书数量不小于其编号数“即1号图书馆至少分1本,2号图书馆至少分两本,3号图书馆至少分3本,分析完题意之后发现似乎不满足插板法的前提条件至少为1,类似的这种题目我们只需要适当变形就可利用插板法解题;解析1号图书馆至少分1本,已经满足至少为1,不用变形;而2号图书馆至少分两本,所以可从10本中取出一本先给2号图书馆;而3号图书馆至少分3本,可以从10本中取出两本书给3号图书馆,所以在给出一本和两本,那么还剩下7本,现在1号,2号,3号图书馆至少在发放一本书就可以满足了,那么此时就可以用插板法解题;所以答案是=15小结:题目中一般有相同元素,至少为什么,此题都可用插板法解题,所以大家要不断熟悉插板法的应用;三、插板法和列举法的对比例3、10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法种种种种答案B列举法先每个班级分一个名额,然后剩下两个名额,①如果两个名额分到一个班级里面则有,②如果两个名额分到两个班级里面则有种分法,则共有8+28=36.插板法10个名额9个空,插入7个板,共有种分配方法;例4、某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料;问一共有多少种不同的发放方法答案C列举法每个部门的材料数分布情况不同的分法种数9,9,12 3种9,10,11 6种10,10,10 1种所以共有3+6+1=10种;插板法3个部门每个部门先发8份,让其满足插板法,20-8×3=6,计算: ;小结:通过例3和例4来看,列举法可以叫做排列组合的通法,但是遇到个别的题目必要时也要用插板法;。
排列组合问题解法大全一.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种 解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种。
二.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种 解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 三.特殊元素或特殊位置优限法:优先解决带限制条件的元素或位置,或说“先解决特殊元素或特殊位置”例3.1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种? 解析:老师在中间三个位置上选一个有13A 种,4名同学在其余4个位置上有44A 种方法;所以共有143472A A =种. 四.分组分配:n 个不同元素按照某些条件分配给k 个不同得对象,称为分配问题,分定向分配和不定向分配两种问题;将n 个不同元素按照某些条件分成k 组,称为分组问题.分组问题有不平均分组、平均分组、和部分平均分组三种情况。
分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的;而后者即使2组元素个数相同,但因对象不同,仍然是可区分的.对于后者必须先分组后排列。
1.基本的分组问题例4 六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法? (1)每组两本.(2)一组一本,一组二本,一组三本. (3)一组四本,另外两组各一本.分析:(1)分组与顺序无关,是组合问题。
排列组合知识讲解一、排列1.排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)2.排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.3.排列数公式:A (1)(2)(1)mn n n n n m =---+,m n +∈N ,,并且m n ≤. 4.全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. 5.n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.二、组合1.组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.2.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示.3.组合数公式:(1)(2)(1)!C !!()!mnn n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤.组合数的两个性质:①C C m n m n n-=; ②11C C C m m m n n n -+=+.(规定0C 1n =)三、排列组合一些常用方法1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m !8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.四、实际问题的解题策略1.排列与组合应用题三种解决途径:①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素;②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.注意:求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏;③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法;⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理;⑥对于正面考虑太复杂的问题,可以考虑反面.⑦对于一些排列数与组合数的问题,需要构造模型.典型例题一.选择题(共2小题)1.(2018•合肥三模)如图,给7条线段的5个端点涂色,要求同一条线段的两个端点不能同色,现有4种不同的颜色可供选择,则不同的涂色方法种数有()A.24B.48C.96D.120【解答】解:第一类:若A,D相同,先涂E有4种涂法,再涂A,D有3种涂法,再涂B有2种涂法,C只有一种涂法,共有4×3×2=24种,第二类,若A,D不同,先涂E有4种涂法,再涂A有3种涂法,再涂D有2种涂法,当B和D相同时,C有1种涂法,当B和D不同时,B,C只有一种涂法,共有4×3×2×(1+1)=48种,根据分类计数原理可得,共有24+48=72种,故选:C.2.(2018•大荔县模拟)如图所示的五个区域中,要求在每一个区域只涂一种颜色,相邻区域所涂颜色不同,现有四种颜色可供选择,则不同的涂色方法种数为()A.64B.72C.84D.96【解答】解:分两种情况:(1)A、C不同色,先涂A有4种,C有3种,E有2种,B、D有1种,有4×3×2=24种;(2)A、C同色,先涂A有4种,E有3种,E有2种,B、D各有2种,有4×3×2×2=48种.共有72种,故选:B.二.解答题(共16小题)3.(2018春•金凤区校级期末)有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生;(2)某男生必须包括在内,但不担任数学科代表;(用数字回答)【解答】解:(1)先取后排,女生1人男生4人,女生2人男生3人,共有C31C54+C32C53,再把从中选出5人担任5门不同学科的科代表有A55,故共有(C31C54+C32C53)A55=5400种,(2)先安排这一名男生,再从剩下的7人中选4人安排剩下的4门学科,共有C41A74=3360种.4.(2018春•历下区校级期中)某学习小组有3个男生和4个女生共7人:(1)将此7人排成一排,男女彼此相间的排法有多少种?(2)将此7人排成一排,男生甲不站最左边,男生乙不站最右边的排法有多少种?(3)从中选出2名男生和2名女生分别承担4种不同的任务,有多少种选派方法?(4)现有7个座位连成一排,仅安排4个女生就座,恰有两个空位相邻的不同坐法共有多少种?【解答】解:(1)根据题意,分2步进行分析:①,将3个男生全排列,有A33种排法,排好后有4个空位,②,将4名女生全排列,安排到4个空位中,有A44种排法,则一共有A33A44=144种排法;(2)根据题意,分2种情况讨论:①,男生甲在最右边,有A66=720,②,男生甲不站最左边也不在最右边,有A51A51A55=3000,则有720+3000﹣3720种排法;(3)根据题意,分2步进行分析:①,在3名男生中选取2名男生,4名女生中选取2名女生,有C32C42种选取方法,②,将选出的4人全排列,承担4种不同的任务,有A44种情况,则有C32C42A44=432种不同的安排方法;(4)根据题意,7个座位连成一排,仅安排4个女生就座,还有3个空座位,分2步进行分析:①,将4名女生全排列,有A44种情况,排好后有5个空位,②,将3个空座位分成2、1的2组,在5个空位中任选2个,安排2组空座位,有A52种情况,则有A44A52=480种排法.5.(2017春•林芝地区期末)4个男生,3个女生站成一排.(必须写出算式再算出结果才得分)(Ⅰ)3个女生必须排在一起,有多少种不同的排法?(Ⅰ)任何两个女生彼此不相邻,有多少种不同的排法?(Ⅰ)甲乙二人之间恰好有三个人,有多少种不同的排法?【解答】解:(Ⅰ)先排3个女生作为一个元素与其余的4个元素做全排列有A33A55= 720种.(Ⅰ)男生排好后,5个空再插女生有A44A53=1440种.(Ⅰ)甲、乙先排好后,再从其余的5人中选出3人排在甲、乙之间,把排好的5个元素与最好的2个元素全排列,分步有A22A53A33=720种.6.(2017春•金台区期末)有5个男生和3个女生,从中选取5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生.(2)某女生一定要担任语文科代表.(3)某男生必须包括在内,但不担任数学科代表.(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.【解答】解:(1)先取后排,有C53C32+C54C31种,后排有A55种,共有(C53C32+C54C31)A55=5400种.….(3分)(2)除去该女生后先取后排:C74A44=840种.…..(6分)(3)先取后排,但先安排该男生:C74C41A44=3360种.…..(9分)(4)先从除去该男生该女生的6人中选3人有C63种,再安排该男生有C31种,其余3人全排有A33种,共C63C31A33=360种.…(12分)7.(2017春•平安县校级期中)五个人站成一排,求在下列条件下的不同排法种数:(用数字作答)(1)甲、乙两人相邻;(2)甲、乙两人不相邻;(3)甲不在排头,并且乙不在排尾;(4)甲在乙前,并且乙在丙前.【解答】解:(1)把甲、乙看成一个人来排有A44种,而甲、乙也存在顺序变化,所以甲、乙相邻排法种数为A44⋅A22=48种,(2)排除甲乙之外的3人,形成4个空,再把甲乙插入空位有A33A42=72,(3)甲不在排头,并且乙不在排尾排法种数为:A55﹣2A44+A33=78种,(4)因为甲、乙、丙共有3!种顺序,所以甲在乙前,并且乙在丙前排法种数为:A55÷3!=20种,8.(2017春•南岸区校级期中)现由某校高二年级四个班学生34人,其中一、二、三、四班分别为7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人做中心发言,这二人需来自不同的班级,有多少种不同的选法?【解答】解:(1)根据题意,四个班共34人,要求从34人中,选其中一人为负责人,即有C341=34种选法;(2)根据题意,分析可得:从一班选一名组长,有7种情况,从二班选一名组长,有8种情况,从三班选一名组长,有9种情况,从四班选一名组长,有10种情况,所以每班选一名组长,共有不同的选法N=7×8×9×10=5040(种).(3)根据题意,分六种情况讨论,①从一、二班学生中各选1人,有7×8种不同的选法;②从一、三班学生中各选1人,有7×9种不同的选法,③从一、四班学生中各选1人,有7×10种不同的选法;④从二、三班学生中各选1人,有8×9种不同的选法;⑤从二、四班学生中各选1人,有8×10种不同的选法;⑥从三、四班学生中各选1人,有9×10种不同的选法,所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).9.(2017春•诸暨市校级期中)7人站成一排,求满足下列条件的不同站法:(1)甲、乙两人相邻;(2)甲、乙之间隔着2人;(3)若7人顺序不变,再加入3个人,要求保持原先7人顺序不变;(4)甲、乙、丙3人中从左向右看由高到底(3人身高不同)的站法;(5)若甲、乙两人去坐标号为1,2,3,4,5,6,7的七把椅子,要求每人两边都有空位的坐法.【解答】解:(1)(捆绑法),把甲乙二人捆绑在一起,再和其他5人全排列,故有A 22A 66=1440种,(2)(捆绑法),先从5人选2人放着甲乙二人之间,并捆绑在一起,再和其他3人全排列,故有A 52A 22A 44=960种,(3)(插空法),原先7人排列形成8个空,先插入1人,再从形成的9个空再插入1人,再从10个空中插入1人,故有C 81C 91C 101=720种,(4)(分步计数法),从7人中任取3人,如a ,b ,c ,则改变原位置站法有2种,b ,c ,a 和c ,a ,b ,固有C 73×2=70种,(5)(定序法),先全排列,再除以顺序数,故有A 77A 33=840种,10.(2017春•广东期中)用0,1,2,3,4,5,6这七个数字:(1)能组成多少个无重复数字的四位奇数?(2)能组成多少个无重复数字且为5的倍数的五位数?(3)能组成多少个无重复数字且比31560大的五位数?【解答】解:(1)根据题意,分3步进行分析:①、个位从1,3,5选择一个,有C31种选法,②、千位数字不可选0,从剩下的5个中选一个,有C51种选法,③、在剩下的5个数字中选出2个,安排在百位、十位数字,有A52种选法,则C31×C51×A52=300个无重复数字的四位奇数;(2)分2种情况讨论:①、个位数上的数字是0,在其余的4个数字中任选4个,安排在前4个数位,有A64种情况,则此时的五位数有A64个;②、个位数上的数字是5,首位数字不可选0,从剩下的5个中选一个,有C51种选法,在剩下的5个数字中选出3个,安排在中间3个数位,有C51A53种情况,则此时符合条件的五位数有C51A53个.故满足条件的五位数的个数共有A64+C51A53=660个;(3)符合要求的比31560大的五位数可分为四类:第一类:形如4□□□□,5□□□□,6□□□□,共C31A64个;第二类:形如32□□□,34□□□,35□□□,36□□□共有C41A53个;第三类:形如316□□,共有A42个;第四类:形如3156□,共有2个;由分类加法计数原理知,无重复数字且比31560大的四位数共有:C31A64+C41A53+ A42+2=1334个.11.(2017春•吉林期中)有4个不同的球,4个不同的盒子,把球全部放入盒内:(1)恰有1个盒内有2个球,共有几种放法?(2)恰有2个盒不放球,共有几种放法?【解答】解:(1)根据题意,分三步进行分析:第一步,从4个小球中取两个小球,有C42种方法;第二步,将取出的两个小球放入一个盒内,有C41种方法;第三步,在剩下的三个盒子中选两个放剩下的两个小球,有A32种方法;由分步计数原理,共有C42•C41•A32=144种放法.(2)根据题意,分2种情况讨论:第一类,一个盒子放3个小球,一个盒子放1个小球,两个盒子不放小球有C41•C43•C31=48种方法;第二类,有两个盒子各放2个小球,另两个盒子不放小球有C42•C42=36种方法;由分类计数原理,共有48+36=84种放法.12.(2017秋•鄱阳县校级期中)现有10个教师其中男教师6名,女教师4名;(1)现要从中选2名去参加会议,有多少种不同的选法?(2)现要从中选出男教师、女教师各2名去参加会议,有多少种不同的选法?【解答】解:(1)根据题意,要求从10人中任选2人,则不同的选取方法有C102=45种,(2)根据题意,分2步分析:①、先在6名男教师中任选2人,有C62=15种取法,②、再在4名女教师中任选2人,有C42=6种取法,则不同的选取方法有15×6=90种.13.(2017春•集宁区校级期中)袋中装有大小相同的4个红球和6个白球,从中取出4个球.(1)若取出的球必须是两种颜色,则有多少种不同的取法?(2)若取出的红球个数不少于白球个数,则有多少种不同的取法?(3)取出一个红球记2分,取出一个白球记1分,若取4球的总分不低于5分,则有多少种不同的取法?【解答】(12分)(每小问4分)解:(1)分三类:3红1白,2红2白,1红3白这三类,由分类加法计数原理有:C43C61+C42C62+C41C63=194(种).(2)分三类:4红,3红1白,2红2白,由分类加法计数原理共有:C44+C43C61+C42C62=115(种).(3)由题意知,取4球的总分不低于5,只要取出的4个球中至少一个红球即可.因此共有取法:C41C63+C42C62+C43C61+C44=195(种).14.(2017春•玉田县期中)有甲、乙、丙、丁、戊5位同学,求:(1)5位同学站成一排,甲、戊不在两端有多少种不同的排法?(2)5位同学站成一排,要求甲乙必须相邻,丙丁不能相邻,有多少种不同的排法?(3)将5位同学分配到三个班,每班至少一人,共有多少种不同的分配方法?【解答】解:(1)根据题意,分2步进行分析:①、甲、戊不在两端,在中间的三个位置任选2个,安排甲、戊2人,有A32=6种排法,②、将乙、丙、丁三人安排在剩下的三个位置,有A 33=6种排法,则甲、戊不在两端有A 32×A 33=36种排法;(2)分3步进行分析:①、将甲乙看成一个整体,考虑甲乙之间的顺序,有A 22=2种情况, ②、将这个整体与戊2人全排列,有A 22=2种顺序,排好后,有3个空位, ③、在3个空位中任选2个,安排丙丁,有A 32=6种情况,则共有2×2×6=24种不同的排列方法;(3)分2步进行分析:①、将5个同学分成3组,若分成1、1、3的三组,有C 51C 41C 33A 22=10种分法, 若分成1、2、2的三组,有C 51C 42C 22A 22=15种分法,则一共有10+15=25种分组方法;②、将分好的三组对应三个班,有A 33=6种情况,则一共有25×6=150种不同的分配方法.15.(2017春•大丰市校级期中)现有2位男生和3位女生共5位同学站成一排.(用数字作答)(1)若2位男生相邻且3位女生相邻,则共有多少种不同的排法?(2)若男女相间,则共有多少种不同的排法?(3)若男生甲不站两端,女生乙不站最中间,则共有多少种不同的排法?【解答】解:(1)利用捆绑法,可得共有A22A22A33=24种不同的排法;(2)利用插空法,可得共有A22A33=12种不同的排法;(3)利用间接法,可得共有A55﹣3A44+C21A33=60种不同的排法.16.(2017春•新市区校级月考)现有4名男生、3名女生站成一排照相.(结果用数字表示)(1)女生甲不在排头,女生乙不在排尾,有多少种不同的站法?(2)女生不相邻,有多少种不同的站法?(3)女生甲要在女生乙的右方,有多少种不同的站法?【解答】解:(1)根据题意,分2种情况讨论:①、女生甲排在队尾,女生乙有6个位置可选,剩下的5人全排列,安排在其他5个位置,有A55种情况,此时有6×A55=720种站法;②女生甲排不在队尾,女生甲有5个位置可选,女生乙不在排尾,女生乙有5个位置可选,剩下的5人全排列,安排在其他5个位置,有A55种情况,此时有5×5×A55=3000种站法;则一共有720+3000=3720(2)根据题意,分2步进行分析:①、将4名男生全排列,有A44=24种顺序,排好后包括两端,有5个空位,②、在5个空位中任选3个,安排3名女生,有A53=60种情况,则此时有24×60=1440种站法;(3)根据题意,将7人全排列,有A77=5040种顺序,女生甲在女生乙的右方与女生甲在女生乙的左方的数目相同,则女生甲要在女生乙的右方的排法有1×A77=2520种情况.217.(2017春•江西月考)有3名男生,4名女生,在下列不同要求下,求不同的排列方法种数:(1)选其中5人排成一排(2)全体排成一排,甲不站在排头也不站在排尾(3)全体排成一排,男生互不相邻(4)全体排成一排,甲、乙两人中间恰好有3人.【解答】解:(1)选其中5人排成一排,有A75=2520种方法,不同的排列方法共有2520种;(2)先安排排头与排尾,有A62=30种顺序,将剩余5名学生进行全排列,有A55=120种方法,甲不站在排头也不站在排尾的排法有30×120=3600种;(3)将4名女生进行全排列,有A44=24种顺序,排好后有5个空位,在5个空位中任选3个,安排3名男生,有A53=60种情况,则男生互不相邻的排法有24×60=1440种;(4)先安排甲乙2人,有A22=2种方法,在剩余的5人中任选3人,排在甲乙2人之间,有A53=60种情况,将5人看成一个元素,与剩余的2人进行全排列,有A33=6种排法;则全体排成一排,甲、乙两人中间恰好有3人有2×60×6=720种排法.18.(2017秋•西陵区校级月考)4位学生与2位教师并坐合影留念,针对下列各种坐法,试问:各有多少种不同的坐法?(1)教师必须坐在正中间;(2)教师不能坐在两端,但要坐在一起;(3)教师不能坐在两端,且不能相邻.【解答】解:(1)根据题意,分2步进行分析:①、教师先坐中间的两个位置,有A22种方法;②、将4名学生全排列,再坐其余位置,有A44种方法.则共有A22•A44=48种坐法.(2)根据题意,分2步进行分析:①、教师不能坐在两端,且要相邻,在中间的4个位置中相邻的情况有3种,在其中任选1个来安排2名教师,有C31A22种方法;②、将4名学生全排列,再坐其余位置,有A44种方法.则共有C31A22•A44=144种坐法.(3)根据题意,分2步进行分析:①、先将4名学生排成一列,有A44种方法,排好后除去2端,有3个空位可用,②、在3个空位中,任选2个,安排两名老师,有A32种方法,则共有A44A32=144种坐法.。
排列组合中关于捆绑法、插空法、插隔板法的应用
捆绑法:当要求某几个元素必须相邻(挨着)时,先将这几个元素看做一个整体,(比如:原来3个元素,整体考虑之后看成1个元素)然后将这个整体和其它元素进行考虑。
这时要注意:一般整体内部各元素如果在前后顺序上有区别的还需进行一定的顺序考虑。
插空法:当要求某几个元素必须不相邻(挨着)时,可先将其它元素排好,然后再将要求不相邻的元素根据题目要求插入到已排好的元素的空隙或两端位置。
插隔板法:指在解决若干相同元素分组,要求每组至少一个元素时,采用将比分组数目少1的隔板插入到元素中的一种解题策略。
题目特点:“若干相同元素分组”、“ 每组至少一个元素”。
例1:一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法? A.20 B.12 C.6 D.4
分两种情况考虑
C=8种
1、这两个新节目挨着,那么三个节目有4个空,又考虑到这两个节目的先后顺序共有2×1
4
P=12种
2、这两个节目不挨着,那么三个节目有4个空,这就相当于考虑两个数在4个位置的排列,由2
4综上得,共8+12=20种此题中使用了捆绑法和插空法。
例2:A、B、C、D、E五个人排成一排,其中A、B两人不站一起,共有()种站法。
A.120
B.72
C.48
D.24
插空法:我们来这样考虑,因A、B两人不站一起,故可考虑的位置C、D、E,C、D、E三个人站在那有
P=12。
一共留出4个空,将A、B分别放入这4个空的不同的空中,那就是4个空中取2个空的全排列,即2
4
P=6,综上,共有6*12=72种
这样考虑了之后,还有一点就是C、D、E三个人也存在一个排列问题,即2
3
例3:A、B、C、D、E五个人排成一排,其中A、B两人必须站一起,共有()种站法。
A.120
B.72
C.48
D.24
捆绑法:此题和上一题实质是一样的,我们来这样考虑,A、B两人既然必须站在一起,那么索性我们就把他
P=24,又因为A、B两人虽然是站们看成一个人,那么我们就要考虑其和C、D、E共4个人的全排列,即4
4
P=2,综上,共有48种。
在一起了,但还要考虑一个谁在前谁在后的问题,这有两种情况,也就是2
2
例4:将8个完全相同的球放到3个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?
A. 20
B.21
C.23
D.24
插隔板法:解决这道题只需将8个球分成三组,然后依次将每一个组分别放到一个盒子中即可。
8个球分成3个组可以这样,用2个隔板插到这8个球中,这样就分成了3个组。
这时我们考虑的问题就转化成了我们
C种在8个球的空隙中放2个隔板有多少种放法的问题。
8个球有7个空隙,7个空隙要放2个隔板,就有2
7
放法,即21种.
例5:有9颗相同的糖,每天至少吃1颗,要4天吃完,有多少种吃法?A.
20 B.36 C.45 D.56
C=56种。
插隔板法:原理同上,只需用3个隔板放到9颗糖形成的8个空隙中,即可分成4天要吃的。
就有3
8
不邻问题插板法解题要点
“不邻问题”插板法——先排列,再插空
“不邻问题”插空法,即在解决对于某几个元素要求不相邻问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将问题解决的策略。
例1:若有A、B、C、D、E五个人排队,要求A和B两个人必须不站在一起,则有多少排队方法?
【解析】题目要求A和B两个人必须隔开。
首先将C、D、E三个人排列,有种排法;若排成DCE,则D、C、E“中间”和“两端”共有四个空位置,也即是:︺D︺C︺E︺,此时可将A、B两人插到四个空位置中的任意两个位置,有种插法。
由乘法原理,共有排队方法:。
例2:在一张节目单中原有6个节目,若保持这些节目相对顺序不变,再添加进去3个节目,则所有不同的添加方法共有多少种?
【解析】直接解答较为麻烦,可利用插空法去解题,故可先用一个节目去插7个空位(原来的6个节目排好后,中间和两端共有7个空位),有种方法;再用另一个节目去插8个空位,有种方法;用最后一个节目
去插9个空位,有种方法,由乘法原理得:所有不同的添加方法为=504种。
例3:一条马路上有编号为1、2、……、9的九盏路灯,为了节约用电,可以把其中的三盏关掉,但不能同时关掉相邻的两盏或三盏,则所有不同的关灯方法有多少种?
【解析】若直接解答须分类讨论,情况较复杂。
故可把六盏亮着的灯看作六个元素,然后用不亮的三盏灯去插7个空位,共有种方法(请您想想为什么不是),因此所有不同的关灯方法有种。
【提示】运用插空法解决排列组合问题时,一定要注意插空位置包括先排好元素“中间空位”和“两端空位”。
解题过程是“先排列,再插空”。
计数之插板法总结:
插板法就是插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法。
应用插板法必须满足三个条件:
(1)这n个元素必须互不相异(2)所分成的每一组至少分得一个元素(3)分成的组别彼此相异
举个很普通的例子来说明:把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?
问题的题干满足条件(1)(2),适用插板法,C92=36
下面通过几道题目介绍下插板法的应用:
a 凑元素插板法(有些题目满足条件(1),不满足条件(2),此时可适用此方法)
1 :把10个相同的小球放入3个不同的箱子,问有几种情况?
2:把10个相同小球放入3个不同箱子,第一个箱子至少1个,第二个箱子至少3个,第三个箱子可以放空球,有几种情况?
b 添板插板法
3:把10个相同小球放入3个不同的箱子,问有几种情况?
4:有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257,1459等等,这类数共有几个?
5:有一类自然数,从第四个数字开始,每个数字都恰好是它前面三个数字之和,直至不能再写为止,如2349,1427等等,这类数共有几个?
答案:
1、3个箱子都可能取到空球,条件(2)不满足,此时如果在3个箱子种各预先放入1个小球,则问题就等价于把13个相同小球放入3个不同箱子,每个箱子至少一个,有几种情况?显然就是 c12 2=66
2、我们可以在第二个箱子先放入10个小球中的2个,小球剩8个放3个箱子,然后在第三个箱子放入8个小球之外的1个小球,则问题转化为把9个相同小球放3不同箱子,每箱至少1个,几种方法? c8 2=28
3、-o - o - o - o - o - o - o - o - o - o - o表示10个小球,-表示空位, 11个空位中取2个加入2块板,第一组和第三组可以取到空的情况,第2组始终不能取空, 此时若在第11个空位后加入第12块板,设取到该板时,第二组取球为空, 则每一组都可能取球为空 c12 2=66
4、因为前2位数字唯一对应了符合要求的一个数,只要求出前2位有几种情况即可,设前两位为ab
显然a+b<=9 ,且a不为0 1 -1- 1 -1 -1 -1 -1 -1 -1 - - 。
1代表9个1,-代表10个空位我们可以在这9个空位中插入2个板,分成3组,第一组取到a个1,第二组取到b个1,但此时第二
C=45
组始终不能取空,若多添加第10个空时,设取到该板时第二组取空,即b=0,所以一共有2
10
5、类似的,某数的前三位为abc,a+b+c<=9,a不为0
1 -1- 1 -1 -1 -1 -1 -1 -1 - - -
在9个空位种插如3板,分成4组,第一组取a个1,第二组取b个1,第三组取c个1,由于第二,第三组都不能取到空,所以添加2块板
C=165 设取到第10个板时,第二组取空,即b=0;取到第11个板时,第三组取空,即c=0。
所以一共有3
11。