相似三角形判定及性质
- 格式:docx
- 大小:237.32 KB
- 文档页数:5
相似三角形的性质与判定讲义)-CAL-FENGHAI.-(YICAI)-Company One1相似三角形的性质与判定讲义【知识点拨】一、相似三角形性质(1)相似三角形对应角相等,对应边成比例.(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (3)相似三角形周长的比等于相似比.(4)相似三角形面积的比等于相似比的平方.(5)相似三角形性质可用来证明线段成比例、角相等,也可用来计算周长、边长等二、 相似三角形的等价关系(1)反身性:对于任一ABC ∆有ABC ∆∽ABC ∆.(2)对称性:若ABC ∆∽'''C B A ∆,则'''C B A ∆∽ABC ∆.(3)传递性:若ABC ∆∽C B A '∆'',且C B A '∆''∽C B A ''''''∆,则ABC ∆∽C B A ''''''∆. 三、三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法: (1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
三角形的相似性质与判定三角形作为几何学的基本概念之一,具有许多独特的性质和特点。
其中一个重要的性质就是相似性,它在实际应用中具有广泛的应用价值。
本文将重点讨论三角形的相似性质以及如何判定两个三角形是否相似。
一、相似三角形的定义在谈论相似性质之前,我们首先需要明确相似三角形的定义。
如果两个三角形的对应角度相等,并且对应边之间的比值相等,那么这两个三角形就是相似的。
具体来说,设有两个三角形ABC和DEF。
如果∠A=∠D,∠B=∠E,∠C=∠F,并且AB/DE = AC/DF = BC/EF,那么三角形ABC与三角形DEF是相似的。
二、相似三角形的性质相似三角形具有一系列独特的性质,下面我们将逐一介绍。
1. 边比例性质:如果两个三角形相似,那么它们的对应边之间的比值相等。
例如,在相似三角形ABC和DEF中,我们可以得到AB/DE =AC/DF = BC/EF这一等比例关系。
2. 角度比例性质:如果两个三角形相似,那么它们对应角度之间的比值也相等。
例如,在相似三角形ABC和DEF中,我们可以得到∠A/∠D =∠B/∠E = ∠C/∠F这一等比例关系。
3. 周长比例性质:如果两个三角形相似,那么它们的周长之比等于任意一对对应边的比值。
例如,在相似三角形ABC和DEF中,我们可以得到AB+AC+BC/DE+DF+EF = AB/DE = AC/DF = BC/EF这一等比例关系。
4. 面积比例性质:如果两个三角形相似,那么它们的面积之比等于对应边长平方的比值。
例如,在相似三角形ABC和DEF中,我们可以得到面积(ABC)/面积(DEF) = (AB^2)/(DE^2) = (AC^2)/(DF^2) = (BC^2)/(EF^2)。
三、相似三角形的判定在学习相似三角形时,我们也需要掌握如何判定两个三角形是否相似。
现介绍两种常用的判定方法。
1. AA判定法:如果两个三角形的两对对应角度相等,那么它们是相似的。
第一讲 相似三角形的性质与判定一、知识要点1.相似三角形的定义:对应角相等,对应边的比相等的两个三角形。
对应边的比叫做相似比。
三条平行线截两条直线所得的对应线段的比相等。
2.相似三角形的判定:①平行法②三组对应边的比相等(类似于三角形全等判定“SSS ”)③两组对应边的比相等,且夹角相等(类似于三角形全等判定“SAS ”)④两角对应相等(AA)直角三角形中斜边、直角边对应比相等(类似于直角三角形全等判定“HL ”)。
相似三角形的基本图形:判断三角形相似,若已知一角对应相等,可先考虑另一角对应相等,注意公共角或对顶角或同角(等角)的余角(或补角)相等,若找不到第二对角相等,就考虑夹这个角的两对应边的比相等;若无法得到角相等,就考虑三组对应边的比相等。
3.相似三角形的性质:①对应角相等②对应边的比相等③对应的高、中线、角平分线、周长之比等于相似比④对应的面积之比等于相似比的平方。
4.相似三角形的应用:求物体的长或宽或高;求有关面积等。
二、考点精讲考点一:平行线分线段成比例例1、(2014广东肇庆)如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF =( )A . 7B . 7.5C . 8D . 8.52.下列各组线段中,能成比例的是 ( )A 、 1㎝,3㎝,4㎝,6㎝B 、 30㎝,12㎝,0.8㎝,0.2㎝C 、 0.1㎝,0.2㎝,0.3㎝,0.4㎝D 、 12㎝,16㎝,45㎝,60㎝3. 如果线段2=a ,且a 、b 的比例中项为10,那么线段b = 。
4、若x :y =3,则x :(x+y)=_______5. 在长度为1的线段上找到两个黄金分割点P、Q.则PQ=( )A .215-B .53- C.25- D .253-6. 已知0432≠==cb a ,则cb a +的值为( )A.54B.45C.2D.21 考点二:相似三角形的判定例2、(2013湖北荆州)如图,P 为线段AB 上一点,AD 与BC 交于E ,∠CPD =∠A =∠B ,BC 交PD 于F ,AD 交PC 于G ,则图中相似三角形有( )A .1对B .2对C .3对D .4对 例3.如图,在矩形ABCD 中,AB=6,BC=8,沿直线MN 对折,使A 、C 重合,直线MN 交AC 于O.(1)求证:△COM∽△CBA; (2)求线段OM 的长度.练习:1.下列各组三角形一定相似的是( )A .两个直角三角形B .两个钝角三角形C .两个等腰三角形D .两个等边三角形 2.如图,DE∥BC,EF∥AB,则图中相似三角形一共有( ) A .1对 B .2对 C .3对 D .4对3、如图,P 是Rt ΔABC 的斜边BC 上异于B 、C 的一点,过点P 做直线截 ΔABC ,使截得的三角形与ΔABC 相似,满足这样条件的直线共有( )第2题4.如图,∠ADC =∠ACB 5.如图,AD ∥EF ∥BC 考点三:相似三角形的性质例4、(2013山东烟台)如图,△ABC 中,点D 在线段BC 上, 且△ABC ∽△DBA ,则下列结论一定正确的是( )A .AB 2=BC ·BD B .AB 2=AC ·BD C .AB ·AD =BD ·BC D .AB ·AD =AD ·CD例5、(2014浙江嘉兴)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( )AD E(A )32(B )33(C )34(D )36例6(2012•重庆)已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则ABC 与△DEF 的面积之比为 .练习:1.(2014青海西宁,10,3分)如图6,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADB +∠EDC =120°,BD =3,CE =2,则△ABC 的边长为()A .9B .12C .16D .18Q PECDBA2.(2013四川雅安,9,3分)如图,D 、E 、F 分别为△ABC 三边的中点,则下列说法中不正确的为( )A .△ADE ∽△ABCB .AFC ABF S S △△= C .ABC ADE S S △△41=D .DF=EF 3.(2013辽宁丹东,16,3分)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,那么:DPQ ABC S S ∆∆=______________.三、反馈练习反馈题1:如图,梯形ABCD 中,AB∥CD,E 为DC 中点,直线BE 交AC 于F ,交AD 的延长线于G ;请说明:EF·BG=BF·EG反馈题2,如图,⊙O 是△ABC 的外接圆,圆心O 在AB 上,过点B 作⊙O 的切线交AC 的延长线于点D 。
相似三角形的判定:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;(2)平行于三角形一边的直线和三角形其他两边相交,所构成的三角形和原三角形相似;(3)如果两个三角形的两条对应边之比相等,并且对应的夹角相等,那么这两个三角形相似;(4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC ∽△ADE 的是( )A .AE AC AD AB = B .DEBCAD AB = C .∠B=∠D D .∠C=∠AED如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF=14CD ,下列结论:①∠BAE=30°,②△ABE ∽△AEF ,③AE ⊥EF ,④△ADF ∽△ECF .其中正确的个数为A .1B .2C .3D .4如图,在△ABC 中.∠ACB=90°,CD ⊥AB 于点D ,则图中相似三角形共有A .1对B .2对C .3对D .4对在△ABC 中,∠B=25°,AD 是BC 边上的高,并且AD 2=BD ·DC ,则∠BCA 的度数为_____如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A.7 B.7.5 C.8 D.8.5如图,∠BAD=∠C,DE⊥AB于E,AF⊥BC于F,若BD=6,AB=8,则DE:AF=学习《图形的相似》后,我们可以借助探索两个直角三角形全等的条件所获得经验,继续探索两个直角三角形相似的条件。
(1)“对与两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”。
类似地,你可以等到:“满足,或,两个直角三角形相似”。
(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地你可以得到“满足的两个直角三角形相似”。
相似三角形的判定与性质一、知识回顾1、相似三角形的判定:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(2)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。
(3)如果两个三角形的两组对应边的比相等,且相应的夹角相等,那么这两个三角形相似(4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
2、相似三角形的性质(1)对应边的比相等,对应角相等。
(2)相似三角形的周长比等于相似比。
(3)相似三角形的面积比等于相似比的平方。
(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比。
二、典型例题例 1:如图,已知直线 AB: y=4/3 x+b 交 x 轴于点 A( -3 , 0),交 y 轴于点 B,过点 B 作BC⊥AB 交 x 轴于点 C.(1)试证明:△ ABC∽△ AOB;( 2)求△ ABC 的周长.例 2:如图,一次函数y=kx+b 的图象经过点A( -1 ,0)和点( 1,4)交 y 轴于点 B.( 1)求一次函数解析式和 B 点坐标.( 2)过 B 点的另一直线 1 与直线 AB垂直,且交X轴正半轴于点P,求点 P 的坐标.(3)点 M( 0,a)为 y 轴正半轴上的动点,点N( b,O)为 X 轴正半轴上的动点,当直线MN⊥直线 AB时,求 a: b 的值.例 3:( 2000·陕西)如图,在矩形ABCD 中, EF 是 BD 的垂直平分线,已知 BD=20, EF=15,求矩形 ABCD 的周长.例 4:( 2010·攀枝花)如图所示,在△ ABC 中, BC > AC ,点 D 在 BC 上,且 DC=AC ,∠ ACB 的平分线 CF 交 AD 于点 F .点 E 是 AB 的中点,连接 EF .( 1)求证: EF ∥BC ;( 2)若△ ABD 的面积是 6,求四边形 BDFE 的面积.例题(1) 两个相似三角形的面积比为 s 1 : s 2 ,与它们对应高之比h 1 : h 2 之间的关系为 _______(2) 如图,已知 D E ∥ BC , CD 和 BE 相交于 O ,若 SABC:SCOB9 :16 ,则 AD:DB=_________AABADD ’DEODEEFFGA A ’CC ’OCB B ’BCDBC(2)题图(3) 题图(4) 题图(5) 题图(3)如图,已知 AB ∥CD,BO:OC=1:4, 点 E、 F 分别是 OC, OD的中点,则 EF:AB 的值为(4) 如图,已知DE∥FG∥ BC,且 AD:FD:FB=1:2:3, 则S ABC: S四边形DFGE: S四边形FBCG()A.1:9:36B.1:4:9C.1:8:27D.1:8:36(5)如图,把正方形 ABCD 沿着对角线 AC 的方向移动到正方形 A’B ’C’D ’的位置,它们的重叠部分的面积是原正方形面积的一半,若AC= 2 ,则正方形移动的距离 AA ’是(6) 梯形 ABCD中, AD∥BC,( AD<BC), AC、 BD交于点 O,若S OAB6S ABCD,则△AOD与△BOC的周长25之比为 __________ 。
相似三角形的性质与判定讲义【知识点拨】一、相似三角形性质(1)相似三角形对应角相等,对应边成比例.(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (3)相似三角形周长的比等于相似比. (4)相似三角形面积的比等于相似比的平方.(5)相似三角形性质可用来证明线段成比例、角相等,也可用来计算周长、边长等 二、 相似三角形的等价关系(1)反身性:对于任一ABC ∆有ABC ∆∽ABC ∆. (2)对称性:若ABC ∆∽'''C B A ∆,则'''C B A ∆∽ABC ∆.(3)传递性:若ABC ∆∽C B A '∆'',且C B A '∆''∽C B A ''''''∆,则ABC ∆∽C B A ''''''∆. 三、三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法: (1)以上各种判定均适用.EDCBA(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
三角形的相似性质与判定三角形是几何中的基本形状之一,它具有许多重要的性质和特点。
其中一项重要的性质就是相似性质。
相似性质指的是两个或多个三角形具有相似的形状,但大小可能不同。
本文将探讨三角形的相似性质以及相似三角形的判定方法。
一、相似三角形的定义两个三角形相似的定义是:如果两个三角形的对应角度相等,并且对应边成比例,那么这两个三角形就是相似的。
换句话说,如果两个三角形的三个内角分别相等,且对应边的长度比为一个常数,那么它们是相似的。
二、相似三角形的性质相似三角形具有许多重要的性质,这些性质有助于我们进一步研究和应用三角形的知识:1. 边长比例性质:在相似三角形中,对应边的长度比是相等的。
比如说,如果一个三角形ABC与另一个三角形DEF相似,那么AB与DE的比、AC与DF的比、BC与EF的比都是相等的。
2. 角度对应性质:在相似三角形中,对应的角度是相等的。
也就是说,如果两个三角形相似,那么它们的三个角分别相等。
3. 高度比例性质:在相似三角形中,对应的高度(或称作高线)之比等于对应边长之比。
换句话说,如果一个三角形的两条边与另一个相似三角形的两条边成比例,那么它们的高度也是成比例的。
三、相似三角形的判定方法判定两个三角形是否相似有多种方法,这里介绍其中两种常用的方法:1. 三边比较法:如果两个三角形的三条边对应成比例,那么它们是相似的。
这种方法可通过确定三条边的长度,并计算它们的比例来判断。
2. 角度比较法:如果两个三角形的三个内角对应相等,那么它们是相似的。
这种方法可通过测量三个内角的大小,并比较它们的关系来判断。
值得注意的是,如果两个三角形仅满足其中一种判定条件,那它们并不一定是相似的。
相似性质需要同时满足对应边成比例和对应角相等这两个条件。
结论:三角形的相似性质与判定对于解决几何问题和应用数学都具有重要的意义。
通过理解相似性质,我们可以推导出许多有关三角形的重要结论,并应用于实际问题中。
在实际应用中,我们需要根据已知条件来判断两个三角形相似,进而利用相似的性质和定理解决问题。
相似三角形的性质与判定相似三角形是初中数学中一个重要的概念,理解相似三角形的性质和判定方法对于解题和应用数学非常有帮助。
本文将介绍相似三角形的性质,并讨论如何判定两个三角形是否相似。
一、相似三角形的性质1. 边长比例:两个三角形相似的充分必要条件是它们对应边长之比相等。
设两个三角形分别为ABC和DEF,若满足以下条件,则可判断它们为相似三角形:AB/DE = BC/EF = AC/DF2. 角度相等:两个三角形相似的另一个重要性质是它们对应角度相等。
即若三角形ABC和DEF满足以下条件,则可以判断它们为相似三角形:∠A = ∠D, ∠B = ∠E, ∠C = ∠F3. 高度比例:相似三角形的高度之比等于对应边长之比。
假设ABC 和DEF为相似三角形,且BC和EF为对应边,h1和h2为它们的高度,则有以下关系:h1/h2 = BC/EF二、相似三角形的判定方法1. AA(角-角)判定法:若两个三角形的两个角相等,则这两个三角形相似。
即若∠A = ∠D,∠B = ∠E,可判断三角形ABC与DEF相似。
2. SAS(边-角-边)判定法:若两个三角形的两个对应边的比例相等,并且这两个边夹角相等,则这两个三角形相似。
假设AB/DE =BC/EF,∠B = ∠E,可判断三角形ABC与DEF相似。
3. SSS(边-边-边)判定法:若两个三角形的三个对应边的比例相等,则这两个三角形相似。
即若AB/DE = BC/EF = AC/DF,可判断三角形ABC与DEF相似。
三、相似三角形的应用1. 测量高度:利用相似三角形的性质,可以测量高度。
例如,根据两个相似三角形的高度比例,可以利用已知的高度和对应的边长,求解未知高度的长度。
2. 图形放缩:相似三角形的性质使得我们能够进行图形的缩放。
通过改变相似三角形的边长比例,可以将图形按照一定的比例进行放大或缩小。
3. 建模与设计:相似三角形的应用还可以用于建模和设计。
例如,在设计模型中,可以利用相似三角形的概念,按照一定的比例来缩放和调整图形的形状。
三角形的相似性及其性质三角形是几何学中重要的图形,它们由三条边和三个角组成。
在研究三角形时,了解三角形的相似性及其性质对于解决各种几何问题非常有帮助。
本文将详细探讨三角形的相似性及其性质。
一、相似三角形的定义及判定相似三角形是指具有相同形状但可能不同大小的三角形。
当两个三角形的对应角度相等时,它们是相似的。
判定两个三角形是否相似有以下几种方法:1. AAA相似判定法:当两个三角形的对应角度分别相等时,它们是相似的。
例如,如果一个三角形的三个内角分别等于另一个三角形的三个内角,那么这两个三角形就是相似的。
2. AA相似判定法:当两个三角形的一个角相等,且两个角所对的边成比例时,这两个三角形是相似的。
例如,如果一个三角形的一个内角等于另一个三角形的一个内角,并且这两个角所对的边的比值相等,那么这两个三角形就是相似的。
3. SSS相似判定法:当两个三角形的对应边成比例时,它们是相似的。
例如,如果一个三角形的三条边分别与另一个三角形的三条边成比例,那么这两个三角形就是相似的。
二、相似三角形的性质在相似三角形中,存在一些重要的性质,这些性质对于解决各种几何问题有很大的帮助。
下面介绍几个常见的相似三角形性质:1. 相似三角形的对应边成比例:如果两个三角形是相似的,那么它们的对应边的长度成比例。
即对应边的比值相等。
例如,如果一个三角形的两边与另一个三角形的两边成比例,那么第三条边也与第三条边成比例。
2. 相似三角形的对应角相等:如果两个三角形是相似的,那么它们的对应角度相等。
即对应角相等。
例如,如果一个三角形的一个内角与另一个三角形的一个内角相等,那么这两个角所对的边的比值也相等。
3. 相似三角形的周长和面积之比:如果两个三角形是相似的,那么它们的周长和面积之比等于对应边长度的比值的平方。
例如,如果一个三角形的周长和面积分别是另一个三角形的周长和面积的2倍,那么这两个三角形就是相似的。
三、应用实例三角形的相似性及其性质在实际问题中有广泛的应用。
A 'B 'C 'CBAA 'B 'C 'CB A相似三角形的性质和判定 一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”。
2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”。
三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.2.相似三角形的对应边成比例 如图,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比) 。
3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比。
如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比).M 'MA 'B 'C 'C B A图(1)H 'H AB C C 'B 'A '图(2)D 'D A 'B 'C 'C B A图(3)A 'B 'C 'CBAH 'HA BC C 'B 'A '如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).4.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++. 5.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△. 图4图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似。
初中数学知识归纳相似三角形的判定和性质相似三角形是初中数学中的重要概念之一,它在解决几何问题中有着广泛的应用。
通过判定和理解相似三角形的性质,我们可以更好地应用它们来解决各种实际问题。
本文将对相似三角形的判定和性质进行归纳总结,并通过案例讲解来加深理解。
一、相似三角形的判定相似三角形的判定方法有多种,下面将介绍两种常用方法。
方法一:AAA相似判定法如果两个三角形对应角度相等,那么它们就是相似三角形。
即如果两个三角形的三个内角相对应相等,那么这两个三角形一定相似。
例如,在△ABC和△DEF中,∠A = ∠D,∠B = ∠E,∠C = ∠F,那么△ABC与△DEF就是相似三角形。
方法二:三边成比例判定法如果两个三角形的对应边成比例,那么它们是相似三角形。
例如,在△ABC和△DEF中,AB/DE = BC/EF = AC/DF,那么△ABC与△DEF就是相似三角形。
二、相似三角形的性质相似三角形有一些重要的性质,下面将逐一介绍。
性质一:对应角相等相似三角形的三个内角两两相等。
性质二:对应边成比例相似三角形的对应边之间成比例。
性质三:高度、中线、角平分线比例相等相似三角形的高度、中线、角平分线对应线段之间成比例。
性质四:面积比例的平方等于边长比例的平方相似三角形的两个相似部分的面积比例等于对应边长比例的平方。
性质五:周长比例等于边长比例相似三角形的周长比例等于对应边长比例。
三、相似三角形的应用举例相似三角形的应用非常广泛,在日常生活和工作中都能见到。
例一:海报设计小明要为学校一次活动设计海报,他发现海报上有两座塔楼,现场测量得到塔楼的高度和距离,希望通过相似三角形的原理计算出塔楼的实际高度。
他需要以此为基础来设计整个海报的比例。
解决方案:小明可以通过测量海报上塔楼的高度和距离,根据相似三角形的性质,计算出实际塔楼的高度。
然后,他可以按照比例来设计整个海报的各个元素,使其符合实际情况。
例二:估算高楼的阴影长度阳光直射下,高楼的阴影长度对人们的日常活动有一定的影响。
相似三角形的判定和性质1.相似三角形定义:就是它们的形状相同,但大小不一样,然而只要其形状相同,不论大小怎样改变他们都相似,所以就叫做相似三角形。
2.判定:(1)平行与三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似(2)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似(4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似直角三角形相似判定定理(1)斜边与一条直角边对应成比例的两直角三角形相似。
直角三角形相似判定定理(2)直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
3.性质:(1)相似三角形的对应角相等.(2)相似三角形的对应边成比例.(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.(4)相似三角形的周长比等于相似比.(5)相似三角形的面积比等于相似比的平方.(6)相似三角形的传递性。
典型例题例1、如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有例2、如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE 是直角三角形时,t的值为例3、如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,则BC的长是例4、如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=例5、如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG ⊥AE于G,BG=,则△EFC的周长为例6、如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=例7、如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为例8、如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD 的面积为例9、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为例10、如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于练习1.如图1,△OED∽△OCB,且OE=6,EC=21,则△OCB与△OED的相似比是()A.37B.52C.85D.352.如图2,点E,F分别在矩形ABCD的边DC,BC上,∠AEF=90°,∠AFB=2∠DAE=72°,则图中甲、乙、丙三个三角形中相似的是()A.只有甲与乙B.只有乙与丙C.只有甲与丙D.甲与乙与丙3.如图3,D是AB的中点,E是AC的中点,则△ADE与四边形BCED的面积比是()A.1 B.12C.13D.144.在相同水压下,口径为4cm的水管的出水量是口径为1cm的水管出水量的()A.4倍B.8倍C.12倍D.16倍5.对于下列说法:(1)相似且有一边为公共边的两个三角形全等;(2)相似且面积相等的两个三角形全等;(3)相似且周长相等的两个三角形全等.其中说法正确的有()A.0个B.1个C.2个D.3个6.我国国土面积约为960万平方千米,画在比例尺为1∶1 000万的地图上的面积约是()A.960平方千米 B.960平方米 C.960平方分米 D.960平方厘米7、如果△ABC∽△A′B′C′,相似比为k (k≠1),则k的值是()A.∠A:∠A′B.A′B′:AB C.∠B:∠B′D.BC:B′C′8、若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30°B.50° C.40°D.70°9、三角形三边之比3:5:7,与它相似的三角形最长边是21cm,另两边之和是()A.15cm B.18cm C.21cm D.24cm10如图AB∥CD∥EF,则图中相似三角形的对数为()A.1对B.2对 C.3对D.4对11△ABC∽△A1B1C1,相似比为2:3,△A1B1C1∽△A2B2C2,相似比为5:4,则△ABC与△A2B2C2的相似比为()A.B. C.D.12、在比例尺1:10000的地图上,相距2cm的两地的实际距离是()A.200cm B.200dm C.200m D.200km13、已知线段a=10,线段b是线段a上黄金分割的较长部分,则线段b的长是()A.B. C.D.14、若则下列各式中不正确的是()A.B. C.D.15、已知△ABC 中,D 、E 分别在AB 、AC 上,且AE=1.2,EC=0.8,AD=1.5,DB=1,则下列式子正确的是( )A .B .C .D .16、如图:在△ABC 中,DE ∥AC ,则DE :AC=( )A .8:3B .3:8C .8:5D .5:817.已知ABC A B C '''△∽△,且4AB =,6A B ''=,8B C ''=则BC= .18.两个相似三角形,其中一个三角形的两个内角分别是40°和30°,则另一个三角形的最大内角的度数是 .19.如图4,∠ABC=∠CDB=90°,AC=a ,BC=b ,当BD 与a 、b 满足关系 时,△ABC ∽△CDB .20.如图5,P 是等腰梯形ABCD 上底AD 上一点,若∠A=∠BPC ,则和△ABP 相似的三角形有 个.21.相似三角形对应 、 、 的比都等于相似比.22.相似多边形的周长比等于 ,面积比等于 .23.把一个三角形三边同时扩大4倍,则周长扩大了 倍,面积扩大了 倍.24.两个相似三角形对应中线的比为23,则面积比是 . 25.如图6,已知△ABC ∽△DEF ,AB=6,BF=2,CE=8,CA=10,DE=15.求线段DF ,FC 的长.26.要做两个形状相同的三角形框架,其中一个三角形框架的三边长分别是4,5,6,另一个三角形框架的一边长为2,怎样选料可使这两个三角形相似?想想看,你有几种解决方案?27.如图7,已知△ABC ∽△DEF ,AM 、DN 是中线,试判断△ABM 与△DEN 是否相似?为什么?28.如图8,AD 是△ABC 角平分线,试判断BD AB DC AC=是否成立?3.3相似三角形的性质和判定试题练习答案例1∴∠BAC=∠DAC=45°.∵在△APE和△AME中,,∴△APE≌△AME,故①正确;∴PE=EM=PM,同理,FP=FN=NP.∵正方形ABCD中AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确.∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.∴PM=PN,又∵△AMP和△BPN都是等腰直角三角形,∴AP=BP,即P时AB的中点.故⑤正确.例2∴AB=2BC=4(cm),∵BC=2cm,D为BC的中点,动点E以1cm/s的速度从A点出发,∴BD=BC=1(cm),BE=AB﹣AE=4﹣t(cm),若∠DBE=90°,当A→B时,∵∠ABC=60°,∴∠BDE=30°,∴BE=BD=(cm),∴t=3.5,当B→A时,t=4+0.5=4.5.若∠EDB=90°时,当A→B时,∵∠ABC=60°,∴∠BED=30°,∴BE=2BD=2(cm),∴t=4﹣2=2,当B→A时,t=4+2=6(舍去).综上可得:t的值为2或3.5或4.5.例3∴△ADE∽△ABC,则=,∵DE=1,AD=2,DB=3,∴AB=AD+DB=5,∴BC==52.例4∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.例5解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴∠BAF=∠DAF,∵AB∥DF,AD∥BC,∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,∴AB=BE=6,AD=DF=9,∴△ADF是等腰三角形,△ABE是等腰三角形,∵AD∥BC,∴△EFC是等腰三角形,且FC=CE,∴EC=FC=9﹣6=3,在△ABG中,BG⊥AE,AB=6,BG=4,∴AG==2,∴AE=2AG=4,∴△ABE的周长等于16,又∵△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.例6解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE:BE=4:3,∴BE:AB=3:7,∴BE:CD=3:7.∵AB∥CD,∴△BEF∽△DCF,∴BF:DF=BE:CD=3:7,即2:DF=3:7,∴DF=.故答案为:.例7∵DE为△ABC的中位线,∴AE=CE.在△ADE与△CFE中,,∴△ADE≌△CFE(SAS),∴S△ADE=S△CFE.∵DE为△ABC的中位线,∴△ADE∽△ABC,且相似比为1:2,∴S△ADE:S△ABC=1:4,∵S△ADE+S四边形BCED=S△ABC,∴S△ADE:S四边形BCED=1:3,∴S△CEF:S四边形BCED=1:3.例8解答:解:∵∠DAC=∠B ,∠C=∠C ,∴△ACD ∽△BCA ,∵AB=4,AD=2,∴△ACD 的面积:△ABC 的面积为1:4,∴△ACD 的面积:△ABD 的面积=1:3,∵△ABD 的面积为a ,∴△ACD 的面积为a ,例9解:如图,设正方形S 2的边长为x ,根据等腰直角三角形的性质知,AC=x ,x=CD , ∴AC=2CD ,CD==2,∴EC 2=22+22,即EC=;∴S 2的面积为EC 2==8;∵S 1的边长为3,S 1的面积为3×3=9,∴S 1+S 2=8+9=17. 例10解:∵AB=AC ,∴∠ABC=∠ACB ,又∵∠CBD=∠A ,∴△ABC ∽△BDC ,同理可得:△ABC ∽△BDC ∽△CDE ∽△DFE ,∴=,=,=,解得:CD=,DE=,EF=.一、1~6.BDCDC D二、7.163 8.110 9.2b BD a= 10.2 11.高、中线、角平分线 12.相似比,相似比的平方 13.4,16 14.49 三、15.25DF =,2FC =.16.可选料有三种方案,三角形框架边长分别是①2,2.5,3;②1.6,2,2.4;③43,53,2. 17.相似;可用三边对应成比例或两边对应成比例且夹角相等说明.18.过点B 作BE AC ∥交AD 延长线于点E ,则可得BDE CDA △∽△, 从而BD BE DC AC =,然后再由E DAC BAD ==∠∠∠,得BE AB =,故BD AB DC AC=成立.。
相似三角形判定条件与性质相似三角形是指形状相似但大小不同的两个三角形。
在几何学中,判定两个三角形是否相似有一些条件和性质。
下面将详细介绍相似三角形的判定条件与性质。
一、相似三角形的判定条件1. AAA相似定理(全等三角形基本性质之一)当两个三角形的对应角度分别相等时,这两个三角形相似。
也就是说,如果两个三角形的三个角分别对应相等,那么这两个三角形是相似的。
2. AA相似定理(全等三角形基本性质之二)当两个三角形的两个对应角分别相等时,这两个三角形相似。
也就是说,如果两个三角形有两个角相等,那么这两个三角形是相似的。
3. SSS相似定理当两个三角形的对应边分别成比例时,这两个三角形相似。
也就是说,如果两个三角形的三条边分别成比例,那么这两个三角形是相似的。
二、相似三角形的性质1. 边比例性质在相似三角形中,相应边之间的比例相等。
如果两个三角形相似,则对应边的比例相等。
2. 角度性质在相似三角形中,对应角度相等。
如果两个三角形相似,则对应角度相等。
3. 高比例性质在相似三角形中,相应高的比例等于对应边的比例。
即,如果两个三角形相似,它们的对应边与相应高之间的比例相等。
4. 周长比例性质在相似三角形中,相应边的比例等于相应高和周长的比例。
即,如果两个三角形相似,它们的对应边与相应高以及周长之间的比例相等。
5. 面积比例性质在相似三角形中,相应边的比例的平方等于面积的比例。
即,如果两个三角形相似,它们的对应边的比例的平方等于面积的比例。
6. 中线比例性质在相似三角形中,相应中线的比例等于对应边的比例。
即,如果两个三角形相似,它们的对应边与相应中线之间的比例相等。
通过上述判定条件与性质,我们可以方便地判断两个三角形是否相似,并且得出相应的比例关系。
相似三角形在几何学中具有广泛的应用,可以用于解决实际问题,如测量高度、距离等。
总结:相似三角形的判定条件包括AAA相似定理、AA相似定理和SSS相似定理。
相似三角形具有边比例性质、角度性质、高比例性质、周长比例性质、面积比例性质和中线比例性质等性质。
相似三角形的性质与判定相似三角形是初中数学中的一个重要概念,它在几何学知识体系中有着重要的地位。
相似三角形是指两个或更多个三角形在形状上相似的特殊三角形。
它们的边长比例相等,对应的角度也相等。
通过研究相似三角形的性质和判定条件,我们可以在解决实际问题时更好地应用相似三角形的概念。
首先,我们来介绍一些相似三角形的性质。
相似三角形具有以下性质:1. 对应角相等性质。
如果两个三角形的对应角相等,那么它们是相似三角形。
具体而言,如果两个三角形的三个角分别相等,那么它们一定是相似三角形。
这是相似三角形的性质中最重要的一条。
2. 对应边比例相等性质。
如果两个三角形的对应边的长度比例相等,那么它们是相似三角形。
具体而言,如果两个三角形的三条边的对应长度比例相等,那么它们一定是相似三角形。
这个性质可以直接从三角形的定义和角相等性质推导出来。
其次,我们来介绍一些相似三角形的判定条件。
判定两个三角形是否相似主要有以下几种方法:1. AA 判定法。
如果两个三角形的两个角分别相等,那么它们一定是相似三角形。
2. SSS 判定法。
如果两个三角形的三个边的长度比例相等,那么它们一定是相似三角形。
3. SAS 判定法。
如果两个三角形的一个角相等,而且两个边的长度比例相等,那么它们一定是相似三角形。
4. 等腰三角形判定法。
如果两个三角形的两条边长比例相等且夹角相等,那么它们一定是相似三角形。
相似三角形的性质和判定条件在解决实际问题时非常有用。
例如,在测量高楼的高度时,我们可以利用相似三角形的性质,通过测量实际的距离和角度,计算出高楼的高度。
又如,在地图上测量两个城市之间的直线距离时,我们可以利用相似三角形的判定条件,通过测量两个城市之间的实际距离和角度,计算出直线距离。
这些都是利用相似三角形的性质和判定条件解决实际问题的典型例子。
总的来说,相似三角形是一个重要的几何概念,它涉及到对角、边长比例的研究。
相似三角形的性质和判定条件在解决实际问题时非常有用,能够帮助我们计算出实际的距离和角度,解决实际问题。
相似三角形的判定与性质1.相似三角形的概念:在和中,如果,,,,我们就说和相似,记作∽,就是它们的相似比(注意:要把表示对应顶点的字母写在对应的位置上).2.相似三角形的判定定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.小结:判定三角形相似的方法:(1)相似三角形的定义;(2)由平行线得相似.相似三角形的判定定理:如果两个三角形的三组对应边的比相等,那么这两个三角形相似.可简单说成:三边对应成比例,两三角形相似.思考:若,,与是否相似呢?相似三角形的判定定理:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似可简单说成:两边对应成比例且夹角相等,两三角形相似.进一步引申:若,,与是否相似呢?不一定问:全等中的边边角不能用,那么边边角也不能证相似,反例同全等.例1.根据下列条件,判断与是否相似,并说明理由:(1),,;,,.(2),,;,,.解:(1),∴又∴∽问:这两个相似三角形的相似比是多少?(答:是)(2),,∴与的三组对应边的比不等,它们不相似.问:要使两三角形相似,不改变的长,的长应当改为多少?(答:)例2.要做两个形状相同的三角形框架,其中一个三角形框架的三边的长分别为4、5、6,另一个三角形的一边长为2,怎样选料可使这两个三角形相似?注:此题没说2与哪条边是对应边,所以要进行分类讨论.可以是:,3;或,;或,.注:当两三角形相似而边不确定时,要注意分类讨论.相似三角形的判定定理:如果一个三角形的两个角与另一个三角形的两个角对应相等的,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.3.三角形相似的判定的应用例3.如图,弦和弦相交于内一点,求证:.证明:连接,.在∴∽∴.例4.已知:如图,在中,于点.(1)求证:∽∽;(2)求证:;;(此结论称之为射影定理)(3)若,求.(4)若,求.分析:(1)利用两角相等证相似;(2)把相似三角形的相似比的比例式改为乘积式即可;(3)利用射影定理和勾股定理直接求;(4)利用上面的定理和方程求.进一步引申:在中,于点,这个条件可以放在圆当中,是直径,是圆上任意一点,于点,则可得到双垂直图形.例.已知:∽,分别是两个三角形的角平分线.求证:.4.相似三角形的性质(1)相似三角形的对应角相等,对应边的比相等,都等于相似比.(2)相似三角形对应高的比,对应角的平分线的比,对应中线的比都等于相似比.(3)相似三角形周长的比等于相似比;相似多边形周长的比等于相似比.证明:如果∽,相似比为,那么.因此,,.从而,.同理可得相似多边形对应周长的比也等于相似比.如图,已知:∽,相似比为.分别作出与的高和和都是直角三角形,并且,∽相似多边形面积的比等于相似比的平方.对于两个相似多边形,可以把他们分成若干个相似三角形证明.例5.如图,在和中,,,,的周长是24,面积是48,求的周长和面积.解:在和中,,又∽,相似比为.的周长为,的面积是.例6.已知点P在线段AB上,点O在线段AB的延长线上.以点O为圆心,OP为半径作圆,点C是圆O上的一点.(1)如图,如果AP=2PB,PB=BO.求证:△CAO∽△BCO;(2)如果AP=m(m是常数,且),BP=1,OP是OA、OB的比例中项.当点C在圆O上运动时,求的值(结果用含m的式子表示);(3)在(2)的条件下,讨论以BC为半径的圆B和以CA为半径的圆C的位置关系,并写出相应m的取值范围.分析:此题第1问:利用两边的比相等,夹角相等证相似.即,第2问:设∵是的比例中项,∴是的比例中项即∴解得又∵第3问:∵,,即当时,两圆内切;当时,两圆内含;当时,两圆相交.例7.如图,已知中,,,,,点在上,(与点不重合),点在上.(1)当的面积与四边形的面积相等时,求的长.(2)当的周长与四边形的周长相等时,求的长.(3)在上是否存在点,使得为等腰直角三角形?要不存在,请说明理由;若存在,请求出的长.解:(1),∽(2)∵的周长与四边形的周长相等∽(3)在线段上存在点,使得为等腰直角三角形.过作于,则,设交于若,则.∵∽若,同理可求.若,∽∴在线段上存在点,使得为等腰直角三角形,此时,或.三、总结归纳:1、相似三角形的判定:(1)相似三角形的定义;(2)平行得相似;(3)三边的比相等;(4)两边的比相等,夹角相等;(5)两角对应相等.三角形相似判定的方法较多,要根据已知条件适当选择.2、全等与相似的类比:3、相似三角形的常见图形及其变换:4、证明四条线段成比例的常用方法:(1)线段成比例的定义(2)三角形相似的预备定理(3)利用相似三角形的性质(4)利用中间比等量代换(5)利用面积关系证明题常用方法归纳:(1)通过“横找”“竖看”寻找三角形,即横向看或纵向寻找的时候一共各有三个不同的字母,并且这几个字母不在同一条直线上,能够组成三角形,并且有可能是相似的,则可证明这两个三角形相似,然后由相似三角形对应边成比例即可证的所需的结论.(2)若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这几个字母在同一条直线上),则需要进行“转移”(或“替换”),常用的“替换”方法有这样的三种:等线段代换、等比代换、等积代换.(3)若上述方法还不能奏效的话,可以考虑添加辅助线(通常是添加平行线)构成比例.以上步骤可以不断的重复使用,直到被证结论证出为止.。
一.教学内容:相似三角形的判定
二.重点、难点怎样选择适当的定理判定三角形的相似是学习中的重点和难点。
三.知识回顾
(一)定义:对应角相等,对应边成比例的两个三角形叫相似三角形。
相似三角形的对应边的比叫做相似比(也叫相似系数)。
(二)判定:
①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
②两边对应成比例且夹角相等的两个三角形相似。
③有两个角对应相等的两个三角形相似。
④三条边对应成比例的两个三角形相似。
⑤一条直角边和斜边对应成比例的两个直角三角形相似。
⑥直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似。