当前位置:文档之家› 弹性力学作业总结

弹性力学作业总结

弹性力学作业总结
弹性力学作业总结

一、综述

这学期我们有幸跟着邱老师学习了弹性力学这门课程,虽然我本科是学习机械专业的,但经过这学期的系统学习,使我对弹性力学的认识也越发的清晰,我对平面问题、空间问题等基本知识有了较为清晰的了解与掌握,会用逆解法、半逆解法、差分法、变分法和有限元法解决一些基础的弹性力学问题。

弹性力学是固体力学的一个分支,研究弹性体由于外力作用或温度改变等原因而发生的应力、形变和位移。它是学习塑性力学、断裂力学、有限元方法的基础,广泛应用于建筑、机械、化工、航天等工程领域。本课程较为完整的表现了力学问题的数学建模过程,建立了弹性力学的基本方程和边值条件,并对一些问题进行了求解。弹性力学基本方程的建立为进一步的数值方法奠定了基础。二、绪论

弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。通过对弹性力学的学习,我感觉整本书就讲了十五个控制方程解十五个未知数。而剩下的问题就是如何求解这些方程的问题,这也是数学和力学结合最紧密的地方。而求解的方法无外乎有:基于位移的求解(位移法)和基于应力的求解(应力函数法),差分法、变分法。而前人的研究大部分都是如何使这些方程求解起来更方便。弹性力学思路清晰,但是方程和公式复杂。

1.工程力学问题建立力学模型的过程,一般要对三方面进行简化:结构简化、材料简化及受力简化。建模过程如右图:

结构简化:如空间问题向平面问题的简

化,向轴对称问题的简化,实体结构向板、

壳结构的简化。

受力简化:根据圣维南原理,复杂力系

简化为等效力系。

材料简化:根据各向同性、连续、均匀

等假设进行简化。

在建立数学模型的过程中,通常要注意分清问题的性质进行简化:线性化和实验验证。

2.弹性力学的基本内容就是研究研究弹性体由于外力作用或温度改变等原因而发生的应力、形变和位移。应用在工程中的实例有比赛斜塔,水轮机以及各种齿轮等等。但是我们需要对工程实例中的问题进行假设,具体如下: (1)连续性假设:这样物体内的一些物理量,例如应力、应变和位移等可用连续函数表示。

(2)线弹性假设:假定物体服从胡克定律。

(3)均匀性假设:假定物体由同一材料组成,这样材料常数不随位置坐标变化。

(4)各向同性假设:物体内一点的弹性性质在各个方向上相同。

(5)小变形假设:假定位移和应变是微小的。这样,可以用变形前的尺寸代替变形后的尺寸,在考察物体的应变和位移时,可以略去高阶小量,这对于方程的线性化十分重要。

在上述简化的基础上,我们现在的问题是要得出普遍的描述上述问题的力学和数学模型。

3.几个基本概念:

①外力:分为体力和表面力。

体力:是分布在物体体积内的力。物体内个点受体力的情况一般不

相同。 物体在一点的体力的集度:

V F

f v ??=→?0lim

面力:是分布在物体表面上的力,物体在其表面上各点受面力的情

况一般也不相同。物体在一点的面力的集度:

S F

f s ??=→?0lim

方向:沿坐标轴正向则为正。 ②应力:包括正应力σ和切应力τ。

方向:正面正向为正,负面负向为正。(正面:截面外法线方向为正方向的截面)

注意下标字母的含义:正应力x σ是作用在垂直于x 轴的面上,同

时也是沿着x 轴的方向作用的。切应力τ有两个下标字母,前一个表示作用面垂直于哪个坐标轴,后一个字母表示作用方向沿哪个轴。

切应力互等性:作用在两个互相垂直的面上并且垂直于该两面交线的切应力是大小相等,正负相同的。(区别于材料力学中的正负号相反)

③形变:包括线应变和切应变。

线应变:各线段的每单位长度的伸缩。(x ε,y

ε,z ε)正负判定:

伸长为正。

切应变:各线段之间的直角的改变。(xy

γ,

yz

γ,zx γ)正负判定:

直角变小为正。

④位移:u ,v ,w (三个坐标的投影表示)。

三.平面问题的基本理论 3.1平衡微分方程

微元体尺寸:dx, dy, 1。

推导利用:①泰勒公式:

dx x

y x y x y dx x x x x ??+

=+),(),(),(σσσ

②∑=0x F ;∑=0y F 。 求得平面应力表示的平衡微分方程: 0=+??+??x yx x f y x τσ;

0=+??+

??y xy y f x

y

τσ。

说明:1.平衡方程仅反映物体内部的平衡,当应力分量满足平衡方程,则物体内部是平衡的。

2.平衡方程也反映了应力分量与体力的关系。

3.2几何方程

P 点的位移为(u,v )。 PA 的线应变为x ε。 PB 的线应变

x y ()

o z x f y f c x σy σxy τyx

τdx dy x x dx x σσ?+?y y dy y σσ?+?xy

xy dx x ττ?+

?yx yx dy

y ττ?+?

为y ε。PA 与PB 之间的直角改变为xy γ。推得平面问题的几何方程:x

u x ??=

ε ;y v y ??=

ε;y

u x v xy ??+??=+=βαγ。 说明:1.几何方程反映了位移和应变之间的关系。

2.当位移完全确定时,应变也确定;反之,当应变确定时,位移不一定确定。

刚体位移:与形变无关的位移。由0=x ε,0=y ε,0=xy γ,得到y u u ω-=0,

x v v ω+=0。

说明:当物体发生一定的形变时,由于约束条件的不同,它可能有不同的刚体位移,因而它的位移并不完全确定。必须有适当的刚体约束条件来确定其中不确定的常数。 3.3物理方程

由广义胡克定律公式推导:

①在平面应力问题中,0=z σ,0=zx τ,0=zy τ。代入胡克定律,得到物理方程:

)(1y x x E μσσε-=

,)(1x y y E μσσε-=,xy xy E

τμγ)

1(2+=。 ②在平面应变问题中,0=z ε,0=zx γ,0=zy γ。其物理方程为平面应力情况下,将方程中的2

1μ-→

E E ,μμ

μ-→

1进行转换即可。 3.4平面问题的边界条件

应力边界条件 位移边界条件 混合边界条件 在应力边界S σ上

在位移边界S u 上

在S σ上

在S u 上 3.5圣维南原理

如果将物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢、主矩相同),那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。

(1) 利用静力等效力系

x yx x xy y y

l m f l m f σττσ+=+=u u

v v

==x yx x xy y y l m f l m f σττσ+=+=u u v v ==

(2)局部边界用近似边界条件

3.6按位移求解平面问题

位移法:取位移分量为基本未知函数,从基本方程和应力边界条件中消去应力和应变分量,导出用位移表示的平衡微分方程和用位移表示的应力边界条件。并由此求出位移分量,通过几何方程求出应变分量,再由物理方程求出应力分量。

按位移求解平面为题时,位移分量(u ,v )必须满足以下全部条件: (1)用位移表示的平衡微分方程(平面应力问题) (2)用位移表示的应力边界条件(平面应力问题)

(3)位移边界条件 s s u u v v ==

对于平面应变问题,只需将(1)(2)的式子中的E 、μ分别换成2

1E μ-和1μ

μ

-。 3.7按应力求解平面问题

应力法:它是以应力分量为基本未知函数,从方程和边界条件中消去位移分量和形变分量,导出只含应力分量的方程和边界条件,由此解出应力分量,然后再求形变分量和位移分量。 关键问题:如何得到方程组

),,(=xy y x f τσσ。

()x x

x l f σ==±()

xy y

x l

f τ==±222222222222110

122110

122x y E u u v f x y x y E v v u f y x x y μμμμμμ??

?-?+?+++= ?-????????

?-?+?+++= ?-??????

22

112112x

s y

s E u v u v l m f x y y x E v u v u m l f y x x y μμμμμμ????????-??+++=?? ? ?-?????

?????????????-??+++=?? ? ?-?????

?????

解决思路:平衡方程中有两个方程,三个未知数,需引入一个补充方程:

①相容方程:y x x y xy

y x ???=??+??γεε2

2

222,说明了连续体的形变分量x ε,

y

ε,

xy

γ不 是相互独立的,而是相关的,它们之间必须满足相容方程才能保

证对应的位移分量的存在。

②将物理方程代入相容方程中,再利用平衡方程化简,就得到补充方程:

)

)(1())((22

22y f x f y x y x y x ??+??+-=+??+??μσσ

注意:分清所用的物理方程是关于平面应力问题还是平面应变问题的,其他方程及条件都是相同的,平面应力与应变问题的转换:2

1μ-→

E

E ,μμ

μ-→

1。

3.8常体力情况下的简化及应力函数

在体力为常量的情况下,平衡微分方程、相容方程和应力边界条件都不包含弹性常数,从而对于两种平面问题都是相同的。因此,当体力为常量时,在单连体的应力边界问题中,如果两个弹性体具有相同的边界形状,并受到同样分布的外力,那么不管这两个弹性体材料是否相同和处于那种平面问题状态,应力分量

x σ, y σ,

xy

τ的分布是相同的(z σ以及形变和位移却不一定相同)。

求解体力为常数时的平衡微分方程: 0=+??+??x yx

x f y x τσ, 0

=+??+??y xy y f x

y

τσ。注意求通解的时候要利用性质:)

()(x f

y y

f x ????=????。可得到通解形如:22y x ?Φ?=σ,

22x y ?Φ?=σ,y x xy ??Φ?-

=2τ。其中Φ称为应力函数。将上述通解代入相容方程,得到:024422444=?Φ

?+??Φ?+?Φ?y y x x ,即04=Φ?,这就是用

22222x x y y xy f x f y y x x y ???σστ???=-=-=-????,,应力函数表示的相容方程。 (注:2?代表22

22y x ??+??)。 四、平面问题的直角坐标解答

4.1逆解法与半逆解法 逆解法的基本思路:

(1)设定各种形式的应力函数 ? ,要求:满足相容方程

444422420x x y y

???

???++=???? (2)由下式求得应力分量

(3)由应力边界条件式和弹性体的边界形状找到应力分量对应的面力, 从而得知所选取的应力函数? 可以解决的问题。 半逆解法的基本思路:

(1)针对所要求解的问题,根据边界形状和受力情况,假设部分或全部应力分量的函数形式;

(2)推出应力函数的形式;

(3)代入相容方程,求出应力函数的具体表达形式; (4)再按相容方程式由应力函数求得应力分量;

(5)考查应力分量是否满足全部边界条件(多连体还要满足位移单值); (6)满足是问题的解,不满足重新假设求解。

注(1)线性应力函数对应于无体力、无面力、无应力的状态; (2)把平面问题的应力函数加上一个线性函数,并不影响应力。 4.2矩形梁的纯弯曲

如右图所示,建立应力函数3

ay ?= (1)上下两个主要边界:

()

()

2

2

0,

0h

h y

xy

y y στ=±

==

(2)左右两个次要边界切应力:

()

()

0,

0xy xy x x l

ττ====

(3)左右两个次要边界正应力(引入圣维南原理):

x

y

M

M

1

h

h/2h/2

y

l

σ

()

()

220,0,2

2

0,

h h h h x

x l

x

x l

dy ydy M

σσ==--==??

因此应力分量为:31200x y xy yx M

y h

σσττ=

=== 小结:(1)弹性力学的解和材料力学的解完全一致;

(2)只有在纯弯曲的情况下,解才是完全精确的;

(3)两端的面力按其它分布时,根据圣维南原理,在梁两端附近时 有显著误差,在离开梁较远处,误差可以忽略不计。 4.3位移分量的求出

(1)把应力分量带入物理方程求得应变分量;

,,0x y xy M M y y EI EI

μεεγ=

=-= (2)把应变分量带入几何方程得到用应变分量表示的位移方程组;

22

0022M M M u xy y u v y x x v EI EI EI

μωω=

-+=--++, 其中:,,u v w 是表示刚体位移的常量,可由位移约束条件求出。

小结:(1)弹性力学验证了材料力学的平截面假定是正确的;

铅直线段的转角u M

x y EI

βω?=

=-? (2)梁纵向纤维的曲率 和材料力学完全相同;

(3)相对于材料力学而言,弹性力学的位移分量更全面的表示了梁的变形情况;

(4)对于平面应变情况,只要2,11E E μ

μμμ

→→

--。 4.4简支梁受均布载荷

221v M

x EI ρ?=-=?h/2h/2

o

x

y

q

ql

ql

l

l

弹性力学结果

材料力学结果

222

3452112x y s

xy M y y y q I h h q y y h h F S bI

σστ??=+- ?

??????=-+- ???????=

???????x y s xy M y I

F S bI

σστ=

==

4.5楔形体受重力和液体压力 ()()232122122cot 2cot cot cot x y xy yx gy

g g x g g y gx σραραραραρττρα

=-=-+-==

五、用差分法和变分法解平面问题

5.1差分公式的推导

差分法:是微分方程的近似解法,具体的讲,差分法就是把微分用差分来代

替,把导数用差分商来代替,从而把基本方程和边界条件(微分方程)近似用差分方程来表示,把求解微分方程的问题变成求解代数方程问题。

差分法的数学基础:泰勒公式 在节点0处的: x 方向的上的差分公式

21313022

0022f f f f f f f x h x h ??-+-????

== ? ???????, y 方向的上的差分公式

224024

22

0022f f f f f f f y h y h ????+--??== ? ???????, 混合二阶导数的差分公式

?????????????0

x

y

03

12456

7

89

10

1112A ?

13

14

?B h

h

()()6578

2

136857*********f f f f f f y y f f h h f f f f x y x y h h h ??????--- ? ?-???????????????===+-+???? ? ?????????????=

四阶导数的差分公式

()()()()()()401391144040123456782240402410124401

641

421

64f f f f f f x h

f f f f f f f f f f x y h

f f f f f f y h ???=-+++?? ???

??????=-+++++++?? ???

??????=-+++?? ?????? 5.2应力函数的差分解

用差分法解弹性平面问题时,可按下列步骤进行:

(1)在边界上任意选定一个结点作为基点A ,取0A A A

x y φφφ??

????=== ? ???????,

然后由面力的矩及面力之和算出边界上所有各结点处φ 的值,以及所必需的一些

x

φ?? 及 y φ??值,即垂直于边界方向的导数值。

(2)应用以下公式,将边界外一行虚结点处的φ值用边界内的相应结点处的

φ值来表示。139141022A B

h h x x φφφφφφ??????

=+=+ ? ???????,

(3)对边界内的各结点建立差分方程(如下),联立求解这些结点处的φ 值。0123456789101112208()2()()0φφφφφφφφφφφφφ-+++++++++++=

(4)按照下面的公式,算出边界外一行的各虚结点处的φ值。

()d ()d B B

B B B x y A

A

y y f s x x f s φ=-+-??

(5)按照下面公式计算应力的分量。

()()

()

2240220

02130220

0257682

1

[()2]1

[()2]1[()()]4x y xy y h

x h

x y h φσφφφφσφφφφτφφφφ???==+- ???????==+- ???????=-=+-+ ?????

说明: 如果一部分边界是曲线的,或是不与坐标轴正交,则边界附近将出现不规则的内结点。对于这样的结点,对(3)中的差分方程必须加以修正。 5.3弹性体的变形势能和外力势能

变形势能:()2

2

2212221A E u v u v v u U dxdy x y x y x y μμμ??

????????-????=++++?? ? ? ???????-??????????

??

注意:变形势能是变形分量或位移分量的二次泛函,叠加原理不再适用; 变形或位移发生时,变形势能总是正的。

外力势能:()()x

y

x

y

A

s V W f u f v dxdy f u f v ds σ

=-=-+-+???

5.4位移变分方程

(1)位移变分方程(拉格朗日变分方程)

假想,位移分量发生了位移边界条件所容许的微小改变,即虚位移,或位移变分,u v δδ。同时给出弹性体的限制条件,即没有温度改变(热能没变)和没有速度改变(动能没变)。

二维:()()x

y

x

y

A

s U f u f v dxdy f u f v ds σ

δδδδδ=+++??

?

三维:()()x y z x y z U f u f v f w dxdydz f u f v f w ds δδδδδδδ=+++++????? (2)虚功方程 二维:

三维:()()()x

y

z

x

y

z

x

x

y

y

z

z

yz

yz

zx

zx

xy

xy

f u f v f w dxdydz f u f v f w ds dxdydz

δδδδδδσδεσδεσδετδγτδγτδγ+++++=+++++????????

虚功方程表示:如果在虚位移发生前,弹性体是处于平衡状态,那么,在虚位移过程中,外力在虚位移上所做的虚功,等于应力在虚应变上所做的虚功。

(3)极小势能原理

()()()s

x

y

x y

x

x y y xy xy A

A

f u f v dxdy f u f v ds dxdy

σδδδδσ

δεσδετδγ+++=++?????

()0

δ+=

U V

在给定外力作用下,在满足位移边界条件的所有各组位移中间,实际存在的一组位移应使总势能成为极值,对于稳定平衡状态,这个值是极小值。

5.5位移变分法

位移变分法:

(1)设定一组包含若干待定系数的位移分量表达式;

(2)使它们满足位移边界条件;

(3)令其满足位移变分方程(代替平衡微分方程核应力边界条件)并求出待定系数,就同样地能得出实际位移解答。

弹性力学的计算实例及应用ANSYS分析对比结果

实例1(差分法与ANSYS有限元法)

如图正方形板,单位厚度,边长为L,网格步长h=l/4,q=p/l p=1 h=1

(差分法)

解:(1)取A 为几点,A φ=0 A x

)(

??φ

=0 A y )(??φ=0

(2)边界上y

x ????φ

φφ,,

延顺时针方向积分 由式 ds f x x ds f y y y B B A

x B

A

B B )()(-+-=??

φ

B:B φ=0 B x )(

??φ=0 B y )(??φ=0 C:C φ=0 C x )(??φ

=0 C y )(??φ=p/2

D:D φ=0 D x

)(

??φ

=0 D y )(??φ=p/20

E----G 与C 、D 一样 H:H φ=p/2?h 2

qh -/2=

ph 83 H x

)(??φ

=p/4 H y )(??φ=0

I:I φ=ph/2 H x

)(

??φ

=p/4 H y )(??φ=0

应为对称性右边的点不用算 (3)虚节点φ值 A y

h )(

2513??+=φ

φφ 513φφ=∴ 612φφ=

ph x

h D -=??-=6611)(

2φφ

φφ ph -=410φφ ph -=29φφ 28φφ= 17φφ=

(4)列差分方程

()()()028206262454133=+++++++++++-=E A E I φφφφφφφφφφφφφφ ph ph 2

38223864321-

=+-+--φφφφφ

??

?

???

???

?

??

???

?????--------------2388210162148014111441124512108223801

481621

????????????????????654321φφφφφφ=????

????

???

?

??

?????

?????ph ph ph ph ph 0165832

5

借助计算机MA TLAB 解出1φ----6φ

4612.01=φ 3525.02=φ 3596.03=φ 2871.04=φ 1824.05=φ 1602.06=φ

()=-+=???? ????=]2)[(16426226

φφφφσB x h y 4

10333-?- ()

=-+=???? ????=]2)[(16526226

φφφφσD y h

x 0.138- ()

=+-+=?

??? ?????-=)]()[(4132626

C A E xy h

y x φφφφφτ4

10899-?-

ANSYS有限元法求解

X轴方向应力示意图

Y轴方向应力示意图

XY平面上的切应力示意图

有限元求解结果

误差分析

x σ

y σ

xy τ

位移变分法求解

ANSYS 有限元求解

位移变分法求解

ANSYS 有限元求解

位移变分法求解

ANSYS 有限元求解 A (0,0)

410333-?-

4

10403-?-

0.138- 0.199-

4

10899-?-

-0.104

绝对误差

0.007

0.061

0.0141

相对误差

0.210 0.442 0.157

实例2(位移变分法与ANSYS 有限元法)

如图铅直平面内的正方形薄板,边长为2a ,四边固定如图所示,只受重力作用。

设μ=0,试取位移分量的表达式为

板厚0.1,长a=1; E=211e9; 密度8500求点(0,0),(1,0),(0.4,0.4)的

...)()1)(1(22

322212222+++--=a y A a x A A a y a x a y a x u

...))(1)(1(22

322212222+++--=a

y B a x B B a y a x v

用瑞里-里兹法求解:

设μ=0,试取位移分量的表达式为

...)()

1)(1(22

322212222+++--=a y A a x A A a y a x a y a x u ...)()

1)(1(22

322212222+++--=a

y B a x B B a y a x a y a x v 用瑞里-里兹法求解:

(1)在位移表达式u,v 中各取第一项

12222)

1)(1(A a y

a x a y a x u --= (a) 12222)

1)(1(B a

y

a x a y a x v --= 将μ=0代入 dxdy y u x v y v x u y v x u E U ])(212)()[(1(2222A 2??+??-+????+??+??-=

??μμ)μ 得 dxdy y

u x v y v x u E U a

a

a

a

])(21)()(

[22

22??+??+??+??=

?

?-- (b)

其中

122222)31)(1(A a

y

a x a y x u --=?? ,122222)31)(1(A a x a y a x y u --=?? 12222)1(B a x a y x v --=?? ,12222)1(B a

y

a x y v --=?? 代入(b)得

d x d y A a

x

a y a x B a x a y B a

y a x A a y a x a y a y E U a a a a }])31)(1(2)1([21]2)1([])31)(1[(2{221222

2212222

12222

12222242--+--+--+--=??-- (c) 确定系数11,B A 。板四周边界上的位移为零,板的体力分量ρg ,0-==y x f f 所以可将

ds u f dxdy u f U

m s x A m x ???+=??σ

m

A

ds u f dxdy u f U

m s y A m y ???+=??σ

m

B

化简为

0A 1

=??U

(d) dxdy a

y a x U

a

a

a a )1)(1(ρg B 22

221

---=???

?--

将式(c)代入(d)得

dxdy a y a x a x B a x a y A a y a x a x A a x a y a y E

A U a

a a

a

)]}31)(1([]2)1()31)(1([])31()1[(2{2

2

2

22

21222

1

22

2221222222421--?-

---+--=????

--

}dxdy B a y

a x a x a y A a y a y a x a x E B U a

a a

a

12

2

22

2

222212222222421)]1(4)

1(8[])31()1)(1[(2{2

-+

-+----=????

--

??-----=a

a a

a dxdy a

y a x g )1)(1(22

22ρ

对称性

dxdy a

x a y a y dxdy a y a x a x a a a a a

a a

a 2

2222242

22222242)31()1()31()1(--=--∴????---- 积分的

07

18

11=-B A E

ga B A 2

1125651ρ-=+-

可求得

E ga A 211066175ρ-= E

ga B 2

1533225ρ-=

位移分量的解为

)1)(1(106617522

22a y a x E gxy u ---

=ρ )1)(1(53322522

222a

y a x E ga v ---

=ρ 应力分量表达式为

)31)(1(106617522

22a x a y gy x --=

ρσ )1(53345022

a

x gy y -=ρσ )]31)(1(47)1(9[533255222222a

y a x a y gx xy

-----=ρτ

点(0,0) 0=x σ 0=y σ 0=xy τ

点(1,0) 0=x σ 0=y σ 48.358674=xy τ

点(0.4,0.4) 288.2389=x σ 318.23630=y σ 258.108329=xy τ

用ANSYS 有限元方法求解

弹性力学试题参考答案与弹性力学复习题

弹性力学复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系在应用这些方程时,应注意些什么问题 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和

混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定试将它们写出。如何确定它们的正负号 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz 、、zx 。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定什么是“理想弹性体”试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定: (1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题什么叫平面应变问题各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑各方面反映的是那些变量间的关系 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方面主要反映的是形变分量与应力分量之 间的关系,也就是平面问题中的物理方程。 7.按照边界条件的不同,弹性力学平面问题分为那几类试作简要说明 答:按照边界条件的不同,弹性力学平面问题可分为两类: (1)平面应力问题 : 很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。这一类问题可以简化为平面应力问题。例如深梁在横向力作用下的受力分析问题。在该种问题中只存在 yx xy y x ττσσ=、、三个应力分量。 (2)平面应变问题 : 很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,而且体力

弹性力学学习心得

弹性力学学习心得 孙敬龙S4 大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编着的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。 弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17

世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从 1822~1828年间,在?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表

弹性力学习题(新)

1-3 五个基本假定在建立弹性力学基本方程时有什么用途? 答:1、连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 2、完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应 力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 3、均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是 相同的。因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。 4、各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是 相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 5、小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的 改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。

2-1 已知薄板有下列形变关系:式中A,B,C,D皆为常数,试检查在形变过程中是否符合连续条件,若满足并列出应力分量表达式。 解: 1、相容条件: 将形变分量带入形变协调方程(相容方程)

其中 所以满足相容方程,符合连续性条件。 2、在平面应力问题中,用形变分量表示的应力分量为 3、平衡微分方程

其中 若满足平衡微分方程,必须有

分析:用形变分量表示的应力分量,满足了相容方程和平衡微分方程条件,若要求出常数A,B,C,D还需应力边界条件。 例2-2 如图所示为一矩形截面水坝, 其右侧面受静水压力(水的密度为ρ), 顶部受集中力P作用。试写出水坝的应 力边界条件。 解: 根据在边界上应力与面力的关系 左侧面:

弹性力学教材习题及解答

1-1. 选择题 a. 下列材料中,D属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃钢; D. 沥青。 b. 关于弹性力学的正确认识是A。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。 c. 弹性力学与材料力学的主要不同之处在于B。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 d. 所谓“完全弹性体”是指B。 A. 材料应力应变关系满足胡克定律; B. 材料的应力应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足线性弹性关系。 2-1. 选择题 a. 所谓“应力状态”是指B。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截面的应力不同,因此应力矢量是不可确定的。 2-2. 梯形横截面墙体完全置于水中,如图所示。已知水的比重为 ,试写出墙体横截面边界AA',AB,BB’的面力边界条件。 2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。根据材料力学分析结果,该梁 横截面的应力分量为 试检验上述分析结果是否满足平衡微分方程和面力边界条件。

2-4. 单位厚度的楔形体,材料比重为γ,楔形体左侧作用比重为γ1的液体,如图所示。试写出楔形体的边界条件。 2-5. 已知球体的半径为r,材料的密度为ρ1,球体在密度为ρ1(ρ1>ρ1)的液体中漂浮,如图所示。试写出球体的面力边界条件。

弹性力学学习心得

弹性力学学习心得 经过一个学期的弹性力学学习,说实话,学起来还真的比较的抽象,有很多知识理解起来不是很清楚,比如一些公式的推导以及解题方法。不过经过弹性力学的学习,还是了解到了一些相关的基本理论和一些解题思想。 弹性力学,是固体力学的一个分支,研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。弹性力学的研究对象是完全弹性体,弹性体是变形体的一种,在外力作用下物体变形,当外力不超过某一限度时,出去外力后,除去外力后物体即恢复原状。 根据问题的性质,忽略一些很小的次要因素,对物体的材料性质采用了一些基本假定,即弹性力学的基本假定,主要有连续性、完全弹性、均匀性、各向同性,符合以上假定的物体,就称为理想弹性体;此外,假定位移和形变是微小的。 在物体的任意一点,应力分量x σ,y σ,z σ,yz τ,x z τ,xy τ,这六个应力分量就可以完全确定该点的应力状态;形变分量x ε,y ε,z ε,yz γ,x z γ,xy γ,这六个应变分量就可以完全确定该点的形变状态。物 体任意一点的位移,用它在x 、y 、z 三轴上的投影表示。 研究讨论的平面应力弹性体的形状为等厚度均匀薄板,厚度方向的尺寸小于其他两个方向的尺寸。在解决弹性力学平面问题时,需要建立基本方程:平衡方程—应力与外力之间的关系;几何方程—位移与应变之间的关系;物理方程—应变与应力之间的关系。以及边界条

件的建立,边界条件表示在边界上位移与约束,或应力与面力之间的关系式。位移分量已知的边界,建立位移边界;给定了面力分量,建立应力边界条件。圣维南原理,面力的改变,就只会使近处产生显著的应力改变,而远处的应力改变可以忽略不计。 在解决平面问题时,按位移求解平面以及在问题或按应力求解平面问题。以及在直角坐标和及极坐标中建立基本方程和求解方法。 弹性力学的学习中,对应变、应力等量的意义有了更深的了解,以及对量的表示方式有所了解;不过还是有很多问题和疑惑,需要去思考。最后,感谢老师一学期以来的教诲!

弹性力学作业习题

HOMEWORK OF THEORETICAL ELASTICITY 1. DATE: 2001-9-20 1. 设地震震中距你居住的地方直线距离为l ,地层的弹性常数ν,E 和密度ρ均为已知。假 设你在纵波到达0t 秒后惊醒。问你在横波到达之前还有多少时间跑到安全地区试根据Km 200=l ,GPa 20=E ,3.0=ν,36g/m 100.2?=ρ,s 30=t 来进行具体估算。 2. 假定体积不可压缩,位移112(,)u x x 与212(,)u x x 很小,30u ≡。在一定区域内已 知22 12 11(1) ()u x a bx cx =-++,其中a ,b ,c 为常数,且120ε=,求212(,)u x x 。 3. 给定位移分量 21123()u cx x x =+,22213()u cx x x =+,23312()u cx x x =+,此处c 为一个很小的常数。求 应变分量ij ε及旋转分量ij Q 。 4. 证明 ,1 122 i ijk jk ijk k j e Q e u ω== 其中i ω为转动矢量。 5. 设位移场为22131232123()()u a x x e a x x e ax x e =-++-,其中a 为远小于1的常数。确定在 (0,2,1)P -点的小应变张量分量,转动张量分量和转知矢量分量。 6. 试分析以下应变状态能否存在。 (1)22111 22()k x x x ε=+,2 2223kx x ε=,330ε=,121232kx x x γ=,23310γγ== (2)22111 2()k x x ε=+,2222kx x ε=,330ε=,12122kx x γ=,23310γγ== (3)21112ax a ε=,22212ax x ε=,3312ax x ε=,120γ=,22332ax bx γ=+,22 3112ax bx γ=+ 其中,,k a b 为远小于1的常数。 2. DATE: 2001-9-17 1. 证明对坐标变换?? ? ?????????-=? ??? ??2121cos sin sin cos x x x x αααα ,33x x =,无论α为何值均有

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135'ο。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。

弹性力学总结

弹性力学关于应力变分法问题 一、起源及发展 1687年,Newton在《自然哲学的数学原理》中提出第一个变分问题一一定轴转动阻力最小的旋转曲面形状问题;1696年,Bernoulli提出了著名的最速降线问题;到18世纪,经过Euler, Lagrange等人的努力,逐渐形成变分法。古典变分法的基本容是确定泛函的极值和极值点,它为许多数学、物理、科技、工程问题提供了强有力地数学工具。现代理论证明,微分方程(组)中的变分法是把微分方程(组)化归为其对应泛函的临界点(即化为变分问题),以证明其解的存在性及解的个数。讨论对应泛函临界点的存在性及其个数的基本方法是Morse理论与极小极论(Minimax Theory) <>变分法有着深刻的物理背景,某种意义上,自然界一切物质运动均可以用某种形式的数理方程表示,一般数理方程又与一定的泛函相对应,所以一切物质运动规律都遵从“变分原理”。 由于弹性力学变分解法,实质上就是数学中的变分法应用于解弹性力学问题,虽然在讨论的近似解法中使用变分计算均甚简单(类似微分),但"变分” 的概念却极为重要,它关系到我们队一系列力学变分原理中“虚”的概念的建立与理解。以下,就应力变分法进行讨论。 二、定义及应用 (1)、应力变分方程 设有任一弹性体,在外力的作用下处于平衡。命円为实际存在的应变分量, 它们满足平衡微分方程和应力边界条件,也满足相容方程,其相应的位移还满足位移边界条件。现在,假想体力和应变边界条件上给定的面力不变而应力分量发生了微小的改变茨%,即所谓虚应力或应力的变分,使应力分量成为5j+叫假定他们只满足平衡微分方程和应力边界条件。 既然两组应力分量都满足同样体力和面力作用下的平衡微分方程和应力边界条件,应力分量的变化必然满足无体力时的平衡微分方程。即

弹性力学重点复习题及其答案

弹性力学重点复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、 形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相 适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力 =1σ150MPa ,=2σ0MPa ,=1α6135'ο。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力 =1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三 套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、 应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。 其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部 分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量 应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为 了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。

弹性力学学习体会

读《UH模型系列研究》及结课有感 在弹性力学的学习过程中,对比与三大力学的不同之处,弹性力学作为固体力学的一个分支,回顾了位移法在弹性力学平面里的应用。在阅读《UH模型系列研究》的同时,也对本学期弹性力学做一个简单的总结,也是本次阅读后感受的重要部分。 弹性力学是一门研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移的科学,主要研究任务是解决弹性体的强度、刚度和稳定性问题。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。结合弹性力学,此篇《UH模型系列研究》的作者从合理的本构结构入手,展示了三项成果:①在修正剑桥模型的基础上,通过引入统一硬化(unified hardening,UH)参数,建立UH模型,该本构模型能够反映饱和超固结土的剪缩、剪胀、硬化、软化和应力路径相关性等特性,模型所用土性参数与修正剑桥模型完全相同;②扩展UH模型,使其考虑多种外部因素(温度、时间和基质吸力)、复杂特性(各向异性、结构性和小应变特性)和复杂加载条件(循环荷载、部分排水即渐近状态)等的影响;③提出广义非线性强度准则和满足热力学定律的变换应力三维化方法,从而实现了本构模型的合理三维化。初读文章,晦涩难懂之处实在太多,不断查阅资料,不断百度,也只是略懂一二,甚至是只知其一不知其二,所以学生在此也不想故做贤人、不懂装懂,只能大部分在弹性力学基础上,坚持读完文章,记住关键字,写写自己的一些感悟。 论文初,首先阐述了UH模型。土具有三种性质,摩擦性、剪胀行、压硬性,随后从土所具有的每种性质进行了细致的陈述,分别写出三个公式,并进行了模

弹性力学基本概念和考点汇总

基本概念: (1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变; 设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时, 0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。 设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律, 0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。 (5) 一点的应力状态; 过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6) 圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。 (7) 轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。 一、 平衡微分方程:

弹性力学教材习题及解答完整版

弹性力学教材习题及解 答 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

1-1. 选择题 a. 下列材料中,D属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃 钢; D. 沥青。 b. 关于弹性力学的正确认识是A。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没 有困难的应用于工程结构分析。 c. 弹性力学与材料力学的主要不同之处在于B。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 d. 所谓“完全弹性体”是指B。 A. 材料应力应变关系满足胡克定律; B. 材料的应力 应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足 线性弹性关系。 2-1. 选择题 a.所谓“应力状态”是指B。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不 同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截 面的应力不同,因此应力矢量是不可确定的。 2-2. 梯形横截面墙体完全置于水中,如图所示。已知水的比重为,试写出墙体横截面边

界AA',AB,BB’的面力边界条件。 2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。根据材料力学分析结果,该梁横截面的应力分量为 试检验上述分析结果是否满足平衡微分方程和面力边界条件。 2-4. 单位厚度的楔形体,材料比重为,楔形体左侧作用比重为的液体,如图所示。试写出楔形体的边界条件。 2-5. 已知球体的半径为r,材料的密度为1,球体在密度为1(1>1)的液体中漂浮,如

弹性力学总结

弹性力学总结

弹性力学关于应力变分法问题 一、起源及发展 1687年,Newton 在《自然哲学的数学原理》中提出第一个变分问题——定 轴转动阻力最小的旋转曲面形状问题; 1696年,Bernoulli 提出了著名的最速降 线问题;到18世纪,经过Euler ,Lagrange 等人的努力,逐渐形成变分法。 古典变分法的基本内容是确定泛函的极值和极值点,它为许多数学、物理、科 技、工程问题提供了强有力地数学工具。现代理论证明,微分方程(组)中的 变分法是把微分方程(组)化归为其对应泛函的临界点(即化为变分问题),以 证明其解的存在性及解的个数。讨论对应泛函临界点的存在性及其个数的基本 方法是Morse 理论与极小极大理论(Minimax Theory )。变分法有着深刻的物理 背景,某种意义上,自然界一切物质运动均可以用某种形式的数理方程表示, 一般数理方程又与一定的泛函相对应,所以一切物质运动规律都遵从“变分原 理”。 由于弹性力学变分解法,实质上就是数学中的变分法应用于解弹性力学问 题,虽然在讨论的近似解法中使用变分计算均甚简单(类似微分),但“变分” 的概念却极为重要,它关系到我们队一系列力学变分原理中“虚”的概念的建 立与理解。以下,就应力变分法进行讨论。 二、定义及应用 (1)、应力变分方程 设有任一弹性体,在外力的作用下处于平衡。命ij σ为实际存在的应变分量, 它们满足平衡微分方程和应力边界条件,也满足相容方程,其相应的位移还满 足位移边界条件。现在,假想体力和应变边界条件上给定的面力不变而应力分 量发生了微小的改变ij δσ,即所谓虚应力或应力的变分,使应力分量成为 ij ij δσσ+ 假定他们只满足平衡微分方程和应力边界条件。 既然两组应力分量都满足同样体力和面力作用下的平衡微分方程和应力边 界条件,应力分量的变化必然满足无体力时的平衡微分方程。即

弹性力学学习心得

弹性力学学习心得 大学时期就学习过弹性力学这门学科,当时的课本是徐芝纶教授的《简明弹性力学》,书的内容很丰富,但是由于课时有限加上我们自身能力的限制,本科期间只学习了前四章内容,学的比较粗略,理解的也不是很多,研一的这学期又有了一次学习的机会,通过杨老师耐心细致的讲解,我觉得弹性力学是一门十分有用并且基础的学科,值得我们去研究学习。 弹性力学与材料力学、结构力学的研究对象和研究方法上存在着一些差异,但是他们之间的界限却又不是那么明显。以弹性力学的平面问题为例,由弹性力学中平面问题的三套基本方程(平衡方程、几何方程和物理方程)和两种边界条件(应力边界、位移边界和混合)联立,就得到了求解两类平面问题(平面应力和平面应变)的一些基本方程。但是要由这些基本方程求得解析解,又是一个复杂而困难的问题。此时,引入结构力学中的力法和位移法,可以使得某些比较复杂的本来是无法求解的问题,得到解答。其中,位移法是以位移分量为基本未知函数,从基本方程和边界条件中消去应力分量和形变分量,导出只含位移分量的方程和相应的边界条件,求出位移分量后,再求出形变分量和应力分量的方法。由于位移法能更方便地处理方程中的边界条件,因此,课本中多用位移法来进行求解。在这个章节的学习中,要先复习、回忆结构力学中关于力法、位移法的知识概念,再总结弹性力学按位移求解平面应力问题的步骤和方法。 弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。 弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 通过对弹性力学的二次学习,加上杨老师详尽而又有条理的讲授,我相信将对之后塑性力学和有限元法甚至以后的学习都会有很大帮助。

弹性力学习题

弹性力学习题 填空题 1。弹性力学是建立在连续性、完全弹性、均匀性、各项同性及小变形假定(假定形变和唯一是微小的)假定基础。 2。在平面应力问题中,其中应力分量不恒为零的有σx,σy,τxy=τyx。而在平面应变问题中,应变分量横为零的有?z,txz=tzx,tzy=tyz。两类问题的应力和应变位移都只是坐标x,y的函数,与z无关。 3。体力不计,两端受转向相反力偶作用的等截面质感扭转问题中,存在的应力有横截面上的切应力t,其余应力为0,其任一横截面在xy轴上的投影的形状相同,而只是转动一个角度a=kz。 4。相容方程是形变分量之间的变形协调方程,只有满足相容方程,才能保证位移分量的存在,实际位移值应包括u,v,w。 5。平面问题中,(a)已知一点的应力为61=62=6,那么任一方向的正应力6n为6。 tn为0。 6。空间问题一点的应力状态是由6个独立的应力分量决定的,分别是沿直角坐标系的正应力6x,6y,6z和切应力txy,txz,tyz。任一方向的正应力和切应力实际上是这些应力分量在该方向上的合成。 1。弹性力学是固体力学的一个分支,其基本任务是研究由于受外力作用或边界约束,温度改变等原因为发生的。 2。在平面应力问题中,应力分量为0的是6x,tzx,tzy,而在平面应变中,应力分量一般不为0的有6x,6y,6z,txy。计算两种状态的基本方程中,平衡威风方程和几何方程是一样的。

3。对轴对称问题,得出的位移公式却是非轴对称的,因为位移包含刚体位移分量,只有位移边界条件也是轴对称的,则位移才是轴对称的。 4。一点的应力状态由6个独立的应力分量决定的,分别是沿坐标面的正应力6x,6y,6z和切应力tzy,tyz,tzx。一点应变状态有6的独立的独立的应变分量决定的,分别沿坐标面的线应变?x,?y,?z,和切应变rxy,ryz,rzx。 5。弹性力学的基本做题方法有应力法,位移法。 6。平面问题中,艾里应力函数是在条件常体力下得到的,应满足区域内的相容方程。 简答题 1、简述弹性力学的基本假设,并说说建立弹性力学基本方程时分别用到哪些假设, a、连续性 2、完全弹性 3、均匀性 4、各向同性 5、小变形假设即形变和位移均是微小的平衡微分方程和几何方程:物体的连续性、均匀性、小变形物理方程:全部用到 2、简述弹性力学应力、应变、体力和面力的符号规定(可用文字说明)。正的切应力对应正的切应变吗, 应力:截面的外法线沿坐标轴正向,则此截面为正面,正面上的应力沿坐标轴正向为正、负向为负。相反,负面上的应力沿坐标轴负向为正、正向为负。 应变:线应变以伸长时为正、缩短时为负;切应变以直角变小时为正、变大时为负。体力:沿坐标轴正方向为正、沿坐标轴负方向为负。 面力:沿坐标轴正方向为正、沿坐标轴负方向为负。 正的切应力对应正的切应变。(图)τxy与τyx均为正的切应力,它们的作用是使DA与DB间的夹角有减小的趋势,而根据切应变定义,此时应变为正。 3、简述平面问题的几何方程是如何得到的, a、先求出一点沿坐标轴x、y的线应变ξx、ξy。

弹性力学简明习题提示与参考答案

题提示和答案 《弹性力学简明教程》 习题提示和参考答案 第二章习题的提示与答案 2-1 是 2-2 是 2-3 按习题2-1分析。 2-4 按习题2-2分析。 2-5 在的条件中,将出现2、3阶微量。当略去3阶微量后,得出的切 应力互等定理完全相同。 2-6 同上题。在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。其区别只是在3阶微量(即更高阶微量)上,可以略去不计。 2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。 2-8 在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。 2-9 在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。 2-10 参见本章小结。 2-11 参见本章小结。 2-12 参见本章小结。 2-13 注意按应力求解时,在单连体中应力分量必须满足 (1)平衡微分方程, (2)相容方程, (3)应力边界条件(假设)。 2-14 见教科书。 2-15 见教科书。 2-16 见教科书。 2-17 取

它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。 2-18 见教科书。 2-19 提示:求出任一点的位移分量和,及转动量,再令,便可得 出。 第三章习题的提示与答案 3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解: (1)校核相容条件是否满足, (2)求应力, (3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。 3-2 用逆解法求解。由于本题中 l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。 3-3 见3-1例题。 3-4 本题也属于逆解法的问题。首先校核是否满足相容方程。再由求出 应力后,并求对应的面力。本题的应力解答如习题3-10所示。应力对应的面力是:主要边界: 所以在边界上无剪切面力作用。下边界无法向面力;上边 界有向下的法向面力q。 次要边界: x=0面上无剪切面力作用;但其主矢量和主矩在 x=0 面上均为零。 因此,本题可解决如习题3-10所示的问题。 3-5 按半逆解法步骤求解。 (1)可假设 (2)可推出 (3)代入相容方程可解出f、,得到

弹性力学课后习题详解

第一章习题 1-1 试举例证明,什么是均匀的各向异性体,什么是非均匀的各向同性体,什么是非均匀的各向异性体。 1.均匀的各向异性体: 如木材或竹材组成的构件。整个物体由一种材料组成,故为均匀的。材料力学性质沿纤维方向和垂直纤维方向不同,故为各向异性的。 2.非均匀的各向同性体: 实际研究中,以非均匀各向同性体作为力学研究对象是很少见的,或者说非均匀各向同性体没有多少可讨论的价值,因为讨论各向同性体的前提通常都是均匀性。设想物体非均匀(即点点材性不同),即使各点单独考察都是各向同性的,也因各点的各向同性的材料常数不同而很难加以讨论。 实际工程中的确有这种情况。如泌水的水泥块体,密度由上到下逐渐加大,非均匀。但任取一点考察都是各向同性的。 再考察素混凝土构件,由石子、砂、水泥均组成。如果忽略颗粒尺寸的影响,则为均匀的,同时也必然是各向同性的。反之,如果构件尺寸较小,粗骨料颗粒尺寸不允许忽略,则为非均匀的,同时在考察某点的各方向材性时也不能忽略粗骨料颗粒尺寸,因此也必然是各向异性体。因此,将混凝土构件作为非均匀各向同性体是很勉强的。 3.非均匀的各向异性体: 如钢筋混凝土构件、层状复合材料构件。物体由不同材料组成,故为非均匀。材料力学性质沿纤维方向和垂直纤维方向不同,故为各向异性的。 1-2一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体一般的岩质地基和土质地基能否作为理想弹性体 理想弹性体指:连续的、均匀的、各向同性的、完全(线)弹性的物体。 一般的混凝土构件(只要颗粒尺寸相对构件尺寸足够小)可在开裂前可作为理想弹性体,但开裂后有明显塑性形式,不能视为理想弹性体。 一般的钢筋混凝土构件,属于非均匀的各向异性体,不是理想弹性体。 一般的岩质地基,通常有塑性和蠕变性质,有的还有节理、裂隙和断层,一般不能视为理想弹性体。在岩石力学中有专门研究。 一般的土质地基,虽然是连续的、均匀的、各向同性的,但通常具有蠕变性质,变形与荷载历史有关,应力-应变关系不符合虎克定律,不能作为理想弹性体。在土力学中有专门研究。 1-3 五个基本假定在建立弹性力学基本方程时有什么用途 连续性假定使变量为坐标的连续函数。完全(线)弹性假定使应力应变关系明确为虎克定律。均匀性假定使材料常数各点一样,可取任一点分析。各向同性使材料常数各方向一样,坐标轴方位的任意选取不影响方程的唯一性。小变形假定使几何方程为线性,

弹性力学学习心得

弹性力学学习心得 孙敬龙S201201024 大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编著的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。 弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从1822~1828年间,在A.L?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力学的正确性提供了有力的证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;1898年德国的基尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重视。在这个时期,弹性力学的一般理论也有很大的发展。一方面建立了各种关于能量的定理(原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利——里兹法,为直接求

相关主题
文本预览
相关文档 最新文档