第三章 模具的疲劳失效
- 格式:ppt
- 大小:1.37 MB
- 文档页数:87
归纳热作模具的工作条件及失效形式一、工作条件1. 温度要求:热作模具的工作温度是一个非常重要的参数。
一般情况下,热作模具的工作温度要求会比一般模具的工作温度高出许多,因为热作模具通常是在高温条件下工作的。
在高温条件下,材料的热膨胀系数大,使得模具在工作时的热胀冷缩变形及应力明显增大。
2. 应力要求:热作模具在工作过程中还会受到很大的应力,而这个应力可能会导致模具的失效。
热作模具需要具有很高的抗热疲劳性能和抗热变形能力。
3. 温度均匀性要求:热作模具需要具有很高的温度均匀性。
如果温度均匀性不好,会导致材料的热胀不均匀,最终造成模具的失效。
二、失效形式1. 疲劳失效:在高温条件下,模具长期受到热载荷的作用,容易导致热疲劳,从而产生裂纹、变形等失效形式。
2. 磨损失效:热作模具在高温条件下工作时,材料表面容易受到氧化、腐蚀的影响,导致磨损失效。
3. 变形失效:高温条件下,模具材料的热胀冷缩变形会更加显著,容易导致模具的变形失效。
4. 剥离失效:热作模具在工作时,因热胀冷缩和热应力的作用,容易使模具镀层和基体发生剥离现象,从而引起失效。
三、个人观点和理解热作模具的工作条件和失效形式是一个非常复杂的问题,需要综合考虑材料性能、工艺要求、环境条件等多方面因素。
在实际工作中,需要通过不断的实践和探索,结合先进的材料和加工工艺,来不断提高热作模具的工作性能和寿命。
也需要加强对热作模具的监测和维护工作,及时发现和处理可能导致失效的问题,最大限度地延长热作模具的使用寿命。
结语热作模具的工作条件及失效形式是一个值得深入探讨的话题,在实际工作中需要我们多方面考虑,并结合自身实际情况,不断提高热作模具的使用寿命和工作效率。
希望通过本文的共享,能够对热作模具的工作条件及失效形式有更深入的理解和认识。
热作模具是在高温条件下进行加工和成形的模具,因此其工作条件和失效形式都与高温相关。
在实际工作中,热作模具通常需要经历高温、高应力、高热胀冷缩变形等多重挑战,这就对热作模具的材料选择、工艺要求和维护保养提出了更高的要求。
模具失效及解决方法实例一、引言模具是工业生产中必不可少的工具,它能够成型出各种形状和尺寸的产品。
然而,模具在使用过程中会受到各种因素的影响,导致失效。
模具失效不仅会影响生产效率,增加生产成本,还会影响产品的质量。
因此,了解模具失效的原因和解决方法非常重要。
本文将介绍模具失效的类型、原因以及一些常见的解决方法实例。
二、模具失效类型1. 磨损:模具在使用过程中,其工作表面会与材料不断接触,导致工作表面磨损。
2. 腐蚀:模具受到化学或电化学作用,导致腐蚀损坏。
3. 塑性变形:材料在模具内塑性变形,导致模具变形。
4. 热疲劳:模具在工作过程中频繁冷热交替,导致热疲劳损坏。
5. 裂纹扩展:由于制造、使用过程中产生的裂纹在交变应力作用下扩展导致破坏。
三、模具失效原因1. 操作不当:如超负荷生产、材料硬度过高、材料中有杂质等都会导致模具过早磨损或腐蚀。
2. 维护不当:润滑不足、冷却系统不良等都会导致模具过热或腐蚀。
3. 材料问题:模具材料的选择不当,如硬度、耐腐蚀性、耐磨性等都会影响模具的使用寿命。
4. 制造问题:制造过程中的缺陷,如铸造缺陷、热处理不当等都会导致模具产生裂纹或塑性变形。
四、解决方法实例1. 磨损修复:对于磨损的模具,可以采用堆焊、喷涂等方法进行修复。
例如,对于磨损的凸轮表面,可以采用堆焊的方式进行修复,选择耐磨性好、焊前流动性好的合金堆焊焊条。
在修复过程中,需要注意控制热输入,避免热影响扩大。
同时,对于一些磨损严重的模具,还可以采用喷涂的方法进行修复,选择耐磨性好、耐腐蚀的涂层材料,如金属陶瓷、镍基涂层等。
2. 腐蚀防护:对于腐蚀的模具,可以采用镀层、表面处理等方法进行防护。
例如,对于受腐蚀的模具钢表面,可以采用镀铬或镀锌等防腐方法进行防护。
此外,还可以采用表面处理的方法提高模具表面的抗腐蚀性能,如采用氧化处理、磷化处理等。
3. 温度控制:对于塑性变形的模具,可以通过调整生产工艺、选择合适的材料等方法来降低模具工作时的温度。
模具失效的基本概念及失效主要形式模具失效的基本概念:众所周知,模具在服役时,在其不同部位,承受着不同的作用力。
一个副模具在服役过程中,可能同时或先后出现多种损伤形式。
大多数模具出现损伤后不会立即丧失服役能力,仅在其中之一种损伤发展到足以妨碍模具的正常工作或是生产出废品时,此模具才停止服役。
因此,所谓失效形式,就是使模具丧失服役能力的某些损伤形式。
冷、热模具在服役中失效的基本形式有五种:塑性变形、磨损、疲劳、冷热疲劳、断裂及开裂。
东莞弘超研究表明,模具在工作过程中有可能同时出现多种损坏形式,各种损伤之间又相互渗透、相互促进、各自发展,而当某种损坏的发展导致模具失去正常功能,则模具失效。
其中除冷热疲劳主要出现在热作模具外,其他四种失效形式,在冷作或热作模具上,均可能出现。
失效分析的目的:失效分析是指分析失效原因,研究和采取补救措施和预防措施的技术与管理活动,再反馈于生产,因而是质量管理的一个重要环节(下图为压铸模具热龟裂的表现图)。
失效分析的目的是寻找材料及其构件失效的原因,从而避免和防止类似事故的发生,并提出预防或延迟失效的措施。
失效分析工作在材料的正确选择和使用,新材料、新工艺、新技术的发展,产品设、制造技术的改进,材料及零件质量检查、验收标准的制定、改进设备的操作与维护,促进设备监控技术的发展等方面均起重要作用。
金属材料失效分析涉及的学科和技术种类极为广泛。
学科包括金属材料、金属学、冶金学、金属工艺学、金属焊接、材料力学、断裂力学、金属物理、摩擦学、金属的腐蚀与保护等。
试验分析技术包括金相、化学成分、力学性能、电子显微断口、X射线相结构等。
失效形式一:塑性变形当模具承受的负荷超过模具钢材的屈服强度时,模具会产生塑性变形。
东莞市弘超模具科技有限公司根据实践总结,图例解读模具的塑性变形概念和原理。
例如:凹模在服役中出现的型腔、型孔胀大,棱角倒塌以及冲头在服役中出现冲头镦粗、纵向弯曲等,尤其是热模具,模具的工作面与高温的坯料接触,使型腔表面温度往往超过热作模具钢的回火温度,型槽内壁由于软化而被压塌或压堆,使型槽尺寸变样,失去其尺寸和形状的精度而失效。
模具的失效原因
模具的失效原因主要包括以下几个方面:
1. 疲劳失效:长时间的使用,模具会产生疲劳,导致材料的疲劳裂纹扩展,最终引起模具的失效。
2. 磨损失效:模具在使用过程中,由于摩擦和冲击力的作用,会导致模具表面的材料磨损,从而引起模具的失效。
3. 腐蚀失效:模具被腐蚀会导致表面材料的损耗,特别是在化学腐蚀环境中,如酸碱溶液中使用的模具容易发生腐蚀失效。
4. 热失效:模具在高温环境下使用,容易导致材料的氧化、脆化、脱硫等现象,从而引起模具的失效。
5. 断裂失效:由于模具在使用过程中所受到的冲击力过大,或者模具本身存在缺陷等因素,可能导致模具发生断裂失效。
6. 热胀冷缩失效:模具在长时间的热循环中,由于温度变化引起的热胀冷缩,会导致模具材料的破裂,从而引起失效。
7. 其他因素:如设计缺陷、加工不良、装卸失误等因素也会导致模具的失效。
冲压模具的几种失效形式冲压模具是一种重要的工业制造工具,用于将金属材料进行冲压加工,制造出形状各异的零件和产品。
然而,在使用过程中,冲压模具也会出现一些失效的情况,影响其使用寿命和性能。
下面将介绍冲压模具的几种失效形式。
1.磨损失效:冲压模具在长期使用过程中,由于与金属材料间的摩擦和剪切作用,会导致表面的磨损。
磨损主要分为焊接磨损、因磨造粒子的挤压破坏和疲劳磨损等形式。
焊接磨损是指当冲压模具表面的微观凹陷与工件材料在接触时,由于高温和高压力的作用,两者之间产生金属结合现象,导致微小的表面局部泄漏。
而因磨造粒子的挤压破坏和疲劳磨损是由于金属材料不断受到冲击载荷作用,产生局部变形,进而导致表面的表面磨损。
2.疲劳失效:冲压模具在工作过程中会受到周期性的冲击载荷和应力作用,长期以往会导致模具的疲劳失效。
疲劳失效主要体现在冲压模具的裂纹扩展和断裂。
裂纹扩展是由于应力集中引起的,当模具受到重复应力作用时,裂纹会逐渐扩展,最终导致断裂。
3.变形失效:冲压模具在使用过程中,可能会由于应力过大或应力不均匀而发生变形。
主要表现为形状失真、尺寸变化、几何偏差等。
变形失效会造成冲压零件加工精度下降,进而影响产品的质量和使用寿命。
4.组织失效:冲压模具通常由高硬度的工具钢制成,经过多次冷却和加热工艺。
长期使用后,会因为孔隙、夹杂物的存在,使得模具材料的物理和化学性质发生变化,进而导致组织失效。
组织失效主要表现为晶粒长大、晶界透明化、应力应变的聚焦和软化等现象。
这些变化会导致模具材料的硬度和强度下降,从而影响模具的功能和寿命。
5.腐蚀失效:如果冲压模具在没有得到很好的防护措施的情况下长期暴露在潮湿环境中,模具材料可能被化学物质腐蚀。
腐蚀失效主要表现为表面的腐蚀、结构的疏松、氧化和变色等。
综上所述,冲压模具的失效形式主要包括磨损失效、疲劳失效、变形失效、组织失效和腐蚀失效等。
为了延长冲压模具的使用寿命和提高工作效率,需要采取合理的冷却和润滑措施,定期进行维护保养,以及选择适当的工具钢和热处理方式。