2CW56硅稳压二极管伏安特性曲线
- 格式:doc
- 大小:629.00 KB
- 文档页数:9
关的反向饱和电流I0。
当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。
2、二极管的类型二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。
根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。
按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。
点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。
由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。
面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。
平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。
3、二极管的导电特性二极管最重要的特性就是单方向导电性。
在电路中,电流只能从二极管的正极流入,负极流出。
下面通过简单的实验说明二极管的正向特性和反向特性。
(1)正向特性在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。
必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。
只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。
导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。
(2)反向特性在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。
二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。
2CW56稳压二极管的伏安特性研究论文姓名: 班级:学号:摘要:稳压二极管(又叫齐纳二极管),此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很小的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性见图1,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压稳压二极管的稳压原理稳压二极管的特点就是击穿后,其两端的电压基本保持不变。
这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。
稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管。
论述:稳压二极管伏安特性稳压管也是一种晶体二极管,它是利用PN结的击穿区具有稳定电压的特性来工作的。
稳压管在稳压设备和一些电子电路中获得广泛的应用。
我们把这种类型的二极管称为稳压管,以区别用在整流、检波和其他单向导电场合的二极管。
如图画出了稳压管的伏安特性及其符号。
稳压管的主要参数如下:(1)稳定电压Uz Uz就是PN结的击穿电压,它随工作电流和温度的不同而略有变化。
对于同一型号的稳压管来说,稳压值有一定的离散性。
(2)稳定电流Iz 稳压管工作时的参考电流值。
它通常有一定的范围,即Izmin——Izmax(3)动态电阻rz 它是稳压管两端电压变化与电流变化的比值,如上图所示,即这个数值随工作电流的不同而改变。
通常工作电流越大,动态电阻越小,稳压性能越好。
下图示出了稳压管工作时的动态等效电路,图中二极管为理想二极管。
(4)电压温度系数它是用来说明稳定电压值受温度变化影响的系数。
不同型号的稳压管有不同的稳定电压的温度系数,且有正负之分。
稳压值低于4v的稳压管,稳定电压的温度系数为负值;稳压值高于6v的稳压管,其稳定电压的温度系数为正值;介于4V和6V之间的,可能为正,也可能为负。
XXXXXX大学物理设计性实验测定稳压二极管的伏安特性曲线设计报告姓名:XX学号:2009XXXX专业:XXXXX班级:XXXX学院:XXXXXX指导老师:XXX2010年12月9日一、题目选择电路中二极管的应用比比皆是,有整流二极管、开关元件、限幅元件、继流二极管、变容二极管、稳压二极管等多种类型。
为了进一步了解二极管的工作原理,首先要了解它们的伏安特性曲线。
本实验通过对二极管伏安特性曲线的测定,了解二极管的单向导电性的实质。
二、实验原理1、原理及基础知识二极管是常见的非线性元件,其伏安特性曲线如图所示:当对二极管加上正向偏置电压,则有正向电流流过二极管,且随正向偏置电压的增大而增大。
开始电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压,电流明显变化。
在导通后,电压变化少许,电流就会急剧变化。
当加反向偏置电压时,二极管处于截止状态,但不是完全没有电流,而是有很小的反向电流。
该反向电流随反向偏置电压增加得很慢,但当反向偏置电压增至该二极管的击穿电压时,电流剧增,二极管PN结被反向击穿。
2、通过对二极管不同电压下电流的测定,得出一系列电压和电流的数值,在坐标纸上作出U-I曲线,从而得出二极管的伏安特性曲线,进一步形象的认识二极管的单向导电性。
由此分析可知,能够达到精度、范围、功能的要求。
3、可行性分析运用所学过的电学实验的基础知识(电桥法测电阻、伏安法测电阻等),采用实验室已有的电学实验元器件(直流电源、电压表、电流表、滑线变阻器等),设计出一个测定二极管伏安特性曲线的电路。
通过对实验电路的控制,得出一系列电压和电流值,从而绘制二极管的伏安特性曲线。
三、方案设计测定非线性电阻可采用伏安法、电桥法、电势差计法、非平衡电桥法等,现对伏安法、非平衡电桥法进行介绍,进行比较之后选用一种合适的方法来测定二级管的伏安特性曲线。
1、 伏安法伏安法测二极管的伏安特性曲线,测量电路图如图所示:图(a )是测定二极管正向导通状态的伏安特性曲线的电路。
硅稳压二极管的伏安特性曲线和稳压电路硅稳压管利用特别工艺制成具有稳压作用的特别二极管。
形状与一般二极管基本相同,电路符号有所差别,文字符号用V表示。
硅稳压二极管的伏安特性曲线如图所示,由曲线可以看出:(1)硅稳压二极管的正向特性与一般二极管相同。
(2)反向特性曲线比一般二极管陡峭。
在反向电压较小时,管子只有极微的反向电流。
当反向电流达到某一数值Uw时,管子突然导通,电压即使增加很少也会引起较大电流。
这种现象叫“击穿”,Uw叫击穿电压(即稳压管的稳定电压)。
在反向击穿区,稳压管的电流在很大范围内变化,Uw却基本不变(见曲线AB段),这就是稳压管的稳压作用。
由于稳压管是工作在反向击穿状态,所以接到电路中时应当反接(见图),即稳压管的正极应接被稳定电压的负极;稳压管的负极应接被稳定电压的正极。
假如稳压管的极性接反,不能起到稳压作用,此时稳压管两端的正向电压约为0.7V。
硅稳压管稳压电路如图所示。
图中Ui是需要稳定的直流电压,R是限流电阻,RL是负载电阻。
电路的工作过程如下。
(1)设负载电阻RL固定不变。
当输入电压Ui上升时,流过稳压管的电流将增加,流过限流电阻R的电流也相应地增加,则输出电压(也就是负载两端的电压)U0=Ui - UR就能保持不变。
同理,若输入电压减小,限流电阻上的电压也相应削减,从而保证负载两端的电压仍旧稳定。
(2)设输入电压Ui不变。
当负载电阻削减而使负载电流增加、限流电阻上的压降增大时,输出电压将下降。
但输出电压稍有下降,就会引起流过稳压管的电流下降,从而抵消了负载电流变化在限流电阻上造成的电压变化,保证了输出电压的稳定。
同理,当负载电阻增大时,由于稳压管的稳压作用,也能保证输出电压稳定。
可见,除稳压管起稳压作用外,限流电阻不仅有限流作用,也有调压作用,与稳压管协作共同稳定输出电压。
二极管伏安特性曲线实验报告二极管伏安特性曲线实验报告引言:二极管是一种常见的电子元件,它具有非线性的伏安特性。
通过研究二极管的伏安特性曲线,可以更好地理解二极管的工作原理和特性。
本实验旨在通过实验测量,绘制二极管的伏安特性曲线,并分析其特点和应用。
实验过程:1. 实验器材准备:本实验所需的器材有:二极管、直流电源、电阻、万用表、导线等。
2. 实验步骤:(1)将二极管连接到电路中,注意极性的正确连接。
(2)将直流电源接入电路,调节电压为适当的范围,如0-10V。
(3)通过万用表测量电压和电流的数值,并记录下来。
(4)调节直流电源的电压,重复步骤(3),得到不同电压下的电流数值。
(5)根据测量数据,绘制二极管的伏安特性曲线。
实验结果:根据实验测量的数据,我们得到了二极管的伏安特性曲线。
在实验中,我们发现了以下几个重要的特点:1. 正向特性:当二极管的正向电压增加时,电流呈指数增长。
这是因为在正向电压作用下,二极管的P区域和N区域之间的势垒逐渐减小,导致电子和空穴的扩散增加,形成电流。
当正向电压超过二极管的导通电压时,电流急剧增加,二极管进入导通状态。
2. 反向特性:当二极管的反向电压增加时,电流基本保持为零,直到达到反向击穿电压。
反向击穿电压是指当反向电压达到一定程度时,势垒电场足以使电子和空穴发生碰撞,形成电流。
在反向击穿电压下,二极管的电流急剧增加,导致二极管受损。
3. 饱和电流和饱和电压:在正向特性中,当二极管的正向电压继续增大时,电流并不会无限增加,而是趋于饱和。
饱和电流是指当正向电压增大到一定程度时,二极管的电流达到最大值并趋于稳定。
饱和电压是指在饱和状态下,二极管的电压维持在一个相对稳定的值。
实验分析:通过实验测量得到的二极管的伏安特性曲线,我们可以进一步分析其特点和应用。
1. 整流器:二极管的正向特性使其成为一种理想的整流器。
在交流电路中,通过使用二极管,可以将交流电信号转换为直流电信号。
实验六非线性伏安特性曲线的研究【实验目的】1、熟悉电学基本仪器使用方法,电路的连接,仪器的选择;2、通过电阻元件、半导体二极管、钨丝灯泡等电学元件的伏安特性测量。
学会合理配接电压表和电流表,才能使测量误差最小,初步学习实验方案设计。
3、掌握电子元件非线性特点,熟悉掌握电子元件伏安特性的测试技巧;4、学会用作图法处理实验数据。
【实验仪器】DH6102型伏安特性实验仪【实验原理】当一个元件两端加上电压,元件内有电流通过时,若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,这类元件称为线性元件。
若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。
(a) 内接法 (b) 外接法图3-6-2 测电阻的线路但是,由于电表有内阻,无论采用内接法还是外接法,均会给测量带来系统误差。
当R >V A R R 时,用内接法系统误差小。
当R <V A R R 时,用外接法系统误差小。
当R=V A R R 时,两种接法可任意选用。
因此,通常只在对电阻值的测量精确度要求不高时,才使用伏安法,并且还要根据电表的内阻R A 、R V 和待测电阻值的大小来合理选择测量线路。
测定元件的伏安特性曲线与测量元件的电阻一样,也存在着用电流表内接还是外接的问题,我们也应根据待测元件电阻的大小,适当地选择电表和接法,减小系统误差,使测出的伏安特性曲线尽可能符合实际。
1、半导体二极管半导体二极管是一种常用的非线性元件,由P 型、N 型半导体材料制成PN 结,经欧姆接触引出电极,封装而成。
在电路中用图3-6-3(a)符号表示,两个电极分别为正极、负极。
二极管的主要特点是单向导电性,其伏安特性曲线如图3-6-3(b)所示,其特点是:在正向电流和反向电压较小时,电流较小,当正向电压加大到某一数值U D 时,正向电流明显增大,将此段直线反向延长与横轴向交,交点U D 称为正向导通阈值电压。
8.11电路元件的伏安特性的测绘及电源外特性的测量[实验要求]1、测量给定电阻的阻值R X,要求△R X/R X≤1.5%从给定的电阻中任选二个电阻,可用电流表内接、外接、补偿、替代等方法进行测量,并给出测量结果2、测量非线性电阻的伏安特性研究要求从给定的白炽灯泡、稳压二极管、光电二极管、发光二极管、整流二极管中任选二个元件,进行测量。
并用实验曲线给出实验结果。
3、测量直流电压源的伏安特性测量给定电源(干电池、直流稳压电源)的内阻、电动势及最大输出功率,用曲线或图表反映实验结果。
[实验器材]1、DH-SJ型物理设计性实验装置2、待测电阻3、白炽灯泡、稳压二极管、光电二极管、发光二极管、整流二极管附电路元件的伏安特性的测绘及电源外特性的测量参考资料一、实验目的1、学习测量线性和非线性电阻元件伏安特性的方法,并绘制其特性曲线2、学习测量电源外特性的方法3、掌握运用伏安法判定电阻元件类型的方法4、学习使用直流电压表、电流表,掌握电压、电流的测量方法三、实验原理与说明1、电阻元件(1) 伏安特性二端电阻元件的伏安特性是指元件的端电压与通过该元件电流之间的函数关系。
通过一定的测量电路,用电压表、电流表可测定电阻元件的伏安特性,由测得的伏安特性可了解该元件的性质。
通过测量得到元件伏安特性的方法称为伏安测量法(简称伏安法)。
把电阻元件上的电压取为纵(或横)坐标,电流取为横(或纵)坐标,根据测量所得数据,画出电压和电流的关系曲线,称为该电阻元件的伏安特性曲线。
(2) 线性电阻元件线性电阻元件的伏安特性满足欧姆定律。
在关联参考方向下,可表示为:U=IR,其中R为常量,称为电阻的阻值,它不随其电压或电流改变而改变,其伏安特性曲线是一条过坐标原点的直线,具有双向性。
如图1-1(a)所示。
(3) 非线性电阻元件非线性电阻元件不遵循欧姆定律,它的阻值R随着其电压或电流的改变而改变,就是说它不是一个常量,其伏安特性是一条过坐标原点的曲线,如图1-1(b)所示。
DH-SJ1物理设计性实验装置基本电学实验(实验指导书)请勿带走说明书杭州大华科教仪器研究所杭州大华仪器制造有限公司目录使用说明 (2)实验一电路元件伏安特性的测绘及电源外特性的测量 (5)选做实验1 二极管伏安特性曲线的研究 (12)选做实验2 稳压二极管反向伏安特性实验 (14)附录1 电压表电流表内接和外接对测量元件伏安特性的影响 (16)实验二RLC电路特性的研究 (18)实验三整流、滤波和稳压电路 (30)实验四电表改装 (35)附录2 DH4508 电表改装与校准实验讲义 (40)实验五电路混沌效应 (46)DH-SJ1 物理设计性实验装置使用说明在主体九孔板上,通过接插件式的透明元器件相互连接,从而完成多个功能的物理实验。
本实验装置的目的是为了提高学生实际动手能力和实验设计能力,为大专院校组建开放式物理实验室提供支持。
实验元件主要包括电阻、电容、电感、二极管、可调电阻、可调电容、可调电感、微安表头、开关、连接线等等。
可做的实验有:电路元件伏安特性的测绘电源外特性的测量RLC元件的阻抗特性和谐振电路(稳态特性)RLC元件的一阶和二阶暂态特性整流滤波电路稳压电路电表改装混沌效应可自行搭建和拓展相关的实验:如基尔霍夫定律验证和电位的测定、电桥法测量定值电阻等。
装置配有完整的实验讲义,供指导老师进行参考。
除基本元件外,实验还需要配备:低频功率信号源DH-WG1、直流恒压源恒流源DH-VC1、4位半数字万用表、示波器等。
用户可以自备或向厂家询购。
实验一电路元件伏安特性的测绘及电源外特性的测量一、实验目的1、学习测量线性和非线性电阻元件伏安特性的方法,并绘制其特性曲线2、学习测量电源外特性的方法3、掌握运用伏安法判定电阻元件类型的方法4、学习使用直流电压表、电流表,掌握电压、电流的测量方法二、实验设备名称数量型号1、直流恒压源恒流源1台自备2、数字万用表2台自备3、电阻11只1Ω×1 5.1Ω×110Ω×120Ω×1 47Ω×2100Ω×2200Ω×1 1kΩ×1 3kΩ×14、白炽灯泡1只12V/3W5、灯座1只M=9.3mm6、稳压二极管1只2CW567、电位器1只470 /2W8、短接桥和连接导线若干SJ-009和SJ-3019、九孔插件方板1块SJ-010三、实验原理与说明1、电阻元件(1) 伏安特性二端电阻元件的伏安特性是指元件的端电压与通过该元件电流之间的函数关系。
一、名称:二极管伏安特性曲线的测绘二、目的:依据二极管非线性电阻元件的特点,选择实验方案,设计合适的检测电路,选择配套的仪器,测绘出二极管元件的伏安特性曲线。
三、仪器:μ)、万用表、电阻箱、滑直流稳压电源、直流电流表、直流微安表(500A线电阻、单刀开关、导线、待测二极管等。
四、原理:对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时(锗管为0.2V左右,硅管为0.7V左右),电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。
对上述二种器件施加反向偏置电压时,二极管处于截止状态,其反向电压增加至该二极管的击穿电压时,电流猛增,二极管被击穿,在二极管使用中应竭力避免出现击穿观察,这很容易造成二极管的永久性损坏。
所以在做二极管反向特性时,应串联接入限流电阻,以防因电流过大而损坏二极管。
二极管伏安特性示意图如图:五、步骤:(1)反向特性测试电路。
二极管的反向电阻值很大,采用电流表内接测试电路可以减少测量误差。
测试电路见图,变阻器设置700Ω。
(2)正向特性测试电路。
二极管在正向导通时,呈现的电阻值较小,拟采用电流表外接测试电路,电源电压在0~10V内调节,变阻器开始设置700Ω,调节电源电压,以得到所需电流值。
图2-3 二极管反向特性测试电路 图2-4 二极管正向特性测试电路六、数据:反向伏安曲线测试数据表()U VμI A()电阻计算值()KΩ正向伏安曲线测试数据表正向伏安曲线测试数据 ()I mA U V ()电阻计算值()KΩ电阻修正值()Ω七、数据处理:电阻修正值电流表外接修正公式:6(10)V VU R R U I R ==Ω-反向伏安曲线正向伏安曲线。
实验原理
1、稳压二极管伏安特性描述
2CW56属硅半导体稳压二极管,其正向伏安特性类似于1N4007型二极管,其反向特性变化甚大。
当2CW56二端电压反向偏置,其电阻值很大,反向电流极小,据手册资料称其值≤0.5A μ。
随着反向偏置电压的进一步增加,大约到7-8.8V 时,出现了反向击穿(有意参杂而成),产生雪崩效应,其电流迅速增加,电压稍许变化,将引起电流巨大变化。
只要在线路中,对“雪崩”产生的电流进行有效的限流措施,其电流有小许一些变化,二极管二端电压仍然是稳定的(变化很小)。
这就是稳压二极管的使用基础,其应用电路见图3-1。
图中,E —供电电源,如果二极管稳压值为7~8.8V ,则要求E 为10V 左右;R —限流电阻,2CW56,工作电流选择8mA ,考虑负载电流2 mA , 通过R 的电流为10 mA ,计算R 值: R=I Vz E -=01.08
10-=200Ω
C —电解电容,对稳压二极管产生的噪声进行平滑滤波。
V Z —稳压输出电压。
图3-1 稳压二极管应用电路
2、实验设计
图3-2 稳压二极管反向伏安特性测试电路
1)2CW56反向偏置0~7V左右时阻抗很大,拟采用电流表接测试电路为宜;反向偏置电压进入击穿段,稳压二极管阻较小(估计为R=8/0.008=1KΩ),这时拟采用电流表外接测试电路。
结合图3-1,测试电路图见图3-2。
实验过程
电源电压调至零,按图3-2接线,开始按电流表接法,将电压表+端接于电流表+端;变阻器旋到1100Ω后,慢慢增加电源电压,记下电压表对应数据。
当观察到电流开始增加,并有迅速加快表现时,说明2CW56已开始进入反向击穿过程,这时将电流表改为外接式,按表3-1继续慢慢地将电源电压增加至10V。
为了继续增加2CW56工作电流,可以逐步地减少变阻器电阻,为了得到整数电流值,可以辅助微调电源电压。
数据记录
图表
六、实验总结
当稳压二极管尚未反向击穿时其反向电阻很大,使用电流表接法,电流表的阻相对于稳压二极管而言,压降很小,可以忽略。
当稳压二极管反向击穿后其反向电阻很小,使用电流表外接法,电压表相对于稳压二极管而言,分流很小,可以忽略。
总之,二极管正向导通时电阻值很小,采用电流表外接法测试电路产生的误差较小,二极管反向导通时电阻值很大,采用电流表接法测试电路产生的误差较小。
:春明
学号:20150679
实验时间:17周周五7、8节。