快速成形技术快速原型制造技术
- 格式:ppt
- 大小:8.14 MB
- 文档页数:68
叠层实体快速原型制造工艺的基本原理一、引言叠层实体快速原型制造工艺是一种快速制造技术,它可以通过层层堆叠材料来构建三维实体模型。
该技术的优点是快速、灵活、经济,因此在工业设计、医疗器械、航空航天等领域得到了广泛应用。
本文将详细介绍叠层实体快速原型制造工艺的基本原理。
二、基本原理1. 快速成型技术概述快速成型技术(Rapid Prototyping,RP)是指利用计算机辅助设计(CAD)系统将设计模型转化为数字化的三维模型,并通过控制设备对材料进行逐层堆积或逐点加工的方式,直接制造出物理模型或零件的一种现代化制造技术。
2. 叠层实体快速原型制造工艺流程叠层实体快速原型制造工艺流程包括:CAD建模、STL文件生成、切片处理、机器参数设置和加工过程控制等步骤。
3. STL文件生成STL(STereoLithography)文件是一种三角面片格式文件,它描述了一个三维对象表面的几何形状。
在CAD软件中,用户可以将设计模型导出为STL格式文件。
4. 切片处理切片处理是将STL文件分割成多层二维图形的过程,每一层都代表着三维模型的一个截面。
切片厚度的大小决定了最终模型的精度和表面光滑度。
5. 机器参数设置机器参数设置包括材料选择、加工速度、温度控制等参数设置。
不同材料需要不同的加工参数,这些参数会影响到最终模型的质量和性能。
6. 加工过程控制加工过程控制是指通过计算机程序对设备进行控制,使其按照预定路径进行加工。
该过程需要保证设备在加工过程中稳定运行,并及时检测和纠正可能存在的误差。
7. 层层堆积原理叠层实体快速原型制造工艺通过将材料逐层堆积来构建三维实体模型。
在每一层堆积完成后,需要对其进行固化或热塑处理,以保证其稳定性和可操作性。
常用的堆积方式有激光束烧结、喷墨技术、熔融沉积等。
8. 激光束烧结原理激光束烧结是通过高能量激光束将粉末材料进行局部熔化和固化的一种加工方式。
在加工过程中,激光束按照预定路径扫描,将粉末材料逐层烧结成实体模型。
快速成型技术在产品设计中的应用
快速成型技术是一种将数字化三维模型转化为实际物体的技术,通过计算机辅助设计
软件和材料加工设备实现原型设计与制造的重要方法。
在产品设计领域中,快速成型技术
应用广泛,主要应用于产品原型制作、产品的外观检验和最终产品的制造等方面。
一、原型制作
快速成型技术可以大大加快产品原型的制作速度,并可以提供高精度、高质量的原型。
使用传统的手工制作方法,需要耗费大量的时间和人力,而且在精度和质量方面也无法与
快速成型技术相比。
快速成型技术可以将设计师的概念迅速转化为实际产品样品,从而使
设计师可以更快地评估和确认其设计方案的可行性,对于新产品的开发和改良具有重要的
作用。
二、外观检验
在产品设计阶段,快速成型技术可以通过制造实际样品,方便设计师对产品的外观、
尺寸、色彩等方面进行检验。
传统的检验方式需要手动制作模型进行比对,费时费力,且
难以做到精度的一致性。
快速成型技术可以在短时间内制作多个产品样品,提高检验的效
率和准确性。
三、最终产品制造
快速成型技术可以直接将设计师的三维模型转化为零件,并可以在短时间内生产出更
具精度和质量的产品。
在快速成型技术中,材料的用量较少,制造过程中浪费的材料也较少,大大降低了生产成本,并提高了生产效率和产品质量。
综上所述,快速成型技术在产品设计中的应用广泛,具有很大的优势。
它可以减少产
品制造时间,提高产品设计和制造的效率和准确性,从而为产品的研发和改进提供了有力
的技术手段。
随着新材料和新技术的不断发展,快速成型技术将会在产品设计中发挥更为
重要的作用。
快速成型技术1、快速成型简介快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。
自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。
但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。
形象地讲,快速成形系统就像是一台"立体打印机"。
2、RP 技术的原理RP 技术是采用离散∕堆积成型的原理, 由CAD 模型直接驱动的通过叠加成型方出所需要零件的计算机三维曲面或实体模型, 根据工艺要求将其按一定厚度进行分层, 把三维电子模型变成二维平面信息(截面信息), 在微机控制下, 数控系统以平面加工的方式有序地连续加工出每个薄层并使它们自动粘接成型, 图1 为RP 技术的基本原理。
图1 RP 技术的基本原理。
RP 技术体系可分解为几个彼此联系的基本环节: 三维CAD 造型、反求工程、数据转换、原型制造、后处理等。
2.1立体光固化成型(SLA)该方法是目前世界上研究最深入、技术最成熟、应用最广泛的一种快速成型方法。
SLA 技术原理是计算机控制激光束对光敏树脂为原料的表面进行逐点扫描, 被扫描区域的树脂薄层( 约十分之几毫米) 产生光聚合反应而固化, 形成零件的一个薄层。
工作台下移一个层厚的距离, 以便固化好的树脂表面再敷上一层新的液态树脂, 进行下一层的扫描加工, 如此反复, 直到整个原型制造完毕。
由于光聚合反应是基于光的作用而不是基于热的作用, 故在工作时只需功率较低的激光源。
此外,因为没有热扩散, 加上链式反应能够很好地控制, 能保证聚合反应不发生在激光点之外, 因而加工精度高, 表面质量好, 原材料的利用率接近100%, 能制造形状复杂、精细的零件, 效率高。
第5章基于快速原型的软模快速制造技术快速原型由于受其制造方法所要求的使用材料的限制,并不能够完全替代最终的产品。
因此,在新产品功能检验、投放市场试运行获得用户使用后的反馈信息以及小批量生产等方面,仍需要由实际材料制造的产品。
因此,利用快速原型作母模来翻制模具并生产实际材料的产品,便产生了基于快速原型的快速模具制造技术(Rapid Tooling,RT)。
RT技术突出的特点就是其显著的经济效益,它与传统的数控加工:模具方法相比,周期和费用都降低V10~1/3左右,见表5-l。
近年来,工业界对RT的研究开发投入了日益多的人力和资金,RT 的收益由此也获得了巨大增增长据SME统计,近年来RT服务的收益年增长率均高于RP系统销售。
5.1 快速模具的分类及基本工艺流程基于RP的快速模具制造方法一般分为直接法和间接法两大类。
直接制模法是直接采用RP技术制作模具,在RP技术诸方法中能够直接制作金属模具的是选择性激光烧结法(SLS 法)。
用这种方法制造的钢铜合金注塑模,寿命可达5万件以上。
但此法在烧结过程中,材料发生较大收缩巳不易控制,故难以快速得到高精度的模具。
目前,基于RP快速制造模具的方法多为间接制模法。
间接制模法指利用RP原型间接地翻制模具。
依据材质不同,间接制模法生产出来的模具一般分为软质模具(SOft Tooling)和硬质模具(Hard Tooling)两大类。
软质模具因其所使用的软质材料(如硅橡胶、环氧树脂等)有别于传统的钢质材料而得名,由于其制造成本低和制作周期短,因而在新产品开发过程中作为产品功能检测和投入市场试运行,以及国防、航空等领域单件、小批量产品的生产方面均受到高度重视,尤其适合于批量小、品种多、改型快的现代制造模式。
目前提出的软质模具制造方法主要有硅橡胶浇注这、金属喷涂法、树脂浇注法等。
软质模具生产制品的数量一般为50~5000件,对于上万件乃至几十万件的产品,仍然需要传统的钢质模具,硬质模具指的就是钢质模具。
快速原型制造技术在汽车工业中的应用教程快速原型制造技术,简称RP(Rapid Prototyping),是指通过一系列的数字化工艺,以实现快速制造复杂的三维实体模型。
它的应用范围非常广泛,而在汽车工业中更是发挥了重要的作用。
本文将介绍快速原型制造技术在汽车工业中的应用,并提供相应的教程。
一、快速原型制造技术在汽车外观设计中的应用1. 三维建模:在汽车外观设计中,首先需要进行三维建模,以便得到准确的汽车外观模型。
快速原型制造技术可以通过扫描和建模软件,快速将汽车设计师的概念转化为三维模型。
2. 快速成型:一旦得到三维模型,快速原型制造技术可以快速将其转化为实体模型。
通过3D打印等技术,可以在短时间内制造出逼真的汽车模型,供设计师和工程师进行评估和修改。
3. 外观修饰:制造好的汽车模型可能需要一些外观修饰,以使其更符合设计要求。
在快速原型制造技术中,可以使用各种加工技术,如打磨、喷漆等,对模型进行修饰,使其更加真实。
二、快速原型制造技术在汽车零部件制造中的应用1. 难以加工的零部件:有些汽车零部件由于形状复杂或材料特殊,传统的加工方式很难进行。
而快速原型制造技术可以通过打印机等设备,直接制造出所需的零部件,大大简化了制造过程。
2. 迭代设计:在汽车零部件设计中,常常需要进行多次迭代。
使用快速原型制造技术可以快速制造出新的零部件,供工程师进行测试和评估。
如有需要,还可以快速进行修正,以提高设计的准确性和效率。
3. 小批量生产:在汽车工业中,有时需要进行小批量的生产,以满足特定需求。
快速原型制造技术可以快速制造出所需的零部件,并且具有较高的精度和一致性,适用于小规模生产。
三、快速原型制造技术在汽车工程开发中的应用1. 汽车动力系统优化:利用快速原型制造技术,可以制造出各种不同的动力系统组件,并通过测试和比较,找到最优方案。
这有助于提高汽车的燃油效率和性能。
2. 安全性能测试:汽车的安全性能至关重要。
使用快速原型制造技术可以制造出模拟碰撞等测试所需的零部件,并进行安全性能测试。
立式加工中心X、Y方向进给系统以及床身的设计1 引言1.1 快速成型技术的产生和发展1.1.1快速成型(RP)技术简介快速原型制造技术,又叫快速成型技术,英文:RAPID PROTOTYPING(简称RP技术),RAPID PROTOTYPING MANUFACTURING,简称RPM。
快速成型(RP)技术是在90年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。
它于20世纪80年代后期产生于美国,很快扩展到日本及欧洲,比喻20世纪90年代初期引进我国,是近20年来制造技术领域的一项重大突破,并由此产生一个新兴的技术领域。
它借助计算机、激光、精密传动、数控技术等现代手段,将CAD和CAM技术、数控技术、材料科学、机械工程、电子技术及激光技术的技术集成以实现从零件到三维实体原型制造一体化的系统技术。
它是一种基于离散堆积成型思想的新型成型技术,是又CAD 模型直接驱动的快速完成任意复杂形状三维实体零件制造的技术的总称。
快速成形(Rapid Prototyping, RP)技术基于离散/堆积原理,采用多种直写(Direct Writing)技术控制单元材料状态,将传统上相互独立的材料制备和材料成形过程合,建立了零件成形信息及材料功能信息数字化到物理实现数字化之间的直接映射,实现了从材料和零件的设计思想到物理时间的一体化[1]。
进入 21 世纪以来,间接快速制模技术成为 RP 最重要的应用领域;生物活性材料快速成形成为 RP 研究中一个新的热点,快速成形的生物材料进入细胞和大分子层次;RP 技术的研究重点逐步转移到快速制造(Rapid Manufacturing),主要是直接金属件的制造,快速成形技术的概念也由快速原型向快速制造转化[2]。
而基于喷射技术的熔融沉积成型(Fused Deposition Modeling,FDM)正是当前最活跃使用最广泛的 RP 技术之一。
快速成型技术快速成型技术简介快速成型技术(Rapid Prototyping Technology-RPT)属于先进制造技术范畴机械工程学科非传统加工工艺(或称为特种加工)是将CAD、CAM、、激光、精密伺服驱动和新材料等先进技术集成的一种全新制造技术。
它通过叠加成型方法可以自动而迅速地将设计的三维CAD模型转化为具有一定结构和功能的原型或直接制造零件。
与传统的制造方法相比,它具有生产周期短,成本低的优势,并且可以灵活地改变设计方案,实现柔性生产,在新产品的开发中具有广阔的应用前景。
目前世界上投入应用的快速成形的方法有十多种,主要包括立体印刷(SLA-StereoLithgraphy Apparatus)、分层实体制造(LOM-Laminated obxxxxject Manufacturing)、选择性激光烧结(SLS—Selective Laser Sintering)、熔化沉积制造(FDM-Fused Deposition Modeling)、固基光敏液相(SGC-Solid Ground Curing)等方法。
其中选择性激光烧结(SLS)技术具有成型材料选择范围宽、应用领域广的突出优点,得到了迅速发展,正受到越来越多的重视。
SLS方法具有以下的优点:由于粉末具有自支撑作用,不需另外支撑;材料广泛,不仅包括各种塑料材料、蜡和覆膜砂,还可以直接生产金属和陶瓷零件。
且材料可重复使用,利用率高。
快速成型技术工作原理使用CO2 激光器烧结粉末材料(如蜡粉、PS粉、ABS粉、尼龙粉、覆膜陶瓷和金属粉等)。
成型时先在工作台上铺上一层粉末材料激光束在计算机的控制下按照截面轮廓的信息对制件实心部分所在的粉末进行烧结。
一层完成后工作台下降一个层厚再进行下一层的铺粉烧结。
如此循环,最终形成三维产品。
快速成型技术应用选择性激光烧结快速成型(Selective Laser Sintering Rapid Prototyping) 技术(简称SLS技术)由于具有成型材料选择范围宽、应用领域广的突出优点,得到了迅速的发展,正受到越来越多的重视。
第三节快速成型一、快速成型技术简介快速成型技术是快速制造的核心,能在几小时或几十小时内直接从CAD三维实体模型制作出原型,比图纸和计算机屏幕提供了一个信息更丰富、更直观的实体。
快速原型制造是一种离散/堆积的加工技术,其基本过程是首先将零件的三维实体沿某一坐标轴进行分层处理,得到每层截面的一系列二维截面数据,按特定的成型方法(LOM、SLS、FDM、SLA 等)每次只加工一个截面,然后自动叠加一层成形材料,这一过程反复进行直到所有的截面加工完毕生成三维实体原型。
快速自动成型(Rapid Prototyping)技术是近年来发展起来的直接根据CAD模型快速生产样件或零件的成组技术总称,它集成了CAD技术、数控技术。
激光技术和材料技术等现代科技成果:是先进制造技术的重要组成部分。
与传统制造方法不同,快速成型从零件的CAD 几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。
由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。
快速自动成型技术问世不到十年,已实现了相当大的市场,发展非常迅速。
与数控加工、铸造、金属冷喷涂、硅胶模等制造手段一起,快速自动成型已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。
快速成型的过程是首先生成一个产品的三维CAD实体模型或曲面模型文件,将其转换成STL文件格式,再用一软件从STL文件"切"(Slice)出设定厚度的一系列的片层,或者直接从CAD文件切出一系列的片层,这些片层按次序累积起来仍是所设计零件的形状。
然后,将上述每一片层的资料传到快速自动成型机中去,类似于计算机向打印机传递打印信息,用材料添加法依次将每一层做出来并同时连结各层,直到完成整个零件。
因此,快速自动成型可定义为一种将计算机中储存的任意三维型体信息通过材料逐层添加法直接制造出来。
3D打印和快速原型制造近年来,3D打印技术在制造业领域迅速发展,成为快速原型制造的重要工具。
3D打印技术通过将数字模型转化为实体物体,实现了创新设计和快速制造的双重目标。
本文将探讨3D打印技术在快速原型制造中的应用和影响。
1. 3D打印技术概述3D打印技术,又称为增材制造(Additive Manufacturing),是一种通过逐层堆叠材料来制造物体的工艺。
它与传统的减材制造(Subtractive Manufacturing)相比,不需要切削或磨削材料,因此也被称为快速成型技术。
2. 3D打印在快速原型制造中的应用2.1 原型制造传统的原型制造需要通过手工或传统的数控加工方式进行制造,成本高且周期长。
而使用3D打印技术可以快速制造出各种复杂形状的原型,大大加快了开发和验证的速度。
2.2 制造业设计在产品设计阶段,3D打印技术可以帮助设计师实现更加自由和灵活的创意。
通过使用3D打印机,设计师可以将纸上的设计直接转化为实体模型,快速验证设计的可行性和效果。
2.3 具体应用举例除了常见的原型制造和产品设计外,3D打印技术还广泛应用于各个领域。
它被用于制造飞机零件、医疗器械、汽车零件等。
在医疗行业,3D打印技术甚至可以用于制造人体器官和组织,为医学研究和手术实践提供了更多可能性。
3. 3D打印技术对制造业的影响3.1 加速制造周期3D打印技术可以大幅缩短产品的制造周期,从而减少了开发和生产过程中的时间压力。
这对于企业来说尤为重要,因为它们可以更快地推出新产品,满足市场需求并保持竞争力。
3.2 减少成本与传统制造方法相比,3D打印技术减少了许多加工步骤和浪费材料的情况。
因为它是逐层堆叠材料,而不是从原材料中减去部分制作而成。
这不仅降低了成本,还减少了对环境的影响。
3.3 提高产品设计灵活性传统制造方式通常受到成本和技术的限制,产品形状和结构受到很大限制。
而3D打印技术可以制造任何形状和结构的产品,提供更大的设计灵活性。
快速成型技术的特点和应用是什么快速成形制造技术是目前国际上成型工艺中备受关注的焦点。
铸造作为一项传统的工艺,制造成本低、工艺灵活性大,可以获得复杂形状和大型的铸件。
充分发挥两者的特点和优势,可以在新产品试制中取得客观的经济效益。
快速成形制造技术又称为快速原型制造技术(RapidPrototypingManufacturing,简称RPM),是一项高科技成果。
它包括SLS、SLA、SLM等成型方法,集成了CAD技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。
与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件,所以又称为材料添加制造法(MaterialAdditiveManufacturing或MaterialIncreaseManufacturing)。
由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下几乎能够生成任意复杂形状的零部件,极大地提高了生产效率和制造柔性。
与数控加工、铸造、金属冷喷涂、硅胶模等制造手段一起,快速自动成型已成为现代模型、模具和零件制造的强有力手段,是目前适合我国国情的实现金属零件的单件或小批量敏捷制造的有效方法,在航空航天、汽车摩托车、家电等领域得到了广泛应用。
快速成型技术能够快捷地提供精密铸造所需的蜡模或可消失熔模以及用于砂型铸造的木模或砂模,解决了传统铸造中蜡模或木模等制备周期长、投入大和难以制作曲面等复杂构件的难题。
而精密铸造技术(包括石膏型铸造)和砂型铸造技术,在我国是非常成熟的技术,这两种技术的有机结合,实现了生产的低成本和高效益,达到了快速制造的目的。
RPM技术的特点快速成型的过程是首先生成一个产品的三维CAD实体模型或曲面模型文件,将其转换成特定的文件格式,再用相应的软件从文件中“切”出设定厚度的一系列片层,或者直接从CAD文件切出一系列的片层。
几种常见的快速成型技术一、FDM丝状材料选择性熔覆(FusedDeposi tionModeli ng)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。
丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。
热塑性丝状材料(如直径为1.78mm的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。
一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。
这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。
这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。
但仍需对整个截面进行扫描涂覆,成型时间长。
适合于产品设计的概念建模以及产品的形状及功能测试。
由于甲基丙烯酸ABS(MABS)材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。
但成型精度相对较低,不适合于制作结构过分复杂的零件。
FDM快速原型技术的优点是:1、制造系统可用于办公环境,没有毒气或化学物质的危险。
2、工艺干净、简单、易于材作且不产生垃圾。
3、可快速构建瓶状或中空零件。
4、原材料以卷轴丝的形式提供,易于搬运和快速更换。
5、原材料费用低,一般零件均低于20美元。
6、可选用多种材料,如可染色的A BS和医用ABS、PC、PPSF等。
FDM快速原型技术的缺点是:1、精度相对国外SLA工艺较低,最高精度0.127mm。
2、速度较慢。
二、SLA光敏树脂选择性固化是采用立体雕刻(Stereo litho graph y)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。