粒子群优化与神经网络的结合
- 格式:ppt
- 大小:223.00 KB
- 文档页数:20
基于粒子群优化的BP神经网络【摘要】人工神经网络的优化学习是其研究中的一个重要课题。
将粒子群优化算法用于BP神经网络的学习,将粒子优化算法的全局搜索和BP神经网的局部搜索相结合,并设计一网络实例加以训练,达到了比较满意的效果。
【关键词】粒子群优化算法BP神经网络BP算法BP网络(Back Propagation Network)是用途最为广泛的一类神经网络,具有很强的信息处理能力。
但是,由于BP算法的基本思想是最小二乘法,采用的是梯度搜索技术,难免存在收敛速度慢、局部极小等问题。
粒子群优化算法(Particle Swarm Optimaziton,简称PSO )是由Kennedy J和Eberhart R C于1995年提出的一种优化算法,源于对鸟群和鱼群群体运动行为的研究。
由于其容易理解,易于实现,不要求目标函数和约束条件是可微的,并能以较大概率求得全局最优解,目前已在许多优化问题中得到成功应用。
由于它具有并行计算的特点,而且可以提高计算速度。
因此,可以用粒子群优化算法来优化BP网络。
一、BP神经网络及其算法BP网络是一种具有三层或三层以上的单向传播的多层前馈网络,其拓扑结构如图1。
图1 拓扑结构图BP算法的执行步骤如下:(1)对各层权系数置一个较小Wij的非零随机数。
(2)输入一个样本X=(X1,X2,…,x n),以及对应期望输出) Y=(y1,y2,…,yn)。
(3)计算各层的输出。
对于第k 层第i个神经元的输出有:Uki=∑WijXk-1i,Xki=f(Uki)(一般为sigmoid 函数,即f(x)=1/(1-epx(-x))。
(4)求各层的学习误差dki。
对于输出层,有,k=m,dmi=Xmi(1-Xmi)(Xmi-Ymi)。
对于其他各层,有dxi=Xki(1-Xki)∑Wijdk+1i。
(5)修正权系数Wij。
Wij (t+1)=Wij-η•dki•Xk-1j。
粒子群算法与神经网络结合的优化算法研究随着人工智能和数据分析的快速发展,优化算法作为一种重要的数学方法,在各个领域中得到了广泛应用。
其中,粒子群算法和神经网络结合的优化算法,已经成为优化问题的一种新思路。
粒子群算法是一种优化算法,灵感来源于鸟群捕食的策略。
鸟群在进行捕食时,会根据周围环境和食物的分布情况,不断调整自己的方向和速度。
同样,粒子群算法中的“粒子”,也会根据周围其他粒子的信息和当前环境的优化目标,去更新自己所处的位置和速度。
神经网络作为另一种常用的数学方法,其本质是一种多层次的非线性函数。
神经网络通常被用来解决分类、识别和预测等问题。
其通过对输入变量的权重和偏差进行变化,不断调整模型参数,从而优化预测的准确性和泛化能力。
将这两种方法进行结合,即可形成一种有效的优化算法。
具体而言,粒子群算法可以用来寻找神经网络中的最优参数,从而提高模型的性能。
而神经网络则可以作为粒子群算法的优化目标,通过反馈神经网络预测误差,不断调整粒子的位置和速度。
这种结合方法的好处在于,能够同时利用粒子群算法的全局优化和神经网络的非线性优势。
在一些特定的优化问题中,甚至可以得到比单一方法更优秀的解决方案。
另外,在实际应用中,这种结合方法也有着很大的潜力。
例如,在智能物流中,可以运用粒子群算法从一堆货物中找出最优的装载方式,在这个过程中可以利用神经网络为每个货物进行分类,不断调整粒子,从而更好地进行装载。
在医学影像诊断中,可以利用神经网络对医学影像进行自动识别和分析,然后通过粒子群算法优化多个相关参数,从而提高诊断准确率。
总之,粒子群算法和神经网络结合的优化算法,在各个领域中有着重要的应用和价值。
虽然这种结合方法还处于起步阶段,但我们相信在不久的将来,它们将会得到更广泛的应用,并为我们带来更加稳健、高效和准确的优化算法。
arima-pso-lstm模型的基本原理
ARIMA-PSO-LSTM是一种将ARIMA模型、粒子群优化(Particle Swarm Optimization,PSO)和长短期记忆神经网络(Long Short-Term Memory,LSTM)结合起来的时间序列预
测模型。
ARIMA模型是一种经典的时间序列建模方法,通过对时间序
列数据的差分和自回归移动平均模型的拟合来预测未来的数值。
ARIMA模型适用于具有稳定的平均值和方差的时间序列数据。
PSO是一种启发式优化算法,模拟了鸟群觅食的行为,通过
迭代搜索最优解空间。
在ARIMA-PSO-LSTM中,PSO用于优化ARIMA模型中的参数。
LSTM是一种适用于时间序列数据的循环神经网络,具有记忆
单元和门控机制,可以有效地捕捉时间序列数据中的长期依赖关系。
LSTM可以通过训练数据集来学习时间序列的模式,并
进行预测。
ARIMA-PSO-LSTM模型的基本原理是:首先,使用ARIMA
模型对时间序列数据进行拟合,并通过PSO算法优化ARIMA
模型中的参数。
然后,将优化后的ARIMA模型作为LSTM的输入,并使用训练数据对LSTM进行训练。
最后,使用训练
好的模型对未来的时间序列数据进行预测。
ARIMA-PSO-LSTM模型的优点在于可以充分发挥ARIMA模
型和LSTM模型的优势,通过优化ARIMA模型的参数和利用
LSTM捕捉时间序列数据的长期依赖关系,提高了时间序列预测的准确性和泛化能力。
基于粒子群优化的深度神经网络分类算法董晴;宋威【摘要】针对神经网络分类算法中节点函数不可导,分类精度不够高等问题,提出了一种基于粒子群优化(PSO)算法的深度神经网络分类算法.使用深度学习中的自动编码机,结合PSO算法优化权值,利用自动编码机对输入样本数据进行编解码,为提高网络分类精度,以编码机本身的误差函数和Softmax分类器的代价函数加权求和共同作为PSO算法的评价函数,使编码后的数据更加适应分类器.实验结果证明:与其他传统的神经网络相比,在邮件分类问题上,此分类算法有更高的分类精度.%Aiming at problem that classification precision of neural network algorithm is not very high and node function doesn't have derivate,a new classification algorithm of deep neural network based on particle swarm optimization(PSO) is e autoencoder of deep study,and combined with PSO algorithm to optimize the weight,coder and decoder for input sample data using autoencoder.In order to improve the classification precision of network,take the error function of autoencoder and cost function of softmax classifier weight sum as evaluation function of PSO algorithm in common,making coded data more adapter to the classifier.The experimental results show that compared with other traditional neural network,the classification algorithm has higher classification precision on Email classification.【期刊名称】《传感器与微系统》【年(卷),期】2017(036)009【总页数】5页(P143-146,150)【关键词】深度神经网络;自动编码机;粒子群优化算法;分类【作者】董晴;宋威【作者单位】江南大学物联网工程学院,江苏无锡214122;江南大学物联网工程学院,江苏无锡214122【正文语种】中文【中图分类】TP183近年来,神经网络的研究一直受到学者们的关注,如感知机[1],反向传播(back propogation,BP)神经网络[2],径向基函数(radial basis function,RBF)神经网络及其各种改进算法[3~5]等。