单相接地电容电流及保护定值计算
- 格式:doc
- 大小:31.00 KB
- 文档页数:1
电容电流的计算书电网的电容电流,应包括有电气连接的所有架空线路、电缆线路、发电机、变压器以及母线和电器的电容电流,并应考虑电网5~10年的发展。
1.架空线路的电容电流可按下式估算:I C =(2.7~3.3)U e L×10-3 (F-1)式中:L——线路的长度(㎞);U e——线路系统电压(线电压KV)I C ——架空线路的电容电流(A);2.7 ——系数,适用于无架空地线的线路;3.3 ——系数,适用于有架空地线的线路;同杆双回线路的电容电流为单回路的1.3~1.6倍。
亦可按附表1所列经验数据查阅。
附表1 架空线路单相接地电容电流(A/km)2.电缆线路的电容电流可按(F-2)式估算,亦可进行计算I C=0.1U e L (F-2)按电容计算电容电流具有金属保护层的三芯电缆的电容值见附表2。
附表2 具有金属保护层的三芯电缆每相对地电容值(µF/㎞)将求得的电缆总电容值乘以1.25即为全系统总的电容近似值(即包括变压器绕组、电 动机以及配电装置等的电容)。
单相接地电容电流可由下式求出: I C =3 U e ωC ×10-3(F-3)其中 ω=2πf e式中 I C —— 单相接地电容电流(A ); U e —— 厂用电系统额定线电压(kV ); ω —— 角频率; f e —— 额定功率(Hz );C —— 厂用电系统每相对地电容(µF );2.2、6~10 kV 电缆和架空线的单相接地电容电流I C 也可通过下式求出近似值。
6kV 电缆线路=I C 6S 22002.84S95++U e (A ) (F-4)10kV 电缆线路 =I C 0.23S22001.44S95++U e(A ) (F-5) 式中 S —— 电缆截面 (㎜²)U e —— 厂用电系统额定电压(kV ) 2.3 电容电流的经验值见附表3。
附表3 6~35kV 电缆线路单位长度的电容电流(A/㎞)2.4 6~10 kV 交联聚乙烯绝缘电力电缆的接地电容电流。
电容电流的计算书电网的电容电流,应包括有电气连接的所有架空线路、电缆线路、发电机、变压器以及母线和电器的电容电流,并应考虑电网5~10年的发展。
1.架空线路的电容电流可按下式估算:I C =(2.7~3.3)U e L×10-3 (F-1)式中:L——线路的长度(㎞);U e——线路系统电压(线电压KV)I C ——架空线路的电容电流(A);2.7 ——系数,适用于无架空地线的线路;3.3 ——系数,适用于有架空地线的线路;同杆双回线路的电容电流为单回路的1.3~1.6倍。
亦可按附表1所列经验数据查阅。
附表1 架空线路单相接地电容电流(A/km)2.电缆线路的电容电流可按(F-2)式估算,亦可进行计算I C=0.1U e L (F-2)按电容计算电容电流具有金属保护层的三芯电缆的电容值见附表2。
附表2 具有金属保护层的三芯电缆每相对地电容值(µF/㎞)将求得的电缆总电容值乘以1.25即为全系统总的电容近似值(即包括变压器绕组、电 动机以及配电装置等的电容)。
单相接地电容电流可由下式求出: I C =3 U e ωC ×10-3(F-3)其中 ω=2πf e式中 I C —— 单相接地电容电流(A ); U e —— 厂用电系统额定线电压(kV ); ω —— 角频率; f e —— 额定功率(Hz );C —— 厂用电系统每相对地电容(µF );2.2、6~10 kV 电缆和架空线的单相接地电容电流I C 也可通过下式求出近似值。
6kV 电缆线路=I C 6S 22002.84S95++U e (A ) (F-4)10kV 电缆线路 =I C 0.23S22001.44S95++U e(A ) (F-5) 式中 S —— 电缆截面 (㎜²)U e —— 厂用电系统额定电压(kV ) 2.3 电容电流的经验值见附表3。
附表3 6~35kV 电缆线路单位长度的电容电流(A/㎞)2.4 6~10 kV 交联聚乙烯绝缘电力电缆的接地电容电流。
自动化论坛:单相接地电容电流的计算方法单相接地电容电流的计算4.1 空载电缆电容电流的计算方法有以下两种:(1)根据单相对地电容,计算电容电流(见参考文献2)。
Ic=√3×UP×ω×C×103式中: UP━电网线电压(kV)C ━单相对地电容(F)一般电缆单位电容为200-400 pF/m左右(可查电缆厂家样本)。
(2)根据经验公式,计算电容电流Ic=0.1×UP ×L式中: UP━电网线电压(kV)L ━电缆长度(km)4.2 架空线电容电流的计算有以下两种:(1)根据单相对地电容,计算电容电流Ic=√3×UP×ω×C×103式中: UP━电网线电压(kV)C ━单相对地电容(F)一般架空线单位电容为5-6 pF/m。
(2)根据经验公式,计算电容电流Ic= (2.7~3.3)×UP×L×10-3式中: UP━电网线电压(kV)L ━架空线长度(km)2.7━系数,适用于无架空地线的线路3.3━系数,适用于有架空地线的线路关于单相接地电容电流计算单相接地电容电流我所知道估算公式:对架空线:Ic=UL / 350对电缆:Ic=UL / 10我想请问的是L是指的架空线长度还是架空线距离?比如是三相的L是不是为距离X 3 另请问有没有更详细的计算方法?工业与民用配电设计手册上对L的定义是线路的长度,单位km,这里的长度与楼主说的距离是同一个概念,也就是说L是指架空线或电缆的距离,三相不需要再用距离乘以3更详细的单相接地电容电流计算公式见附件,摘自工业与民用配电设计手册152页描述:没有文件说明附件:( 189 K)单相接地电容电流计算.pdf下载次数(27)首先应该明确为什么要算这个电容电流,一般计算单相接地电容电流首先要了解,中性点接地系统的分类,什么样的系统才要计算单相接地电容电流,相关国家规定是怎样规定的,算出这个电流怎样进行相关的补偿,选用什么装置进行补偿,补偿的分类是欠补偿,还是过补偿,还是完全补偿,为什么要选用过补偿,单单理解怎样计算是没有任何用处的,中性点接地系统是个综合问题,考虑的要全面。
高压电网单相接地电容电流计算方法山西柳林汇丰兴业曹家山煤业有限公司高压电网单相接地电容电流计算近年来,随着矿井井型的增大,井下用电设备的增多,煤矿机械化程度的提高,供电线路逐渐增加,煤矿高压电网的单相接地电容电流也在增大,给供电系统的正常运行带来一系列安全性和可靠性问题。
随着接地电容电流的增大,降低了电缆的绝缘程度,易形成绝缘击穿从而发生两相或三相短路故障,当电网的接地电容电流增大到一定值后,接地故障点电弧便难以自熄,容易引起间隙电弧过电压。
为减少煤矿安全事故发生的可能,必须对煤矿高压电网的单相接地电容电流进行准确的治理和补偿,因此准确计算煤矿供电系统对地电容电流具有重要的现实意义。
单相接地故障是影响煤矿高压电网安全供电的主要因素之一,当单相接地电容电流超过一定值时,必须对煤矿高压电网的单相接地电容电流进行准确的治理和补偿,本文在分析煤矿高压电网电容电流理论准确计算基础上,应用了综合考虑电缆系数、天气系数及高压电器设备增值系数的改进的单相接地电容电流计算方法。
最后,通过实例计算验证了该改进计算方法的正确性。
1 、电网单相接地电容电流的理论计算煤矿10kV高压电网中性点不接地系统可以由图1模拟表。
图1 10kV 中性点不接地模拟电网图中,AE∙、B E ∙、CE ∙为电网各相相电势,14~C C 为各线路每相对地分布电容,0C 为电力系统中其它线路与设备的一相对地总电容,01234d I i i i i i =++++为电力系统单相接地电容电流。
当配电网发生A 相单相接地故障时,故障点的接地电容电流由式3d A I C U ω=计算,其中01234C C C C C C =++++为配电网一相对地总电容值, 为电网的相电压,大小为6000/3。
从而可见,在配电网中,供电电缆长,电缆越粗,则电网的对地电容就越大,接地电流也越大。
煤矿配电网中性点不接地系统单相接地故障时,有如下的故障特征:流过所有非故障线路零序电流的方向相同,故障线路零序电流方向与非故障线路相反,且故障线路电流突变的幅值大于所有非故障相的幅值,其值为所有非故障相的幅值之和。
1 前言前言前言前言众所周知10kV中性点不接地系统(小电流接地系统具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员可在2小时内选择和排除接地故障,保证连续不间断供电。
2 单相接地电容电流的危害单相接地电容电流的危害单相接地电容电流的危害单相接地电容电流的危害当电网发展到一定规模,10kV出线总长度增加,对地电容较大时,单相接地电流就不容忽视。
当单相接地电流超出允许值,接地电弧不易熄灭,易产生较高弧光间歇接地过电压,波及整个电网。
单相接地电容电流过大的危害主要体现在五个方面:1弧光接地过电压危害当电容电流过大,接地点电弧不能自行熄灭,出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3-5倍或更高,它遍布于整个电网中,并且持续时间长,可达几小时,它不仅击穿电网中的绝缘薄弱环节,可使用电设备、电缆、变压器变压器变压器变压器等绝缘老化,缩短使用寿命,而且对整个电网绝缘都有很大的危害。
2造成接地点热破坏及接地网电压升高单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入接地网后由于接地电阻的原因,使整个接地电网电压升高,危害人身安全。
3交流杂散电流危害电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃可燃气体、煤尘爆炸等,可能造成雷管先期放炮,并且腐蚀水管,气管等金属设施。
4接地电弧还会直接引起火灾,甚至直接引起可燃气体、煤尘爆炸。
5配电网对地电容电流增大后,架空线路尤其是雷雨季节,因单相接地引起的短路跳闸事故占很大比例。
3 单相接地电容电流的补偿原则单相接地电容电流的补偿原则单相接地电容电流的补偿原则单相接地电容电流的补偿原则我国的相关电力设计技术规程中规定,3~10kV的电力网单相接地故障电流大于30A时应装设消弧线圈。
发电机中性点用接地电阻设计计算书一、发电机中性点接地方式的选择,设计依据发电机定子绕组发生单相接地故障时,接地点流过的电流是发电机本身及其引出回路所连接元件(主母线、厂用分支线、主变压器等)的对地电容电流。
当超过允许值时,将烧坏定子铁芯,进而损坏定子绕组绝缘,引起相间短路,故需要在发电机中性点采取经高电阻接地的措施。
以保护发电机免遭损坏。
表1示发电机接地电流允许值。
表1发电机接地电流允许值二、发电机中性点经高电阻接地设计原则1、接地点阻性电流应大于(1~1.5)倍单相接地总的容性电流,以限制系统过电压不超过2.6倍额定相电压,其中容性电流应以发电机运行回路中出现的最大单相接地电容电流为依据。
2、发生单相接地时。
总的故障电流不宜小于3A,以满足继电保护动作的灵敏度。
3、发生单相接地时,总的故障电流不宜大于(10~15)A,以满足在定子绕组对铁芯发生单相接地时不损坏铁芯。
4、为定子接地保护提供电源,便于检测。
三、发电机电阻器的阻值计算1.发电机定子绕组单相接地电容电流的计算根据发电机定子绕组的电容:C1=0.1uf发电机额定电压U0=10.5KV,则发电机电容电流为:I c1=1.732*ωC1U0=1.732*2πfC1U0=1.732*314*0.1*10-6*10500=0.571A2.发电机出口电缆头及电缆头至主变低压绕组的单相接地电容电流计算按常规配电网络的经验估计:发电机出口电缆头及电缆头到主变低压绕组的单相接地电容约为:C2=0.2uf发电机额定电压U0=10.5KV,则发电机电容电流为:I c2=1.732*ωC2U0=1.732*2πfC2U0=1.732*314*0.2*10-6*10500=1.142A3.电缆单相接地电容电流的计算:电缆线总长为10m,其电容电流为:I c3=0.1U0L=0.1*10.5*0.01=0.01A4.发生单相接地时流向故障点的总的电容电流为:ΣI C= I c1+ I c2+ I c3=0.571+1.142+0.01=1.723A<3A从上计算结果可以看出,发电机发生单相短路时,接地电流小于表1规定值.考虑到保护,电流值选取为3A5.中性点接地电阻的选取计算:R=U相/I=10500/(1.732*3)=2020.8ohm四、发生单相接地时,总故障电流:I总2=I2+I C2I总=3.46A<15A,满足要求.。
单项电容接地电流计算公式在电力系统中,电流是一个重要的参数,对于单项电容接地电流的计算,我们可以使用以下公式来进行计算:Ic = 2πfCUn。
其中,Ic为单相电容接地电流,f为电源的频率,C为电容值,Un为系统的额定电压。
在接下来的文章中,我们将深入探讨单项电容接地电流计算公式的相关知识,并且介绍一些实际应用中的注意事项和案例分析。
一、单项电容接地电流计算公式的推导。
单项电容接地电流计算公式的推导主要基于电流和电压的关系,以及电容器的特性。
在电力系统中,当电容器接地时,会产生一定的接地电流。
根据电流和电压的关系,我们可以得到单相电容接地电流的计算公式。
首先,我们知道电流和电压之间的关系可以用以下公式表示:I = C dU/dt。
其中,I为电流,C为电容值,dU/dt为电压的变化率。
当电容器接地时,电压的变化率可以表示为:dU/dt = Un sin(2πft)。
其中,Un为系统的额定电压,f为电源的频率。
将以上两个公式代入电流和电压之间的关系公式,我们可以得到单相电容接地电流的计算公式:Ic = C Un 2πf sin(2πft)。
这就是单项电容接地电流的计算公式。
二、单项电容接地电流计算公式的应用。
单项电容接地电流计算公式可以在电力系统的设计和运行中得到广泛的应用。
首先,它可以用来计算电容器接地时产生的接地电流,从而帮助工程师合理设计电力系统的接地装置。
其次,它还可以用来评估电容器对系统的影响,从而指导电力系统的运行和维护。
在实际应用中,单项电容接地电流计算公式还需要考虑一些特殊情况。
例如,当电容器接地时,可能会出现过电压和过电流的情况,这就需要工程师对系统进行合理的设计和保护。
此外,电容器的故障也会对系统产生一定的影响,因此需要及时发现并进行处理。
三、单项电容接地电流计算公式的案例分析。
为了更好地理解单项电容接地电流计算公式的应用,我们可以通过一个实际案例来进行分析。
假设某电力系统的额定电压为10kV,频率为50Hz,接地电容器的电容值为100uF。
小电流接地系统接地电流计算与保护整定1 中性点不接地系统接地电流计算发生单相金属性接地时,接地相对地电压降为零,非接地两相对地电压升高3倍,三相之间电压保持不变,仍然为线电压。
流过故障点的电流是线路对地电容引起的电容电流,与相电压、频率及相对地间的电容有关,一般数值不大。
单相接地电容电流的估算方法如下:1.1 空线路单相接地电容电流IcIc=1.1(2.7~3.3) UeL10ˉ式中:Ue 线路额定线电压(kV);L 线路长度(km);1.1 采用水泥杆或铁塔而导致电容电流的增值系数。
无避雷线线路,系数取2.7;有避雷线线路,系数取3.3对于6kV线路,约为0.0179A/km;对于10kV线路,约为0.0313A/km;对于35kV线路,约为0.1A/km。
需要指出:(1)双回线路的电容电流为单回线路的1.4倍(6~10kV线路)。
(2)实测表明,夏季电容电流比冬季增值约10 %。
(3)由变电所中电力设备所引起的电容电流值可按表1-27进行估算。
1.2 电缆线路单相接地电容电流Ic油浸纸电缆线路在同样的电压下,每千米的电容电流约为架空线路的25倍(三芯电缆)和50倍(单芯电缆)。
也可按以下公式估算:6 kV电缆线路Ic=〔(95+3.1S)(2200+6S)〕Ue A/km10 kV电缆线路Ic=〔(95+1.2S)(2200+0.23S)〕Ue A/km式中:Ic 电容电流(A/km);S 电缆芯线的标称截面面积(mm);Ue 线路额定线电压(kV)。
对于交联聚乙烯电缆,每千米对地的电容电流约为油浸纸电缆的1.2倍。
油浸纸电缆和交联聚乙烯电缆的电容电流,见表1-28至表1-301.3 架空线和电缆混合线路单相接地电容电流Ic混合线单相接地电容电流可采用以下经验公式估算:Ic=Ue(Lk+35lc)350式中:Ic:电容器电流(A)Uc:线路额定线电压(kV)Lk:同一电压Ue的具有电的联系的架空线路总长度(km)Lc:同一电压Ue的具有电的联系的电缆线路总长度(km)表1-28 6-35KV油浸纸电缆接地电容电流计算值2 小接地电流系统单相接地保护及计算2.1 小电流接地系统的电容电流计算。
电网单相接地电容电流的计算和测量第一节有关电缆参数影响电网单相接地电容电流的因素很多,其中最大因素是电缆参数,即电缆芯对地的电容,不同的电缆有不同的参数表1和表2所示的是三芯油纸电缆和交流聚乙烯电缆参数。
地电容电流的3~5%。
第二节电网单相接地故障电容电流计算电网单相接地故障电容电流准确计算直接影响到选用补偿装置范围,特别是对新建变电站。
对6KV电网一般计算公式为:IC=1.14×ICC+2.8+IDC对于10KV电网一般计算公式为:IC=1.2×ICC+4.8+IDC式中:IC为电网单相接地电流,ICC为电缆计算电容电流,IDC为电网浪涌电容电流。
在计算电网单相接地故障电容电流时,要充分考虑到实际电网情况,特别是新建变电站,要充分考虑回路末端开关站以下高压部分电流。
第三节中性点小电阻接地电网特点1、单相接地电容电流测量方法,准备电压表、电流表各一块,6KV电力电容器若干,接地线及高压试电笔等。
2、测量步骤(1)测量电网自然不平衡电压U01。
在电网正常运行时,去掉电压互感器二次开口三角上的负载,接上电压表,这时电压表的读数即为U01,电压表不要拆除。
(2)选附加电容C:估算一下电网电容电流IC,估算出IC后,按以下条件选取附加电容C:U01≤1V,0.045IC≤C≤0.1IC;U01>1V,0.092IC≤C<0.13IC。
式中C单位为μF,确定C值后,按照电力电容器铭牌上的电容值即可选定附加电容器或电容器组。
(3)选择电流表量程。
电流表量程的安培数必须大于附加电容微法数,宜大出25%左右为佳。
(4)选定某一备用开关柜或带有下隔离开关的停送电柜。
将选定的电容器或电容器组同电流表串联后可靠接地,如图2所示。
必须做到:将电容器放在绝缘垫上,外壳可靠地接到电流表上;将电流表两端用一导线搭接,达到既接触良好,又可方便地挑开;准备好电容器放电接地线。
(5)检查接线及电表量程等,确保正确无误。
1前言众所周知10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员可在2小时内选择和排除接地故障,保证连续不间断供电。
2单相接地电容电流的危害当电网发展到一定规模,10kV出线总长度增加,对地电容较大时,单相接地电流就不容忽视。
当单相接地电流超出允许值,接地电弧不易熄灭,易产生较高弧光间歇接地过电压,波及整个电网。
单相接地电容电流过大的危害主要体现在五个方面:1)弧光接地过电压危害当电容电流过大,接地点电弧不能自行熄灭,出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3-5倍或更高,它遍布于整个电网中,并且持续时间长,可达几小时,它不仅击穿电网中的绝缘薄弱环节,可使用电设备、电缆、变压器等绝缘老化,缩短使用寿命,而且对整个电网绝缘都有很大的危害。
2)造成接地点热破坏及接地网电压升高单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入接地网后由于接地电阻的原因,使整个接地电网电压升高,危害人身安全。
3)交流杂散电流危害电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃可燃气体、煤尘爆炸等,可能造成雷管先期放炮,并且腐蚀水管,气管等金属设施。
4)接地电弧还会直接引起火灾,甚至直接引起可燃气体、煤尘爆炸。
5)配电网对地电容电流增大后,架空线路尤其是雷雨季节,因单相接地引起的短路跳闸事故占很大比例。
3 单相接地电容电流的补偿原则我国的相关电力设计技术规程中规定,3~10kV的电力网单相接地故障电流大于30A时应装设消弧线圈。
消弧线圈的作用是当电网发生单相接地故障后,提供一电感电流,补偿接地电容电流,使接地电流减小,也使得故障相接地电弧两端的恢复电压速度降低,达到熄灭电弧的目的。
摘自本人撰写的《余热(中册)》
一一五、已知热电厂10KV 供电线路有8回,额定电压为10.5KV ,架空线路总长度为
9.6Km ,电缆线路总长度为6Km ,计算单相接地时系统总的零序(电容)电流为多少安? 由于热电厂10KV 供电系统为中性点不接地的运行方式,所以应按照公式1、2进行计算:
1.对于架空线路 I dC0(架空)=350
UL (A ) 2.对于电缆线路 I dC0(电缆)=10
UL (A ) 式中 U ——线路额定线电压(KV )
L ——与电压U 具有电联系的线路长度(Km )
解:根据公式1、2计算出10KV 供电线路单相接地时的零序(电容)电流为: I dC0(总)=350
9.610.5⨯+10610.5⨯=0.288+6.3≈6.6(A ) 一一六、如何计算10KV 中性点不接地系统,线路单相接地的零序电流保护定值? 中性点不接地系统发生单相接地故障时,非故障线路流过的零序电流为本线路的对地电容电流,而故障线路流过的零序电流为所有非故障线路的对地电容电流之和。
为使保护装置具有高度的灵敏性,所以非故障线路的零序电流保护不应动作,故零序电流保护的动作电流必须大于外部接地故障时流过本线路的零序电流,因此零序电流保护的动作电流I dz 应为: I dz =K K 3U φωC 0=K K I dC0
式中 K K ——可靠系数。
本次计算按8回线路中的4回在运行,故选取4。
I dC0——本线路的对地电容电流。
举例:已知上题10KV 线路单相接地时,系统总的零序电流I dC (总)=6.6安,计算其中1回线路零序电流保护的定值为多少安?
解: I dz =K K I dC0 本计算的可靠系数按照K K =4选取
则: I dz =4×8
6.6=3.3(A ) 选取3.3A 该电流系流过零序电流互感器一次侧的动作电流。
如果零序电流互感器标明了其变流比,则应根据变流比计算出零序电流保护装置的动作电流;若零序电流互感器未标明其变流比,则应通过现场实测的方法,测量零序电流互感器二次测的电流,该电流就是保护装置的动作电流。
一一七、如何进行零序电流保护的灵敏度校验?
零序电流保护的定值确定之后,还应校验本线路接地故障时,保护是否有足够的灵敏度。
通常在系统最小运行方式下(即系统各相对地电容电流最小时),用本线路接地故障时流过的零序电流来校验灵敏度。
因此,灵敏系数:
K Lm =0dc 0
dc (dz I ⨯I I k 总)K -
对于电缆线路要求灵敏系数K Lm ≥1.25;对于架空线路要求灵敏系数K Lm ≥1.5。
举例:根据上题的已知条件,进行零序电流保护的灵敏度校验。
灵敏系数: K Lm =
81816.66.66.6⨯⨯⨯-4= 3.3775.5=1.75 校验:1.75>1.5合格。