七年级数学找规律题
- 格式:doc
- 大小:609.50 KB
- 文档页数:7
初一数学找规律专题训练题1、如下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去;(1)填表:剪的次数 1 2 3 4 5正方形个数(2)如果剪n次,共剪出多少个小正方形?(3)如果剪了100次,共剪出多少个小正方形?(4)观察图形,你还能得出什么规律?2、现有黑色三角形“▲”和“△”共200个,按照一定规律排列如下:▲▲△△▲△▲▲△△▲△▲▲……则黑色三角形有个,白色三角形有个。
3、仔细观察下列图形.当梯形的个数是n时,图形的周长是.11 124、把编号为1,2,3,4,…的若干盆花按右图所示摆放,花盆中的花按红、黄、蓝、紫的颜色依次循环排列,则第8行从左边数第6盆花的颜色为___________色.5、已知一列数:1,―2,3,―4,5,―6,7,…将这列数排成下列形式:第1行 1第2行-2 3第3行-45-6第4行7-89-10第5行11 -1213-1415按照上述规律排下去,那么第10行从左边数第5个数等于.6、观察下列算式:23451=+⨯,24462=+⨯,25473=+⨯,24846⨯+=,请你在察规律之后并用你得到的规律填空:250___________=+⨯, 第n个式子呢? ___________________7、一张长方形桌子可坐6人,按下列方式讲桌子拼在一起。
①张桌子拼在一起可坐______人。
3张桌子拼在一起可坐____人,n张桌子拼在一起可坐______人。
②一家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐______人。
③若在②中,改成每8张桌子拼成1张大桌子,则共可坐_________人。
8、观察下列顺序排列的等式:9×0+1=19×1+2=119×2+3=219×3+4=319×4+5=41……猜想:第n个等式(n为正整数)应为.9、观察下列各式,你会发现什么规律?3×5=15,而15=241-。
7年级找规律的数学题一、数字规律1. 观察下列数字:1,3,5,7,9,…- 请写出第n个数的表达式。
- 解析:- 这组数字是连续的奇数。
- 第1个数是1 = 2×1 - 1;第2个数是3=2×2 - 1;第3个数是5 = 2×3 - 1;以此类推。
- 所以第n个数的表达式为2n - 1。
2. 有一组数:2,4,8,16,32,…- 求第n个数的表达式。
- 解析:- 观察这组数字,第1个数是2 = 2¹;第2个数是4 = 2²;第3个数是8 = 2³;第4个数是16=2⁴;第5个数是32 = 2⁵。
- 所以第n个数的表达式为2ⁿ。
二、图形规律1. 用火柴棒按如下方式搭三角形:- 搭1个三角形需要3根火柴棒;搭2个三角形需要5根火柴棒;搭3个三角形需要7根火柴棒。
- 搭n个三角形需要多少根火柴棒?- 解析:- 当n = 1时,火柴棒数量为3=2×1 + 1;- 当n = 2时,火柴棒数量为5 = 2×2+1;- 当n = 3时,火柴棒数量为7 = 2×3+1;- 所以搭n个三角形需要2n + 1根火柴棒。
2. 观察下列图形的排列规律(其中△是三角形,□是正方形,○是圆):- □○△□□○△□○△□□○△□…- 若第一个图形是正方形,则第2023个图形是什么形状?- 解析:- 观察这组图形的排列规律,可发现7个图形为一组循环,即“□○△□□○△”。
- 2023÷7 = 289(组)……0(个),这里余数为0表示刚好循环完289组。
- 所以第2023个图形是这一组的最后一个图形,即三角形。
初一找规律的数学题及解题方法初一找规律的数学题通常涉及数列、图形、数字变换等问题,需要观察、分析、归纳和推理。
下面是一些初一找规律的数学题及解题方法:一、数列规律题题目:观察数列1,3,7,15,31,...,求第n项的值。
解题方法:首先观察数列中相邻两项的差,发现差值分别为2,4,8,16...,即每次乘以2。
这是一个等比数列的差数列。
根据这个规律,我们可以推导出第n项的公式:第n项=2^(n-1)-1。
二、图形规律题题目:有一组图形,第一个图形有1个点,第二个图形有3个点,第三个图形有7个点,第四个图形有15个点,...,求第n个图形中点的个数。
解题方法:首先观察图形中点数的变化规律,发现相邻两项的差分别为2,4,8,...。
这是一个等比数列的差数列。
根据这个规律,我们可以推导出第n个图形中点的个数公式:第n个图形中点的个数=2^(n-1)-1。
三、数字变换规律题题目:观察数字序列1,11,21,1211,111221,...,求第n项的值。
解题方法:首先观察数字序列的变化规律,发现每个数字都是由前一个数字生成的。
具体地,第一个数字是“1”,第二个数字表示前一个数字有“1”个“1”,所以是“11”,第三个数字表示前一个数字有“2”个“1”,所以是“21”,以此类推。
这是一个描述性规律题,需要通过观察和描述来找出规律。
根据这个规律,我们可以逐步推导出第n项的值。
四、等差数列规律题题目:观察等差数列2,5,8,11,...,求第n项的值。
解题方法:首先观察等差数列的公差,发现相邻两项的差为3。
根据等差数列的通项公式an=a1+(n-1)d,其中a1为首项,d为公差,n为项数,我们可以推导出第n项的公式:第n项=2+3(n-1)。
以上是初一找规律的数学题及解题方法的一些例子。
对于找规律的数学题,重要的是通过观察和分析来发现其中的规律和模式,并根据这些规律和模式来推导出解决问题的方法。
一、选择题(每题2分,共10分)1. 下列数列中,第10项是()A. 5B. 7C. 9D. 11答案:D解析:观察数列,每一项都比前一项多2,因此第10项为1+2×(10-1)=19。
2. 下列图形中,第5个图形是()A. 正方形B. 长方形C. 三角形D. 梯形答案:C解析:观察图形,每个图形都是由前一个图形加上一个相同的图形组成,因此第5个图形是三角形。
3. 下列数列中,下一个数是()1, 3, 6, 10, 15, ...A. 21B. 22C. 23D. 24答案:A解析:观察数列,每一项都是前一项加上一个递增的自然数,即1+2, 3+3, 6+4, 10+5, 15+6,所以下一个数是15+7=22。
4. 下列数列中,第8项是()2, 4, 8, 16, 32, ...A. 64B. 128C. 256D. 512答案:C解析:观察数列,每一项都是前一项的2倍,因此第8项是32×2=64。
5. 下列图形中,第4个图形是()A. 正方形B. 长方形C. 三角形D. 平行四边形答案:B解析:观察图形,每个图形都是前一个图形旋转90度,因此第4个图形是长方形。
二、填空题(每题3分,共9分)6. 数列1, 3, 5, 7, 9, ...的第n项是______。
答案:2n-1解析:观察数列,每一项都是前一项加上2,因此第n项为1+2×(n-1)=2n-1。
7. 图形序列中,每个图形都是前一个图形沿着中心旋转180度得到的,第6个图形是______。
答案:正方形解析:根据旋转规律,每个图形旋转6次后,又回到了正方形。
8. 数列2, 6, 18, 54, ...的第n项是______。
答案:2^n解析:观察数列,每一项都是前一项的3倍,因此第n项为2×3^(n-1)=2^n。
三、解答题(每题10分,共30分)9. 找出数列1, 4, 9, 16, 25, ...的规律,并写出第10项。
七年级数学找规律题(含答案)1.观察下图,寻找规律,在“?”处填上的数字是( ). A.128 B.136 C.162 D.188 【答案】C2.寻找规律计算1 - 2+3 - 4+5 - 6+…+2015 - 2016等于 ( ) A.0 B.- 1 C.- 1008D.1008【答案】C3.找规律:21-20=20 ;22-21=21 ;23-22=2 2;………利用你的发现,求20+21+22+23+…+22018+22019的值是( ) A .22019 -1 B .22019 +1C .22020 -1D .22020 +1【答案】C4.先找规律,再填数:1111122+-=,111134212+-=,111156330+-=,111178456+-=,…,1120132014+-( )=()12014⨯.【答案】11007,2013. 5.找规律填上合适的数:﹣2,4,﹣8,16, ,64,… 【答案】﹣32.6.寻找规律,根据规律填空:31,152-,353,634-,995, ,…,第n 个数是 . 【答案】1436-14)1(21--+n n n (或:当n 时奇数时,142-n n;当n 时偶数时,142--n n )7.先找规律,再填数: 111111*********1,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 【答案】8.找规律填数:﹣1,2,﹣4,8,________ 【答案】﹣169.先找规律,再填数:11+12-1=12,13+14-12=112,15+16-13=130,17+18-14=156,12011+12012-________=120112012⨯ 【答案】10.已知C 32=3×21×2=3, C 53=5×4×31×2×3=10,C 64 =6×5×4×31×2×3×4=15,…观察以上计算过程,寻找规律计算C 85=_____. 【答案】56.11.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…,观察上面的计算过程,寻找规律并计算=610C .【答案】21012.观察下列各式并找规律,再猜想填空:()()()()223322332248a b a ab b a b x y x xy y x y +-+=++-+=+, ,则()()2223469a b a ab b +-+= ______ .【答案】33827a b + 13.观察下列计算:,,,……从计算结果中找规律,利用规律计算_______________ 【答案】14.已知: 233212C ⨯=⨯=3,35543123C ⨯⨯=⨯⨯=10,3565431234C ⨯⨯⨯=⨯⨯⨯=15,…,观察上面的计算过程,寻找规律并计算:34C =_____. 【答案】4. 15.已知:2332312C ⨯==⨯,3554310123C ⨯⨯==⨯⨯,466543151234⨯⨯⨯==⨯⨯⨯C ,…,观察上面的计算过程,寻找规律并计算C 106=_____. 【答案】21016.找规律:﹣12,2,﹣92,8,﹣252 ,18…,则第7个数为_____;第n 个数为_____(n 为正整数)【答案】﹣492 (﹣1)nn 22.17.观察烟花燃放图形,找规律:依此规律,第n 个图形中共有_________个★. 【答案】2+2n18.找规律,并按规律填上第五个数:,169,87,45,23-- . 【答案】-113219.观察下面的一列数,从中寻找规律,然后按规律填写接下去的3个数.12,34-,56,78-,910,________,________,________,… 【答案】1112-1314 1516- 20.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a b m -+=_____.【答案】4321.观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a+b+c 的值为 .【答案】7622.观察下面的一列数,从中寻找规律,然后按规律写出接下去的三个数.12 ,-34 ,56 ,-78 ,910,… ________,…【答案】-1112;1314;−1516. 23.找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中共有________个.【答案】2n -124.观察下列各组勾股数,并寻找规律:①4,3,5; ②6,8,10; ③8,15,17; ④10,24,26 …… 请根据你发现的规律写出第⑦组勾股数:____________. 【答案】16,63,6525.用火柴棒按以下方式搭“小鱼” .…………搭1条“小鱼”需用8根火柴棒,搭2条“小鱼”需用14根火柴棒,搭3条“小鱼”需用20根火柴棒……观察并找规律,搭10条“小鱼”需用火柴棒的根数为 . 【答案】62 26.观察下列计算111122=-⨯ ,1112323=-⨯,1113434=-⨯,1114545=-⨯,……, (1)第n 个式子是_____________________________________; (2)从计算结果中找规律,利用规律计算:112⨯+123⨯+134⨯+145⨯+…+120092010⨯ 【答案】(1)()11111n n n n =-++;(2)20092010. 27.探究:()21112222122-=⨯-⨯=, () 3222? 2-==, ()4322? 2-==,……(1)请仔细观察,写出第4个等式; (2)请你找规律,写出第n 个等式;(3)计算:012201620172018222222+++⋅⋅⋅⋅⋅⋅++-. 【答案】(1)544442222122-=⨯-⨯=;(2)12222122n n n n n +-=⨯-⨯=;(3)-128.阅读下文,寻找规律:已知1x ≠时, ()()2111x x x -+=-,()()23111x x x x -++=-, ()()234111x x x x x -+++=-……(1)填空: ()1(x - 5)1x =-. (2)观察上式,并猜想:①()()211n x x x x -+++⋅⋅⋅+= . ②()()10911x x x x -++⋅⋅⋅++= . (3)根据你的猜想,计算:①()()234512122222-+++++= . ②23420161+3+3+3+33⋅⋅⋅⋅⋅⋅=_____________________【答案】(1)2341+x x x x +++(2)11n x+-; 111x -(3)612- (或 -63); 20173-1229.小明同学在一次找规律的游戏中发现如下的数字和规律,请你按照所给的式子,解答下列问题:21342+== 213593++== 21357164+++== 213579255++++==()1试猜想:135791129++++++⋯+=①______.()()135********n n ++++++⋯+-++=②______.()2用上述规律计算:2123255759+++⋯++=______.【答案】(1)①225;②(n+1)²(2)80030.找规律并解答问题.(1)按下图方式摆放黑色围棋子,填一填,每个图共需几枚棋子.(2)根据你发现的规律,算一算第13个图,共需要( )枚棋子.【答案】(1)详见解析;(2)40枚.31.观察表一,寻找规律.表二、表三分别是从表一中选取的一部分,则a=,ba+= .表一表二表三【答案】17=a2372=+ba32.细观察,找规律.下列各图中的1MA与nNA平行.()1图①中的12A A∠+∠=______ 度,图②中的123A A A∠+∠+∠=______ 度,图③中的1234A A A A ∠+∠+∠+∠=______ 度, 图④中的12345A A A A A ∠+∠+∠+∠+∠=______ 度,⋯,第⑩个图中的12311A A A A ∠+∠+∠+⋯+∠=______ 度()2第n 个图中的1231n A A A A +∠+∠+∠+⋯+∠=______ ()3请你证明图②的结论.【答案】(1)180;360;540;720;1800;(2)180n °;(3)详见解析. 33.找规律:(1)填空:41=________;42=______;43=______;44=______;45=________;46=________;…(2)你发现4的幂的个位数字有什么规律? (3)4250的个位数是什么数字?为什么?【答案】(1)4, 16, 64,256,1224,4896;(2)是循环数;(3)6. 34.观察等式找规律: ①第1个等式:22﹣1=1×3; ②第2个等式:42﹣1=3×5; ③第3个等式:62﹣1=5×7; ……(1)写出第5个等式: ; 第6个等式: ;(2)写出第n 个等式(用字母n 表示): ; (3)求111113355740254027++++⨯⨯⨯⨯的值.【答案】(1)102﹣1=9×11;122﹣1=11×13;(2)4n 2﹣1=(2n ﹣1)(2n+1);(3)2013402735.观察表l ,寻找规律.表2是从表l 中截取的一部分,其中a ,b ,c 的值分别为( )A.20,25,24B.25,20,24C.18,25,24D.20,30,25【答案】A36.阅读下文,寻找规律.计算:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4….(1)观察上式,并猜想:(1﹣x)(1+x+x2+…+x n)= .(2)根据你的猜想,计算:1+3+32+33…+3n= .(其中n是正整数)【答案】(1)1﹣x n+1,(2)﹣.37.如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中:共有1个小立方体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;…,则第⑥个图中,看得见的小立方体有_____个.【答案】9138.找规律.一张长方形桌子可坐6人,按下图方式讲桌子拼在一起。
……一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若…21010 规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题. 一、数字排列规律题 1、观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方… 按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?5、有一串数字 3 6 10 15 21 ___ 第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ). A .1 B .2 C .3 D .47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个. 二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●…… 从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算规律题 1、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62;④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ? 观察下面三个特殊的等式()2103213121⨯⨯-⨯⨯=⨯()3214323132⨯⨯-⨯⨯=⨯()4325433143⨯⨯-⨯⨯=⨯将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯读完这段材料,请你思考后回答:⑴=⨯++⨯+⨯1011003221⑵()()=++++⨯⨯+⨯⨯21432321n n n ⑶()()=++++⨯⨯+⨯⨯21432321n n n 4、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+=+⨯=+b a aba b 则符合前面式子的规律,,若…21010 参考答案:一、1、(1)1004的平方(2)n+1的平方2、23 30。
七年级数学有理数找规律题型一、数字规律。
题1。
观察下列数:1, -2, 3, -4, 5, -6,…,按照这样的规律,第100个数是多少?解析。
可以发现这些数的绝对值是连续的自然数,且奇数项为正,偶数项为负。
第100个数是偶数项,所以为 - 100。
题2。
给出一组数: - 1,2, - 4,8, - 16,32,…,则第7个数是多少?解析。
先看绝对值,后一个数是前一个数绝对值的2倍,再看符号,奇数项为负,偶数项为正。
第7个数是奇数项,绝对值为2^6=64,所以第7个数是 - 64。
题3。
有一列数:(1)/(2),(2)/(3),(3)/(4),(4)/(5),…,那么第n个数是多少?解析。
分子依次是1,2,3,4,…,n;分母依次是2,3,4,5,…,n + 1。
所以第n 个数是(n)/(n + 1)。
题4。
观察数:1,4,9,16,25,…,第10个数是多少?解析。
这组数是1^2,2^2,3^2,4^2,5^2,…,第n个数是n^2,所以第10个数是10^2=100。
题5。
数列:0,3,8,15,24,…,第n个数是多少?解析。
这组数可以写成1^2-1,2^2-1,3^2-1,4^2-1,5^2-1,…,第n个数是n^2-1。
二、算式规律。
题6。
观察下列算式:1 = 1^2;1+3 = 2^2;1 + 3+5=3^2;1+3 + 5+7 = 4^2;…,求1+3+5+·s+99的值。
解析。
从算式可以看出,从1开始连续奇数的和等于数的个数的平方。
1到99的奇数有50个,所以1+3+5+·s+99 = 50^2=2500。
题7。
观察算式:2^1=2,2^2=4,2^3=8,2^4=16,2^5=32,2^6=64,…,求2^20的个位数字是多少?解析。
通过观察2^n的个位数字依次是2、4、8、6循环。
20÷4 = 5,刚好整除,所以2^20的个位数字是6。
题8。
有这样一组算式:(1-(1)/(2))(1+(1)/(2))=(1)/(2)×(3)/(2)=(3)/(4);(1 -(1)/(3))(1+(1)/(3))=(2)/(3)×(4)/(3)=(8)/(9);(1-(1)/(4))(1+(1)/(4))=(3)/(4)×(5)/(4)=(15)/(16);…,求(1-(1)/(10))(1+(1)/(10))的值。
1找规律专项训练一:数式问题1.(湛江)已知 22 222,3 3 323,4 4 424,⋯⋯,若 8a82a( a 、 b 为正整数)则 a b33 88 1515bb.2.(贵阳)有一列数 a 1, a 2, a 3,a 4, a 5,⋯, a n ,其中 a 1= 5× 2+ 1, a 2=5× 3+ 2,a 3= 5× 4+ 3, a 4= 5× 5+ 4, a 5= 5× 6+ 5,⋯,当 a n = 2009 时, n 的值等于()A . 2010B .2009C .401D . 3343.(沈阳)有一组单项式:a2,- a 3 , a 4 ,- a 5,⋯.观察它们构成规律,用你发现的规律写出第 10 个单2 34项式为.4.(牡丹江)有一列数1 2 3 47 个数是.2 ,,, ,⋯,那么第510 175.(南充)一组按规律排列的多项式:a b , a 2b 3 , a 3 b 5 , a 4b 7 ,⋯⋯,其中第 10 个式子是 ()A . a 10b 19B . a 10b 19C . a 10b 17D . a 10b 216.(安徽)观察下列等式:1 1 12 22 3 331, 23, 34,⋯⋯2234( 1)猜想并写出第 n 个等式;( 2)证明你写出的等式的正确性.7.(绵阳)将正整数依次按下表规律排成四列,则根据表中的排列规律,数 2009 应排的位置是第行第列.第 1 列第 2 列 第 3 列 第 4 列第 1 行 12 3第 2 行65 4第 3 行 7 8 9 第 4 行 121110⋯⋯8.(台州)将正整数 1,2,3,⋯从小到大按下面规律排列.若第 4 行第 2 列的数为 32,则① n▲ ;②第 i 行第 j 列的数为▲ (用 i , j 表示).第 1列第 2 列第 3 列⋯第 n 列1123⋯n第 行2第 2 行n 1n 2n 3⋯2n第 3 行2n 12n 22n 3⋯3n⋯⋯⋯⋯⋯⋯二:定义运算问题1.(定西)在实数范围内定义运算“”,其法则为: a b a2b2,求方程( 43)x24 的解.2.有一列数,,,,,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a12,a1 a2a3a n 则 a2007为()A. 2007B. 2C.1D. 1 2三:剪纸问题1.(2004年河南)如图( 9),把一个正方形三次对折后沿虚线剪下则得到的图形是()2.(2004年浙江湖州)小强拿了一张正方形的纸如图(10)①,沿虚线对折一次得图②,再对折一次得图③,然后用剪刀沿图③中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是()3.(2004年浙江衢州)如图(11),将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪成四个小正方形,如此继续下去,⋯⋯,根据以上操作方法,请你填写下表:3操作次数 N 1 2 3 4 5 ⋯N ⋯正方形的个数47 10⋯⋯3. (莆田) 如图, 在 x 轴的正半轴上依次截取 OA 1 A 1 A 2 A 2 A 3 A 3 A 4 A 4 A 5 ,过点 A 1、A 2、A 3、 A 4、A 5分别作 x 轴的垂线与反比例函数 y2 x 0 的图象相交于点P 1、 P 2、 P 3、 P 4、 P 5 ,得直角三角形xOP 1 A 1、 A 1P 2 A 2、 A 2 P 3 A 3、A 3P 4 A 4、 A 4 P 5 A 5,并设其面积分别为2yxS 、S 、S 、S 、S , .y12345则S 5的值为P 1P 2P 3P 4 P 5O12 A 345xA A A A (第 10 题图)4.(长春)用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个 图案多一个正六边形和两个正三角形,则第 n 个图案中正三角形的个数为 (用含 n 的代数式表示) .(第 4题)5.(丹东)如图 6,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第 1004个图案需棋子枚.⋯⋯图案 1图案 2图案 3图 6的三角形都是全等的),请写出第 n 个图中最小的三角形的个数有6.(抚顺)观察下列图形(每幅图中最小....个.第1个图第2个图第3个图第4个图(第 16 题图)7.(哈尔滨)观察下列图形:它们是按一定规律排列的,依照此规律,第16 个图形共有个★.五:对称问题1.(伊春)在平面直角坐标系中,已知 3 个点的坐标分别为 A1 (1,1) 、 A2 (0 ,2) 、 A3 ( 1 ,1). 一只电子蛙位于坐标原点处,第 1 次电子蛙由原点跳到以1A1为对称中心的对称点 P1,第 2 次电子蛙由 P 点跳到以 A2为对称中心的对称点P2,第 3 次电子蛙由 P2点跳到以 A3为对称中心的对称点 P3,⋯,按此规律,电子蛙分别以 A1、 A2、 A3为对称中心继续跳下去.问当电子蛙跳了 2009 次后,电子蛙落点的坐标是P2009( _______,_______ ) .2. ( 2004 年宁波)仔细观察下列图案,如图(12),并按规律在横线上画出合适的图形。
归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论. 解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确, 下面通过举例来说明这些问题.一、数字排列规律题1、观察下列各算式:1+3=4=2 的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方⋯按此规律(1)试猜想:1+3+5+7+⋯+2005+2007的值?(2)推广:1+3+5+7+9+ ⋯+(2n-1)+ (2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 123 5 8 _______ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、⋯⋯聪明的你猜猜第100 个数是什么?5、有一串数字3 6 10 15 21 ___ 第6 个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、⋯,那么第2005 个数是(). A.1 B.2 C.3 D.47、100 个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“ 0”的个数为 ___ 个.二、几何图形变化规律题1、观察下列球的排列规律(其中•是实心球,○是空心球):•○○••○○○○○•○○••○○○○○•○○••○○○○○•⋯⋯从第1 个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4 ,1+2+3+2+1=9 ,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=2,5 ⋯根据你所发现的规律,请你直接写出下面式子的结果:21+2+3+⋯+99+100+99+⋯+3+2+1= .13、1+2+3+⋯+100=?经过研究,这个问题的一般性结论是 1+2+3+⋯+ n 1n n 1 ,其中n是正整数 . 现在我们来研究一个类似的问题: 1×2+2×3+⋯n n 1= ? 观察下面三个特殊的等式11 2 1 2 3 0 1 23 12 3 2 3 4 1 2 33 13 4 3 4 5 2 3 431将这三个等式的两边相加,可以得到1×2+2×3+3×4= 13 4 5 203 读完这段材料,请你思考后回答:⑴22 3100 101⑵1 23 2 34nn 1 n2⑶1 232 34 nn 1 n24、 已知:2 2 22 2,3 3323,4 4 2 4 5 42,552 254, 3388 15 15 24b 2 b 则a b ⋯若10102符合前面式子的规a a参考答案:一、1、(1)1004的平方( 2)n+1的平方2 、23 30 。
初一数学找规律练习题初一数学找规律的练习题对于培养学生的观察力、分析力和推理能力非常重要。
以下是一些适合初一学生的数学找规律练习题:1. 观察数列,找出规律并填写缺失的数字:2, 4, 6, 8, __, 14, 162. 根据给出的数列,找出规律并完成数列:3, 6, 11, 18, __, 47, 763. 观察下列图形序列,找出规律并画出下一个图形:第一个图形:一个正方形第二个图形:两个正方形第三个图形:三个正方形,排成一行第四个图形:四个正方形,排成两行,每行两个第五个图形:______(请画出)4. 观察下列数列,找出规律并填写下一个数字:2, 5, 10, 17, 26, __5. 根据给出的图形序列,找出规律并完成下一个图形:第一个图形:一个圆形第二个图形:两个圆形,中间有一个正方形第三个图形:三个圆形,中间有一个正方形,正方形周围有四个三角形第四个图形:______(请画出)6. 观察下列数列,找出规律并计算第10个数字:1, 3, 6, 10, 15, ...7. 根据给出的图形序列,找出规律并画出第5个图形:第一个图形:一个三角形第二个图形:两个三角形,一个在另一个上面第三个图形:三个三角形,一个在另一个上面,最上面的三角形是倒立的第四个图形:四个三角形,最上面的三角形是倒立的,下面三个三角形依次排列第五个图形:______(请画出)8. 观察下列数列,找出规律并填写下一个数字:1, 4, 9, 16, 25, __9. 根据给出的图形序列,找出规律并完成下一个图形:第一个图形:一个圆形,里面有一个正方形第二个图形:一个圆形,里面有一个正方形和一个三角形第三个图形:一个圆形,里面有一个正方形,一个三角形和一个五边形第四个图形:______(请画出)10. 观察下列数列,找出规律并填写下一个数字:1, 1, 2, 3, 5, 8, ...答案提示:1. 102. 273. 五个正方形,排成两行,每行三个4. 375. 五个圆形,中间有一个正方形,正方形周围有五个三角形6. 1207. 五个三角形,最上面的三角形是倒立的,下面四个三角形依次排列,最下面的三角形也是倒立的8. 369. 一个圆形,里面有一个正方形,一个三角形,一个五边形和一个六边形10. 13这些练习题旨在帮助学生通过观察和分析来发现数字和图形的规律,从而提高他们的数学思维能力。
归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方…按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?1008016(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?{ (2n+1)/2)* { (2n+1)/2)2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 _23_3、请填出下面横线上的数字。
1 123 5 8 _13___ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?34 位置除以3,整除加2,另就是余数余多少加多少5、有一串数字3 6 10 15 21 _28__ 第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是(A ).A.1 B.2 C.3 D.47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 __33___个.二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球602 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是三角形(填图形名称).三、数、式计算规律题1、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;由此规律知,第⑤个等式是13+23+33+43+53=152.2、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=_10000___.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ()1)n (2122+++n n n 观察下面三个特殊的等式()2103213121⨯⨯-⨯⨯=⨯ ()3214323132⨯⨯-⨯⨯=⨯()4325433143⨯⨯-⨯⨯=⨯将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯ 读完这段材料,请你思考后回答:⑴=⨯++⨯+⨯1011003221Λ 10100⑵()()=+++⋯⋯⋯⋯+⨯⨯+⨯⨯21432321n n n ()()()()()()[]4/121321++-+++n n n n n n n n ⑶4、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+09110102=+⨯=+b a aba b K沪科版七年级数学试卷一、填空题:1、如果飞机离地面6000米记为+6000米,现在它又下降了1600米,那么现在飞机的高度可记为___+4400_______米.2、当n=______时,3x 2y 5 与 -2x 2y 3n -4是同类项.3、比较大小:23-__<__-78. 4﹑若关于x 的方程a-x=3的解是4,则a=75、你玩过“24点”游戏吗?就是让你将给定的四个数,用加、减、乘、除、乘方运算(每 个数只能使用一次),使运算结果等于24. 现在给你四个数3、2、6、9,请你列算式:__(_9-3)*(6-2)6 已知︱a-2︱+(b+3)2=0,则ab 的值等于7、一粒废旧电池大约会污染60万升的水。
七年级数学基础找规律习题汇总及答案1、(2010安徽省中中考)下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。
当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是…………………………………………( )A )495B )497C )501D )503 【答案】A 2、(2010江苏盐城)填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是A .38B .52C .66D .74 【答案】D 3、(2010 福建晋江)如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( ) .A. 669B. 670C.671D. 672【答案】B4、2010山东日照)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是第7题图0 2 8 4 2 4 6 22 4 6 844 m 6(A )15 (B )25 (C )55 (D )1225 【答案】D 5、(2010江苏淮安)观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=A .97×98×99B .98×99×100C .99×100×101D .100×101×102 【答案】C(2010 山东淄博)如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为(A )6 (B )3 (C )200623 (D )10033231003⨯+【答案】B6、(2010广东茂名)用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子A .4n 枚B .(4n -4)枚C .(4n+4)枚D . n 2枚 【答案】A7、(2010广东深圳)观察下列算式,用你所发现的规律得出20102的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8 【答案】B第2个“口” 第1个“口” 第3个“口”第n 个“口”………………(第11题)……图③图②图① 8、(2010广东湛江)观察下列算式:,65613,21873,7293,2433,813,273,93,1387654321========,通过观察,用你所发现的规律确定20023的个位数字是( )A.3B.9C.7D.1 【答案】B 9、(2010四川眉山)如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.【答案】17 10、(2010 嵊州市)如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….则“17”在射线 上;“2007”在射线 上。
七年级上册找规律数学题一、数字规律题。
1. 观察下列数:1,4,9,16,25,…,按此规律,第n个数是()- 解析:- 第1个数是1 = 1^2;- 第2个数是4=2^2;- 第3个数是9 = 3^2;- 第4个数是16=4^2;- 第5个数是25 = 5^2。
- 所以第n个数是n^2。
2. 有一组数:1, - 2,3,-4,5,-6,·s,按此规律,第n个数是()- 解析:- 当n为奇数时,数为正数,即第n个数为n;- 当n为偶数时,数为负数,即第n个数为-n。
- 所以第n个数是( - 1)^n + 1n。
3. 观察数列:2,5,8,11,·s,则第n个数是()- 解析:- 可以发现每一个数都比前一个数大3。
- 第1个数2 = 3×1 - 1;- 第2个数5=3×2 - 1;- 第3个数8 = 3×3-1;- 所以第n个数是3n - 1。
4. 数列1,(1)/(2),(1)/(3),(1)/(4),(1)/(5),·s,第n个数是()- 解析:- 很明显,第n个数是(1)/(n)。
5. 找规律:0,3,8,15,24,·s,第n个数是()- 解析:- 第1个数0 = 1^2-1;- 第2个数3=2^2-1;- 第3个数8 = 3^2-1;- 第4个数15=4^2-1;- 第5个数24 = 5^2-1;- 所以第n个数是n^2-1。
二、图形规律题。
6. 用火柴棒按下图的方式搭三角形:- 照这样的规律搭下去,搭n个这样的三角形需要多少根火柴棒?- 解析:- 搭1个三角形需要3根火柴棒;- 搭2个三角形需要3 + 2=5根火柴棒;- 搭3个三角形需要3+2×2 = 7根火柴棒;- 搭n个三角形需要3 + 2(n - 1)=2n + 1根火柴棒。
7. 观察下列图形的构成规律,根据此规律,第n个图形中有多少个圆?- 第1个图形有1个圆;- 第2个图形有1 + 2 = 3个圆;- 第3个图形有1+2 + 3=6个圆;- 第4个图形有1+2+3 + 4 = 10个圆;- 解析:- 第n个图形中圆的个数为1 + 2+3+·s+n=(n(n + 1))/(2)。
七年级数学找规律的题20道1、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ). A .1B .2C .3D .42、.计算20082007654321-++-+-+- 的结果是( ) A. -2008 B. -1004 C. -1 D. 03、如图,平面内有公共端点的六条射线OA 、OB 、OC 、OD 、OE 、OF ,从射线OA 开始按逆时针依次在射线上写出数字1、2、3、4、5、6、7…,则数字“2008”在( )A .射线OA 上B .射线OB 上C .射线OD 上 D .射线OF 上4、我国古代的“河图”是由3×3的方格构成,每个格内均有数目不等的点图,每一行、每一列以及每条对角线上的三个点图的点数之和均相等.如图,给出了“河图”的部分点图,请你推算出M 处所对应的点图( )A .·B .·C .D .5、 观察下面一列有规律的数 ,486,355,244,153,82,31, 根据这个规律可知第n个数是 (n 是正整数)6、古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 。
7、 按照一定顺序排列的一列数叫数列,一般用a 1,a 2,a 3,…,a n 表示一个数列,可简记为{a n }.现有数列{a n }满足一个关系式:a n +1=2n a -na n +1,(n =1,2,3,…,n ),且a 1=2.根据已知条件计算a 2,a 3,a 4的值,然后进行归纳猜想a n =_________.(用含n 的代数式表示)8、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个.9、一组按规律排列的数:41,93,167,2513,3621,…… 请你推断第9个数是 .10、观察下面一列数,按某种规律在横线上填上适当的数:1,43,95,167……则第n 个数为 ;11、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;…………由此规律知,第⑤个等式是 .12、已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成如上所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于 .13、 “◆”代表甲种植物,“★”代表乙种植物,为美化环境,采用如图所示方案种植. 按此规律第六个图案中应种植乙种植物 _________ 株.★ ★ ★ ★★ ★ ★ ◆ ◆ ◆★ ★ ◆ ◆ ★ ★ ★ ★ ◆ ★ ★ ★ ◆ ◆ ◆ ★ ★ ◆ ◆ ★ ★ ★ ★ 图 1 ★ ★ ★ ◆ ◆ ◆图 2 ★ ★ ★ ★14、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示). (1)当n = 5时,共向外作出了 个小等边三角形(2)当n = k 时,共向外作出了 个小等边三角形(用含k 的式子表示).15、用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示)………16、你到过县城的拉面馆吗?拉面馆的师傅,能把一根很粗的面条,先两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多根细面条,如下面草图所示。
完整)初中数学找规律专项练习题(有答案)1、观察规律:1=1;1+3=4;1+3+5=9;1+3+5+7=16;…,则2+6+10+14+…+2014的值是多少?2、用四舍五入法对取近似数,并精确到千位,用科学计数法表示为多少?3、观察下面的一列数:-1,2,-3,4,-5,6…请找出其中排列的规律,并按此规律填空。
(1)第10个数是多少?第21个数是多少?(2)-40是第几个数?26是第几个数?4、一组按规律排列的数:1,3,6,10,15…请推断第9个数是多少?5、计算:(-100)+(-101)=多少?(-2)+(-2)=多少?6、若。
则等于多少?7、大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成多少个?8、猜数字游戏中,XXX写出如下一组数:1,3,5,7,9…n个数是…,XXX猜想出第六个数字是多少?根据此规律,第9、10个数字分别是多少?9、若。
与|b+5|的值互为相反数,则等于多少?10、在计数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制的比较如下表:十进位制二进制 1 1 2 10 3 11 4 100 5 101 6 110 …… 请将二进位制xxxxxxxx(二)写成十进位制数为多少?11、为求。
值,可令S=。
则2S=。
因此所以。
仿照以上推理计算出的值是多少?二、选择题13、的值是多少?【】A.-2 B.-1 C.0 D.114、已知8.62=73.96,若x=0.7396,则x的值等于()A.86.2B.862C.±0.862D.±86215、计算:(-2)+(-2)的值是多少?A.2B.-1C.-2D.-416、计算等于多少?A. B. C. D.17、已知a、b互为相反数,c、d互为倒数,m的绝对值为1,p是数轴到原点距离为1的数,那么的值是多少?A.3 B.2 C.1 D.018、若。
归纳—猜想——找规律具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、观察下列各算式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢?23581217____3、请填出下面横线上的数字。
112358____214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?5、有一串数字36101521___第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是().A.1 B.2 C.3 D.47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为_________个.二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n =? 观察下面三个特殊的等式将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯ 读完这段材料,请你思考后回答:⑴=⨯++⨯+⨯1011003221⑵()()=++++⨯⨯+⨯⨯21432321n n n⑶()()=++++⨯⨯+⨯⨯21432321n n n4、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ 参考答案:一、1、(1)1004的平方(2)n+1的平方2、2330。
中考数学探索题训练—找规律
1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。
在电子数字计算机中用的是二进制,只要两个数码:0和1。
如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数。
2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;
1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是。
3、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:
输入…12345…
输出…
2
1
5
2
10
3
17
4
26
5
…
那么,当输入数据是8时,输出的数据是()
A、
61
8
B、
63
8
C、
65
8
D、
67
8
4、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,
则摆第30个“小屋子”要枚棋子.
5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n个小房子用了
块石子。
6、如下图是用棋子摆成的“上”字:
(1)(2)(3)
第4题
第一个“上”字第二个“上”字第三个“上”字
如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需
用和
枚棋子;(
2)第
n
个“上”字需用
枚棋子。
7、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有_______颗.
8、根据下列5个图形及相应点的个数的变化规律:猜想第6个图形有个点,第n 个图形中有个点。
9、下面是按照一定规律画出的一列“树型”图:
经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出个“树枝”。
10、观察下面的点阵图和相应的等式,探究其中的规律:
(1)在④和⑤后面的横线上分别写出相应的等式;
(2)通过猜想写出与第n个点阵相对应的等式_____________________。
11、用边长为1cm的小正方形搭成如下的塔状图形,则第n次所搭图形的周长是_______________cm(用含
n 的代数式表示)。
12、如图,都是由边长为1的正方体叠成的图形。
例如第(1)个图形的表面积为6个平方单位,第(2)
……
……
①1=12;②1+3=22;③1+3+5=32④;⑤;
第1次第2次第3次第4次···
···
第7题图
⑴ ⑵ ⑶
(1)
(2)
(3)
(4)
个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位。
依此规律。
则第(5)个图形的表面积 个平方单位。
13、图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是( ) A 25 B 66 C 91 D 120
14、如图是由大小相同的小立方体木块叠入而成的几何体,图⑴中有1个立方体,图⑵中有4个立方体,图⑶中有9个立方体,…… 按这样的规律叠放下去,
第8个图中小立方体个数是 .
15、图1是棱长为a 的小正方体,图2、图3由这样的小正方体摆放而成.按照这样的方法继续摆放,由上而下分别叫第一层、第二层、…、第n 层,第n 层的小正方体的个数为s .解答下列问题:
()按照要求填表:
n 1
2
3
4 … s 1 3
6
…
(1)
(2)
(3)
图1 图2 图3
14题
(2)写出当n=10时,s= .
16、如图用火柴摆去系列图案,按这种方式摆下去,当每边摆10根时(即10
n)时,需要的火柴棒总数为根;
17、用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律下去,搭n个三角形需要S支火柴棒,那么用n的式子表示S的式子是 _______ (n为正整数).
18、如图所示,用同样规格的黑、白两色正方形瓷砖铺设矩形地面,请观察下图:则第n个图形中需
用黑色瓷砖
____ 块.(用含n的代数式表示)
19、如图,用同样规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:
当黑色瓷砖为20块时,白色瓷砖为块;当白色瓷砖为n2(n为正整数)块时,黑色瓷砖为
块.
17题图
20、观察下列由棱长为1的小立方体摆成的图形,寻找规律:如图1中:共有1 个小立方体,其中1
个看得见,0个看不见;如图2中:共有8个小立方体,其中7个看得见,1个看不见;如图3中:共有27个小立方体,其中有19个看得见,8个看不见;……,则第6个图中,看不见的小立方体有
个。
21、下面的图形是由边长为l的正方形按照某种规律排列而组成的.
(1)观察图形,填写下表:
图形①②③
正方形的个数 8
图形的周长 18
(2)推测第n个图形中,正方形的个数为________,周长为______________(都用含n的代数式表示).
22、观察下图,我们可以发现:图⑴中有1个正方形;图⑵中有5个正方形,图⑶中共有14个正方形,按照这种规律继续下去,图⑹中共有_______个正方形。
A B C D
23、某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求....
的是( ) 24、如下图中的四个正方形的边长均相等,其中阴影部分面积最大的图形是( )
25、如图,在方格纸中有四个图形<1>、<2>、<3>、<4>,其中面积相等的图形是( ) A. <1>和<2> B. <2>和<3>
C. <2>和<4>
D. <1>和<4>
26、某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图1;第2次把第1次铺的完全围起来,如图2;第3次把第2次铺的完全围起来,如图3;…依此方法,第n 次铺完后,用字母n 表示第n 次镶嵌所使用的木块块数为 . (n 为正整数)
27、用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:
A D
C B
⑴第4个图案中有白色地面砖块;
⑵第n个图案中有白色地面砖块。
28、分析如下图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.。