专题02 函数图象中的面积计算问题(解析版)
- 格式:docx
- 大小:507.86 KB
- 文档页数:12
一次函数之面积问题(讲义)➢课前预习1.如图,在平面直角坐标系xOy中,已知A(1,2),B(3,5),C(6,3),求△ABC的面积.2.如图,直线l1:y=-3x+3与x轴交于点A,直线l2:362y x=-与x轴交于点B,直线l1,l2相交于点C.在直线l2上存在异于点C的另一点P,使得△ABP 与△ABC的面积相等,请求出点P的坐标.➢知识点睛1.坐标系中处理面积问题,要寻找并利用_____________的线,通常有以下三种思路:①__________________(规则图形);②__________________(分割求和、补形作差);③__________________(例:同底等高).2.坐标系中面积问题的处理方法举例①割补求面积(铅垂法):B1()2APB B AS PM x x=⋅⋅-△②转化求面积:l1l2如图,满足S△ABP=S△ABC的点P都在直线l1,l2上.➢精讲精练1.如图,在平面直角坐标系xOy中,已知A(-1,3),B(3,-2),则△AOB的面积为___________.2.如图,直线y=-x+4与x轴、y S△PAB=___________.第2题图第3题图3.如图,直线AB:y=x+1与x轴、y轴分别交于点A,B,直线CD:y=kx-2与x轴、y轴分别交于点C,D,直线AB与直线CD交于点P.若S△APD=4.5,则k的值为__________.4.如图,在平面直角坐标系xOy中,已知A(2,4),B(6,6),C(8,2),求四边形OABC的面积.5.如图,在平面直角坐标系xOy中,已知直线l1,l2相交于点A(2,1),点B(8,4)在l1上,l2的表达式为y=2x-3.C为l2上的一个动点,且在点A的右侧,若△ABC的面积为9,求点C的坐标.6.如图,在平面直角坐标系xOy中,直线l1:y=x与直线l2:y=-2x+3相交于点A,点B在直线l1上,且横坐标为4.C为l2上的一个动点,且在点A的左侧,若△ABC的面积为9,则点C的坐标为_____________.7.如图,直线112y x=-+与x轴、y轴分别交于点A,B,点C的坐标为(1,2),则坐标轴上是否存在点P,使S△ABP =S△ABC?若存在,求出点P的坐标;若不存在,请说明理由.8.已知直线112y x=-+与x轴、y轴分别交于点A,B,以A为直角顶点,线段AB为腰在第一象限内作等腰Rt△ABC,P为直线x=1上的动点,若△ABP 的面积与△ABC的面积相等,则点P的坐标为______________.【参考答案】➢ 课前预习1.1322. P (6,3) ➢ 知识点睛 1. 横平竖直①公式法;②割补法;③转化法 ➢ 精讲精练 1. 72 2. 8 3. 52 4. 245.C (4,5)6. (-1,5)7. 存在,点P 的坐标为51(0)(50)(0)(10)22--,,,,,或, 8. (13)(12)-,或,。
考向3.10 二次函数-面积问题例1、(2021·四川雅安·中考真题)已知二次函数223y x bx b =+-. (1)当该二次函数的图象经过点1,0A 时,求该二次函数的表达式;(2)在(1) 的条件下,二次函数图象与x 轴的另一个交点为点B ,与y 轴的交点为点C ,点P 从点A 出发在线段AB 上以每秒2个单位长度的速度向点B 运动,同时点Q 从点B 出发,在线段BC 上以每秒1个单位长度的速度向点C 运动,直到其中一点到达终点时,两点停止运动,求△BPQ 面积的最大值;(3)若对满足1≥x 的任意实数x ,都使得0y ≥成立,求实数b 的取值范围.解:(1)把1,0A 代入223y x bx b =+-, 得:20123b b =+-,解得:b =1,∴该二次函数的表达式为:223y x x =+-; (2)令y =0代入223y x x =+-, 得:2023x x =+-, 解得:11x =或23x =-,令x =0代入223y x x =+-得:y =-3, ∴A (1,0),B (-3,0),C (0,-3), 设运动时间为t ,则AP =2t ,BQ =t , ∴BP =4-2t ,过点M 作MQ ⊥x 轴, ∵OB =OC =3, ∴∠OBC =45°,∴BMQ 是等腰直角三角形,∴MQ =22BQ =22t , ∴△BPQ 的面积=()11222242BP MQ t t -⋅=⋅=()222122t --+,∴当t =1时,△BPQ 面积的最大值=22;(3)抛物线223y x bx b =+-的对称轴为:直线x =-b ,开口向上, 设2()23y f x x bx b ==+-,∵对1≥x 的任意实数x ,都使得0y ≥成立,∴()110b f -≤⎧⎨≥⎩或()10b f b ->⎧⎨-≥⎩,∴-1≤b ≤1或-3≤b <-1, ∴-3≤b ≤1.1、二次函数面积问题的几种形式(1)直接用面积公式;(2)三角形的面积等于铅直高度与水平宽度积的一半;(3)平行线等面积法(通过做平行线辅助线完成)。
一次函数题型总结(二)1、函数y=-5x+2与x 轴的交点是 ,与y 轴的交点是 ,与两坐标轴围成的三角形面积是 。
2.已知直线y =x +6与x 轴、y 轴围成一个三角形,则这个三角形面积为 ___ 。
3、已知:在直角坐标系中,一次函数y=233+-x 的图象分别与x 轴、y 轴相交于A 、B. 若以AB 为一边的等腰△ABC 的底角为30。
点C 在x 轴上,求点C 的坐标.4、如图,直线y =2x +3与x 轴相交于点A ,与y 轴相交于点B .求A ,B 两点的坐标;过B 点作直线BP 与x 轴相交于P ,且使OP =2OA , 求ΔABP 的面积.5.在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形, 叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与 x ,y 轴分别交于点A ,B ,则△OAB 为此函数的坐标三角形.(1)求函数y =43-x +3的坐标三角形的三条边长;(2)若函数y =43-x +b (b 为常数)的坐标三角形周长为16, 求此三角形面积.6. 在平面直角坐标系中,已知)0,8(A 、)6,0(B 、)2,0(-C ,连接AB ,过C 作直线l 与AB 交于P ,与OA 交于E ,且5:4:=OC OE , 求△PAC 的面积。
7. 我国现行个人工资收入所得税征收办法规定:月收入低于800元的部分不收税,月收入超过800元,但低于1300元的部分征收5%的所得税,……如某人月收入1160元,他应缴个人工资收入所得税为()18%58001160=⨯-元(1)当月收入大于800元而又小于1300元时,写出应缴所得税y (元)与月收入x (元)之间的关系式;(2)某人月收入为960元,他应缴纳所得税多少元?(3)如果某人本月缴所得税19.2元,那么此人本月工资是多少元?第21题图8. 如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km)•之间的函数关系图象.①根据图象,写出当x≥3时该图象的函数关系式;②某人乘坐2.5km,应付多少钱?③某人乘坐13km,应付多少钱?④若某人付车费30.8元,出租车行驶了多少千米?9.如图是某汽车行驶的路程s(km)与时间t(min)的函数关系图;观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车在中途停了多长时间?(3)当16≤t≤30时,求s与t的函数式.10、已知直线y=kx+b经过点,且与坐标轴围成的三角形的面积为,求该直线的解析式.11、某食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种:方案一:若直接给本厂设在武汉的门市部销售,则每千克售价为32元,但门市部每月需上缴有关费用2400元;方案二:若直接批发给本地超市销售,则出厂价为每千克28元.若每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为xkg.(1)你若是厂长,应如何选择销售方案,可使工厂当月所获利润更大?(2)厂长看到会计送来的第一季度销售量与利润关系的报表后(上表),发现该表填写的销售量与实际有不符之处,请找出不符之处,并计算第一季度的实际销售量总量.1 、甲、乙两人以相同路线前往距离单位10km 的培训中心参加学习.图中l 甲、l 乙分别表示甲、乙两人前往目的地所走的路程S (km)随时间t (分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km 后遇到甲;④乙出发6分钟后追上甲.其中正确的有( )A.4个B.3个C.2个D.1个2、某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过203m 时,按2元/3m 计费;月用水量超过203m 时,其中的203m 仍按2元/3m 收费,超过部分按2.6元/3m 计费.设每户家庭用用水量为3m x 时,应交水费y 元. (1)分别求出020x ≤≤和20x 时y 与x 的函数表达式;1 某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y (吨)与进出油时间x (分)的函数式及相应的x取值范围.2、为了扶持农民发展农业生产,国家对购买农机的农户给予农机售价13%的政府补贴.某市农机公司筹集到资金130万元,用于一次性购进A、B两种型号的收割机共30台.根据市场需求,这些收割机可以全部销售,全部销售后利润不少于15万元.其中,收割机的y万元.(1)试写出y与x的函数关系式;(2)市农机公司有哪几种购进收割机的方案可供选择?(3)选择哪种购进收割机的方案,农机公司获利最大?最大利润是多少?此种情况下,购买这30台收割机的所有农户获得的政府补贴总额W为多少万元?1、已知一次函数y kx b=+的图象如图(6)所示,当1x<时,y的取值范围是()A.20y-<<B.40y-<<C.2y<-D.4y<-2、一次函数1y kx b=+与2y x a=+的图象如图,则下列结论①0k<;②0a>;③当3x<时,12y y<中,正确的个数是()A.0 B.1 C.2 D.33、方程组⎩⎨⎧+==-3214xyyx的解是,则一次函数y=4x-1与y=2x+3的图象交点为。
2024-2025学年第22章二次函数专题02 实际应用问题常考题型汇总(原卷版)一.选择题1.如图1是某城市广场音乐喷泉,出水口A处的水流呈抛物线形,该水流喷出的高度y(m)与水平距离x(m)之间的关系如图2所示,点B为该水流的最高点,点C为该水流的落地点,且BD⊥OC,垂足为点D,OA=2m.若BD=6m,OD=2m,则OC的长为()A.4m B.5m C.D.第1题第2题2.如图,小明在某次投篮中,球的运动路线是抛物线y=﹣0.2x2+3.5的一部分,若命中篮圈中心,则他与篮圈底的距离l是()A.3m B.3.5m C.4m D.4.5m3.某市新建一座景观桥.如图,桥的拱肋ADB可视为抛物线的一部分,桥面AB可视为水平线段,桥面与拱肋用垂直于桥面的杆状景观灯连接,拱肋的跨度AB为40米,桥拱的最大高度CD为16米(不考虑灯杆和拱肋的粗细),则与CD的距离为5米的景观灯杆MN的高度为()A.13米B.14米C.15米D.16米第3题第4题4.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2.下列叙述正确的是()A.小球的飞行高度不能达到15m B.小球的飞行高度可以达到25mC.小球从飞出到落地要用时4s D.小球飞出1s时的飞行高度为10m5.如图是一款抛物线型落地灯筒示意图,防滑螺母C为抛物线支架的最高点,灯罩D距离地面1.5米,最高点C 距灯柱的水平距离为1.6米,灯柱AB=1.5米,若茶几摆放在灯罩的正下方,则茶几到灯柱的距离AE为()米.A.3.2 B.0.32 C.2.5 D.1.66.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2,下列对方程20t﹣5t2=15的两根t1=1与t2=3的解释正确的是()A.小球的飞行高度为15m时,小球飞行的时间是1s B.小球飞行3s时飞行高度为15m,并将继续上升C.小球从飞出到落地要用4s D.小球的飞行高度可以达到25m7.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为()元.A.50 B.90 C.80 D.708.如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长为18m.设矩形菜园的边AB的长为x m,面积为S m2,其中AD≥AB.有下列结论:①x的取值范围为5≤x≤10;②AB的长有两个不同的值满足该矩形菜园的面积为100m2;③矩形菜园ABCD的面积的最大值为.其中,正确结论的个数是()A.0 B.1 C.2 D.3第8题第9题9.如图1是莲花山景区一座抛物线形拱桥,按图2所示建立平面直角坐标系,得到抛物线解析式为y=,正常水位时水面宽AB为36m,当水位上升5m时水面宽CD为()A.10m B.12m C.24m D.48m10.中国廊桥是桥梁与房屋的珠联璧合,代表着中国人的智慧和造艺,是世界文明宝库的一大奇观.如图,这是某座下方为抛物线形的廊桥示意图,已知抛物线的表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF长为()A.米B.16米C.米D.米第10题第11题11.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降2.5米时,水面的宽度为米.()A.3 B.6 C.8 D.912.如图,排球运动员站在点O处练习发球,将球从点O正上方2m的A处发出,把球看成点,其运行的高度y(单位:m)与运行的水平距离x(单位:m)满足关系式,已知球网与点O的水平距离为9m,第12题第13题13.如图,人民医院在某流感高发时段,用防护隔帘布临时搭建了一隔离区,隔离区一面靠长为10m的墙,隔离区分成两个区域,中间也用防护隔帘布隔开.已知整个隔离区所用防护隔帘布总长为24m,如果隔离区出入口的大小不计,并且隔离区靠墙的一面不能超过墙长,小明认为:隔离区的最大面积为48m2;小亮认为:隔离区的面积可能为36m2,你认为他们俩的说法是()A.小明正确,小亮错误 B.小明错误,小亮正确 C.两人均正确 D.两人均错误14.廊桥是我国古老的文化遗产.如图是某座抛物线形廊桥的示意图,已知水面AB宽48m,拱桥最高处点C到水面AB的距离为12m,为保护该桥的安全,现要在该抛物线上的点E,F处安装两盏警示灯,若要保证两盏灯的水平距离EF是24m,则警示灯E距水面AB的高度为()A.12m B.11m C.10m D.9m二.填空题(共14小题)15.如图,有一个截面边缘为抛物线型的水泥门洞.门洞内的地面宽度为8m,两侧距地面4m高处各有一盏灯,两灯间的水平距离为6m,则这个门洞内部顶端离地面的距离为.第15题第16题16.漪汾桥是太原市首座对称双七拱吊桥,每个桥拱可近似看作抛物线.如图是其中一个桥拱的示意图,拱跨AB =60m,以AB的中点O为坐标原点,AB所在直线为x轴,过点O垂直于AB的直线为y轴建立平面直角坐标系,通过测量得AE=2m,DE⊥AB且DE=1.16m,则桥拱(抛物线)的函数表达式为.17.如图1是一座抛物线形拱桥,图2是其示意图,桥拱与水平桥面相交于A、B两点,桥拱最高点C到AB的距离为9m,AB=36m,D、E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7m,则DE的长为m.第17题第18题19.如图,同学们在操场上玩跳大绳游戏,绳甩到最高处时的形状是抛物线型,摇绳的甲、乙两名同学拿绳的手的间距为6米,到地面的距离AO与BD均为0.9米,绳子甩到最高点C处时,最高点距地面的垂直距离为1.8米.身高为1.4米的小吉站在距点O水平距离为m米处,若他能够正常跳大绳(绳子甩到最高时超过他的头顶),则m 的取值范围是.第19题第21题20.超市销售的某商品进价10元/件.在销售过程中发现,该商品每天的销售量y(件)与售价x(元/件)之间满足函数关系式y=﹣5x+150(10≤x≤30),则利润w和售价x之间的函数关系为,该商品售价定为元/件时,每天销售该商品获利最大.21.如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高米,现要水半放置横截面为正方形的箱子,其中两个顶点在抛物线上的最大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子正方形的最大边长为米.22.要建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3米,水柱落地处离池中心3米,水管长应为米.第22题第23题23.某单位要对拱形大门进行粉刷,如图是大门示意图,门柱AD和BC高均为0.75米,门宽AB为9米,上方门拱可以近似的看作抛物线的一部分,最高点到地面AB的最大高度为4.8米,工人师傅站在倾斜木板AM上,木板点M一端恰好落在门拱上且到点A的水平距离AN为7.5米,工人师傅能刷到的最大垂直高度为2.4米,则在MA上方区域中,工人师傅刷不到的最大水平宽度为米.24.如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏州的历史文化.如图②,“门”的内侧曲线呈抛物线形,已知其底部宽度为80m,高度为200m.则离地面150m处的水平宽度(即CD的长)为.第24题第25题25.如图是某拱桥的截面示意图.已知桥底呈抛物线,主桥底部跨度OA=400米,以O为原点,OA所在直线为x轴建立平面直角坐标系,桥面BF∥OA,抛物线最高点E离路面距离EF=10米,BC=120米,CD⊥BF,O,D,B三26.漪汾桥是太原市首座对称双七拱吊桥,每个桥拱可近似看作抛物线.如图是其中一个桥拱的示意图,拱跨AB =60m,以AB的中点O为坐标原点,AB所在直线为x轴,过点O垂直于AB的直线为y轴建立平面直角坐标系,通过测量得AE=2m,DE⊥AB且DE=1.16m,则桥拱最高点到桥面的距离OC为m.27.掷实心球是中学生体质健康检测中的一项,体育老师给出标准示范围,小明发现实心球飞行路线是一条抛物线,若不考虑空气阻力,实心球的飞行高度y(米)与飞行的水平距离x(米)之间具有函数关系y=﹣,则小明这次实心球训练的成绩为.28.如图1,是一座抛物线型拱桥侧面示意图,水面宽AB与桥长CD均为12m,在距离D点3m的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.如图2,桥面上方有3根高度均为5m的支柱CG、OH、DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为2m,下面结论正确的是(填写正确结论序号).①图1抛物线型拱桥的函数表达式y=﹣x2.②图2右边钢缆抛物线的函数表达式y=2+2.③图2左边钢缆抛物线的函数表达式y=2+2.④图2在钢缆和桥拱之间竖直装饰若干条彩带,彩带长度的最小值是3m.三.解答题29.某商场计划用5400元购买一批商品,若将进价降低10%,则可以多购买该商品30件.市场调查反映:售价为每件25元时,每天可卖出250件.如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求该商品原来的进价;(2)在进价没有改变的条件下,若每天所得的销售利润2000元时,且销量尽可能大,商品的售价是多少元;(3)在进价没有改变的条件下,商场的营销部在调控价格方面,提出了A,B两种营销方案.方案A:每件商品涨价不超过5元;方案B:每件商品的利润至少为16元.请比较哪种方案的最大利润更高,并30.电商平台经销某种品牌的儿童玩具,进价为50元/个.经市场调查发现:每周销售量y(个)与销售单价x(元/个)满足一次函数关系(其中x为整数,且50≤x≤100).部分数据如下表所示:销售单价x(元/个)55 60 70销售量y(个)220 200 160根据以上信息,解答下列问题:(1)求y与x的函数关系式;(2)求每周销售这种品牌的儿童玩具获得的利润W元的最大值;(3)电商平台希望每周获得不低于1100元的利润,请计算销售单价的范围.31.某机械厂每月固定生产甲、乙两种零件共80万件,并能全部售出.甲零件每件成本10元,售价16元;乙零件每件成本8元,售价12元.设生产甲零件x万件.所获总利润y万元.(1)写出y与x的函数关系式;(2)如果每月投入的总成本不超过740万元,应该怎样安排甲、乙零件的产量,可使所获的总利润最大?最大总利润是多少万元?(3)该厂在销售中发现:某月甲零件售价每提高1元,甲零件销量会减少5万件,乙零件售价不变,不管生产多少都能卖出,在(2)获得最大利润的情况下,为了获得更大的利润,该厂决定提高甲零件的售价,并重新调整甲、乙零件的生产数量,求甲零件售价提高多少元时,可获总利润最大?最大总利润是多少万元?32.在跳绳时,绳甩到最高处的形状可近似看作抛物线,如图,已知甲、乙两名学生拿绳的手间距为6米,距地面均为1米,绳的最高点距离地面的高度为4米,以水平地面为x轴,垂直于地面且过绳子最高点的直线为y轴,建立平面直角坐标系,如图.(1)求抛物线的函数表达式;(2)身高为1.57米的小明此时进入跳绳,他站直时绳子刚好通过他的头顶,小明与甲的水平距离小于小明与乙的水平距离,求小明离甲的水平距离.33.如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式<不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:≈取1.4)34.某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮建立如图的平面直角坐标系.(1)求出抛物线的解析式;(2)若队员与篮圈中心的水平距离为7m,篮圈距地面3m,问此球能否准确投中?35.高楼火灾越来越受到重视,某区消防中队开展消防技能比赛,如图,在一废弃高楼距地面10m的点A和其正上方点B处各设置了一个火源.消防员来到火源正前方,水枪喷出的水流看作抛物线的一部分(水流出口与地面的距离忽略不计),第一次灭火时,站在水平地面上的点C处,水流恰好到达点A处,且水流的最大高度为12m.待A处火熄灭后,消防员退到点D处,调整水枪进行第二次灭火,使水流恰好到达点B处,已知点D到高楼的水平距离为12m,假设两次灭火时水流的最高点到高楼的水平距离均为3m.建立如图所示的平面直角坐标系.(1)求消防员第一次灭火时水流所在抛物线的解析式;(2)若两次灭火时水流所在抛物线的形状相同,求A、B 之间的距离;(3)若消防员站在到高楼水平距离为9m的地方,想要扑灭距地面高度12~18m范围内的火苗,当水流最高点到高楼的水平距离始终为3m时,直接写出a的取值范围.36.如图1,一辆灌溉车正为绿化带浇水,喷水口H离地面竖直高度为h=1.2米.建立如图2所示的平面直角坐标系,可以把灌溉车喷出水的上、下边缘抽象为两条抛物线的部分图象,把绿化带横截面抽象为矩形DEFG,其水平宽度DE=1.8米,竖直高度EF=1.1米,若下边缘抛物线是由上边缘抛物线向左平移得到的,上边缘抛物线最高点A离喷水口的水平距离为2米,高出喷水口0.4米,灌溉车到绿化带的距离OD为d米.(1)求上边缘抛物线的函数解析式;(2)下边缘抛物线与x轴交点B的坐标为;(3)若d=2.2米,则灌溉车行驶时喷出的水能否浇灌到整个绿化带?请说明理由.37.消防员正在对一处着火点A进行喷水灭火,水流路线L为抛物线的一部分.建立如图所示的平面直角坐标系,已知消防车上的喷水口B高出地面2m,距离原点的水平距离为6m,着火点A距离点B的水平距离为10m,且点B,A分别位于y轴左右两侧,抛物线L的解析式为(其中b,c为常数).(1)写出点B的坐标,求c与b之间满足的关系式.(2)若着火点A高出地面3m,①求水流恰好经过着火点A时抛物线L的解析式,并求它的对称轴;②为彻底消除隐患,消防员对距着火点A水平距离1m的范围内继续进行喷水,直接写出抛物线(水流路线)L解析式中b的取值范围(包含端点)及c的最小值.38.跳大绳是天家喜欢的传统体育运动,绳子两端由两人拉着旋转,绳子离开地面时呈抛物线状,有一次跳大绳,甲、乙两人的手A、B离地面高度都为1米,现以地面为x轴,过点A向地面作的垂线为y轴,建立如图所示的平面直角坐标系,AB=6米,绳子甩到最高处C点离地面2.8米,此时所有点都处于同一平面内.(1)求此时绳子所对应的抛物线表达式;(2)身高1.55米的小红跳入绳中,在绳子的正下方来回跳动,则她离A点的水平方向上的最小距离和最大距离分别是多少米?(3)若身高与小红相同的一群同学想同时跳绳,相互间的间距为0.8米,则此绳最多可容纳多少人一起跳?39.某宾馆有100个房间供游客居住,当每个房间每天的定价是200元时,房间会全部住满,当每个房间每天的定价每增加5元时,就会有一个房间空闲,空闲的房间可以出租储存货物,每个空闲房间每天储存货物可获得50元的利润,如果游客居住房间,宾馆需对每个房间每天额外支出40元的各种费用,储存货物不需要额外支出费用,设空闲房间有x间.(1)用含x的式子表示下列各量.①供游客居住的房间数是间;②每个房间每天的定价是元;③该宾馆每天的总利润w是元;(2)若游客居住每天带来的总利润不低于21600元时,求空闲房间每天储存货物获得的最大总利润是多少元?(3)该宾馆计划接受130吨的货物存储,每个房间最多可以存储3吨,当每间房价定价为多少元时,宾馆每天的总利润w最大,最大利润是多少元?40.宜昌某农副加工厂2023年年初投入80万元经销某种农副产品,由于物美价廉,在惠农网商平台推广下,该产品火爆畅销全国各地.已知该产品的成本为20元/件,经市场调查发现,该产品的销售单价定为25元到30元之间较为合理,该产品每年的销售量y(万件)与售价x(元/件)之间满足一种函数关系,售价x(元/件)与y (万件)的对应关系如表:x…20 26 28 31 35 …y…20 14 12 9 5 …(1)求该产品每年的销售量y(万件)与售价x(元/件)之间的函数关系式;(2)2023年年底该工厂共盈利16万元,2024年国家惠农政策力度更大,生产技术也有所提高,使得该特产的成本平均每件减少了1元.①求2023年该特产的售价;②该产品2024年售价定为多少时,工厂利润最大?最大利润是多少?41.掷实心球是宝鸡市高中阶段学校招生体育考试的选考项目.如图1是一名男生投实心球,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,掷出时起点处高度为,当水平距离为4m时,实心球行进至最高点3m处.(1)求y关于x的函数表达式;(2)根据宝鸡市高中阶段学校招生体育考试男生评分标准,投掷过程中,实心球从起点到落地点的水平距离大于等于9.60m时,得分为满分10分.请计算说明该男生在此项考试中是否得满分.42.如图,一个圆形水池的中央安装了一个柱形喷水装置OA,A处的喷头向外喷水,喷出的水流沿形状相同的曲线向各个方向落下,水流的路线是抛物线y=a(x﹣)2+4的一部分,落点B距离喷水柱底端O处3.5米.(1)写出水流到达的最大高度,并求a的值;(2)在保证水流形状不变的前提下,调整喷水柱OA的高度,使水流落在宽(EF)为米,内侧(点E)距点O为4米的环形区域内(含E,F),直接说出喷水柱OA的高度是变大还是变小,并求它变化的高度h(h>0)(米)的取值范围.43.如图1,一辆灌溉车正为绿化带浇水,喷水口H离地面竖直高度为h=1.2米,建立如图2所示的平面直角坐标系,可以把灌溉车喷出水的上、下边缘抽象为两条抛物线的部分图象,把绿化带横截面抽象为矩形DEFG,其水平宽度DE=2米,竖直高度EF=0.8米,若下边缘抛物线是由上边缘抛物线向左平移得到的,上边缘抛物线最高点A离喷水口的水平距离为2米,高出喷水口0.4米,灌溉车到绿化带的距离OD为d米.(1)求上边缘抛物线的函数解析式;(2)求下边缘抛物线与x轴交点B的坐标;(3)若d=3.2米,则灌溉车行驶时喷出的水(填“能”或“不能”)浇灌到整个绿化带.44.海豚是生活在海洋里的一种动物,它行动敏捷,弹跳能力强.海豚表演是武汉海昌极地海洋公园最吸引人的节目之一.在进行跳水训练时,海豚身体(看成一点)在空中的运行路线可以近似看成抛物线的一部分.如图,在某次训练中以海豚起跳点O为原点,以O与海豚落水点所在的直线为x轴,垂直于水面的直线为y轴建立平面直角坐标系.海豚离水面的高度y(单位:m)与距离起跳点O的水平距离x(单位:m)之间具有函数关系y=ax2+2x,海豚在跳起过程中碰到(不改变海豚的运动路径)饲养员放在空中的离O点水平距离为3m,离水面高度为4.5m 的小球.(1)求海豚此次训练中离水面的最大高度是多少m?(2)求当海豚离水面的高度是时,距起跳点O的水平距离是多少m?(3)在海豚起跳点与落水点之间漂浮着一个截面长CD=6m,高DE=4m的泡沫箱,若海豚能够顺利跳过泡沫箱(不碰到),求点D横坐标n的取值范围.45.如图①为某悬索桥的示意图,其两座桥塔间的主索的形状近似于抛物线,桥塔与锚锭间的主索形状近似于直线,吊索间距均为2米,桥塔和吊索均与水平桥面垂直.如图②,已知桥塔AD和BC的高度为10米,水平桥长AB为32米,桥塔间的主索最低点P距桥面2米,锚锭E,F到桥塔AD,BC的距离均为16米,E,A,B,F四点共线,以CD为x轴,CD的垂直平分线为y轴(恰好经过点P),建立平面直角坐标系xOy.(1)求该抛物线的表达式;(2)为了满足桥梁的使用安全性,长度不小于4米的吊索需要使用密度更高、抗风性能更好的新型吊索,求这座悬索桥所需新型吊索的数量;(3)对桥梁进行维护检修时,发现需要在桥塔AD左右的主索上各加一条竖直钢索进行加固,要求桥塔AD左右的加固钢索相距8米,则最少需要准备加固钢索多少米?46.某公园要在小广场建造一个喷泉景观.在小广场中央O处垂直于地面安装一个高为1.25米的花形柱子OA,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上抛物线路径如图1所示,为使水流形状较为美观,设计成水流在距OA的水平距离为1米时达到最大高度,此时离地面2.25米.(1)以点O为原点建立如图2所示的平面直角坐标系,水流到OA水平距离为x米,水流喷出的高度为y米,求出在第一象限内的抛物线解析式(不要求写出自变量的取值范围);(2)张师傅正在喷泉景观内维修设备期间,喷水管意外喷水,但是身高1.76米的张师傅却没有被水淋到,此时他离花形柱子OA的距离为d米,求d的取值范围;(3)为了美观,在离花形柱子4米处的地面B、C处安装射灯,射灯射出的光线与地面成45°角,如图3所示,光线交汇点P在花形柱子OA的正上方,其中光线BP所在的直线解析式为y=﹣x+4,求光线与抛物线水流之间的最小垂直距离.47.如图①,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度OH=1.5米.如图②,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=2米,竖直高度EF=1米.下边缘抛物线可以看作由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2米,高出喷水口0.5米,灌溉车到l的距离OD为d米.(1)求上边缘抛物线的函数表达式,并求喷出水的最大射程OC;(2)求下边缘抛物线与x轴的正半轴交点B的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带(即矩形DEFC位于上边缘抛物线和下边缘抛物线所夹区域内),求d的取值范围.48.某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(2)求w与x之间的函数关系式;(3)由于受资金的影响,今年投入生产的费用不会超过360万元,求今年可获得最大毛利润。
专题2:一次函数有关的面积问题解题还须熟记以下基本公式.(1) l :y kx b =+与x 轴的交点为(-bk,0),与y 轴的交点为(0,b ); (2) l 与x 轴、y 轴所围成的三角形面积为22b k.(3) k 1212y y x x -=-; (4) 两点间距离公式:d一、由一次函数图象求面积【例1】如图,已知一次函数y =kx +b 的图象经过A (-2,-1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式; (2)试求△DOC 的面积.【解答】(1)把A ,B 点代入得⎩⎪⎨⎪⎧-1=-2k +b ,3=k +b ,解得⎩⎨⎧k =43,b =53.,△y =43x +53.(2)由(1)得C ⎝⎛⎭⎫-54,0,D ⎝⎛⎭⎫0,53,则OC =54,OD =53. △△DOC 的面积=12×54×53=2524.【变式1】已知直线2y x =-+与x 轴、y 轴分别交于点A 、点B ,另一直线(0)y kx b k =+≠经过(1,0)C ,且把AOB ∆的面积分为两部分。
(1)若△AOB 被分成的两部分面积相等,求k 和b 的值; (2)若△AOB 被分成的两部分面积比为1:5,求k 和b 的值。
【解析】(1)由题意知:直线y =kx +b (k ≠0)必过C 点,∵C 是OA 的中点,∴直线y =kx +b 一定经过点B ,C ,如图(1)所示, 把B ,C 的坐标代入可得:⎩⎨⎧=+=02b k b 解得k =−2,b =2;(2)直线将已知三角形分为面积不等的两部分,旋转直线可以发现可能存在两种符合题意的情况,一种是直线与AB 边相交, 16ACD AOB S S ∆∆=。
如图2,设交点00(,)D x y ,由题意易得(2,0)A ,(0,2)B ,则16ACD AOB S S ∆∆=。
所以0111226ACD S y ∆=⨯⨯=⨯,解得023y =,代入2y x =-+可解得043x =, 所以(4/3,2/3)D ,将C 、D 坐标代人直线方程得02433k bk b =+⎧⎪⎨=+⎪⎩,解得2k =,2b =-。
二次函数中的面积问题二次函数中的面积问题是中考的热点,面积问题如果是规则图形可以用常见的面积公式解决问题的就直接用面积公式,如果不能直接用面积公式在坐标系中处理面积问题,通常有以下三种思路:第一是割补法:分割求和、补形作差,其中用的最多的是铅垂线法;第二是同底等高利用平行线转化求面积;第三如果遇到的是面积比可以考虑用相似的性质得到线段比去解决相关问题。
【引例1】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【铅垂法】()11112222ABCACDBCDC D B A SSSCD AE CD BF CD AE BF y y x x =+=⋅+⋅=+=-⋅-【方法梳理】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ; (3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标; (4)根据C 、D 坐标求得铅垂高; (5)12S =⨯水平宽铅垂高.二、转化法——借助平行线转化:若S △ABP =S △ABQ , 若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时,PQ △AB . 当P ,Q 在AB 异侧时,AB 平分PQPABQQBA PDEF OyxCBA 铅垂高水平宽DA BCxyOE三、面积比类型例1.如图,在平面直角坐标系中,直线y =﹣5x +5与x 轴,y 轴分别交于A 、C 两点,抛物线y =x 2﹣6x +5经过A 、C 两点,与x 轴的另一交点为B .若点M 为x 轴下方抛物线上一动点,当点M 运动到某一位置时,△ABM 的面积等于△ABC 面积的,求此时点M 的坐标;例2.如图,抛物线223y x x =-++与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC ,抛物线在线段BC 上方部分取一点P ,连接PB 、PC .(1)过点P 作PH△x 轴交BC 边于点H ,求PH 的最大值;(2)求△PBC 面积的最大值(可以用铅垂线法和平行线法);PyxO CB A变式1.如图,已知二次函数y=﹣x2+2x+3的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.点D为抛物线的顶点,直线BC的解析式为y=﹣x+3,求△BCD 的面积;变式2.如图,抛物线y=﹣x2+4x﹣3;与x轴交于A,B两点,与y轴交于C 点,直线BC方程为y=x﹣3.点P为抛物线上一点,若S△PBC=S△ABC,求P 的坐标;变式3.已知抛物线y=x2﹣2x﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.变式4.如图,在直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴相交于点A (﹣1,0)和点B(3,0),与y轴交于点C.若点D为第四象限内二次函数图象上的动点,设点D的横坐标为m,△BCD的面积为S.求S关于m的函数关系式,并求出S的最大值.例3.如图,抛物线y=﹣x2+4x﹣3与x轴交于点A(1,0)、B(3,0),与y轴交于点C,连接AC,BC.P为抛物线上一点,若S△PBC=S△ABC,求出点P的坐标;【引例2】如图,抛物线y=﹣x2+x+4与坐标轴分别交于A,B,C三点,P 是第一象限内抛物线上的一点且横坐标为m.当CP与x轴不平行时,求的最大值;(化斜为直)例4.如图,抛物线y=﹣x2+2x+3与x轴交于点A和点B,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF =3:2时,求点D的坐标.变式1.抛物线y=x2﹣4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.M是点B关于抛物线对称轴的对称点,Q是抛物线上的动点,它的横坐标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E.设△BEQ和△BEM的面积分别为S1和S2,求的最大值.变式2.已知:如图,二次函数y=﹣x2+x+4;点Q是线段AB上的动点,过点Q作QE△AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;变式3.已知二次函数解析式为y=3x2﹣3,直线l的解析式为y=,点P 为抛物线上第四象限上的一动点,过P作y轴的平行线交AD于M,作PN△AD 于N,当△PMN面积有最大值时,求点P的坐标;例4.如图抛物线y=﹣x2+2x+3经过点A(﹣1,0),点C(0,3),点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.变式1.已知抛物线y=x2﹣2x﹣3.与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).若直线y=mx﹣m﹣4将四边形ACDB的面积分为1:2两部分,则m的值为多少作业:1.已知二次函数y=2x2﹣8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足===m,则m的值是()A.1B.C.2D.42.已知抛物线y=x2﹣x+3;经过A(3,0)、B(4,1)两点,且与y轴交于点C.设抛物线与x轴的另一个交点为D,在抛物线上是否存在点P,使△P AB 的面积是△BDA面积的2倍?若存在,求出点P的坐标;若不存在,请说明理由.3.如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点,点P为线段MB上一个动点,过点P作PD△x轴于点D,若OD=m.设△PCD 的面积为S,试判断S有最大值或最小值吗?若有,求出其最值,若没有,请说明理由;。
一次函数图象中的面积问题(初二)在函数图象面积问题中,要理解函数的原理和定义,才能更有效地计算函数图象的面积。
函数是用来表示定义域和值域之间一对一关系的经典数学工具。
一般来说,函数定义域被称为“自变量”,值域被称为“因变量”。
在函数图象中,通常情况下我们可以利用自变量和因变量之间的函数关系来计算函数图象中的面积。
计算函数图象面积有多种方法可选,分为定积分法和分段法。
定积分法是最常用的一种计算方法,涉及到用定积法来求解,主要在求解积分上应用。
它利用定积分的概念,将要求的面积分解成无数个小的长方形,它们的横轴代表自变量,纵轴代表因变量,面积的总和就是我们要求的函数图象的面积。
一般当函数为直线时,定积分法容易计算,因此称为简化积分法。
另外,还有一种计算方法叫做分段法,它要求我们将函数图象分成若干段,然后分别求解每一段的函数图象面积。
这里分段的方法有以下几种:①直接分段法,即在边界点处断开函数;②折线法,即将把函数分解成连续的折线;③隐式分段法,即将函数定义上的定义域和值域都分成若干段。
经过上述分段后,对每一段具体函数图象面积可以用定积分法或其他方法来计算,最后将每一段面积求和即为整体函数图象面积。
总之,函数图象面积计算一般常用的方法有定积分法和分段法,各有优缺点。
由于定积分法要求将函数面积分解成无限小的矩形块,对于函数的连续性要求非常高,而分段法需要把函数分解成若干段,并且需要精细分析函数的上升段,下降段等,但同时也可以在给定的范围内计算函数的面积,从而获得较精确的结果,可以根据具体情况取舍。
专题第02讲二次函数的实际应用(30题)1.(2022秋•泰兴市期末)一水果店售卖一种水果,以8元/千克的价格进货,经过往年销售经验可知:以12元/千克售卖,每天可卖60千克;若每千克涨价0.5元,每天要少卖2千克;若每千克降价0.5元,每天要多卖2千克,但不低于成本价.设该商品的价格为x元/千克时,一天销售总质量为y千克.(1)求y与x的函数关系式.(2)若水果店货源充足,每天以固定价格x元/千克销售(x≥8),试求出水果店每天利润W与单价x的函数关系式,并求出当x为何值时,利润达到最大.2.(2023•朝阳)某超市以每件10元的价格购进一种文具,销售时该文具的销售单价不低于进价且不高于19元.经过市场调查发现,该文具的每天销售数量y(件)与销售单价x(元)之间满足一次函数关系,部分数据如下表所示:销售单价x/元…121314……363432…每天销售数量y/件(1)直接写出y与x之间的函数关系式;(2)若该超市每天销售这种文具获利192元,则销售单价为多少元?(3)设销售这种文具每天获利w(元),当销售单价为多少元时,每天获利最大?最大利润是多少元?3.(2023•海淀区校级开学)电缆在空中架设时,两端挂起的电缆下垂可以近似的看成抛物线的形状.如图,在一个斜坡BD上按水平距离间隔60米架设两个塔柱,每个塔柱固定电缆的位置离地面高度为27米(AB =CD=27米),以过点A的水平线为x轴,水平线与电缆的另一个交点为原点O建立平面直角坐标系,如图所示.经测量,AO=40米,斜坡高度12米(即B、D两点的铅直高度差).结合上面信息,回答问题:(1)若以1米为一个单位长度,则D点坐标为,下垂电缆的抛物线表达式为.(2)若电缆下垂的安全高度是13.5米,即电缆距离坡面铅直高度的最小值不小于13.5米时,符合安全要求,否则存在安全隐患.(说明:直线GH⊥x轴分别交直线BD和抛物线于点H、G.点G距离坡面的铅直高度为GH的长),请判断上述这种电缆的架设是否符合安全要求?请说明理由.4.(2023春•江岸区校级月考)如图,在斜坡底部点O处安装一个的自动喷水装置,喷水头(视为点A)的高度(喷水头距喷水装置底部的距离)是1.8米,自动喷水装置喷射出的水流可以近似地看成抛物线.当喷射出的水流与喷水装置的水平距离为8米时,达到最大高度5米.以点O为原点,自动喷水装置所在的直线为y轴,建立平面直角坐标系.(1)求抛物线的解析式;(2)斜坡上距离O水平距离为10米处有一棵高度为1.75米的小树NM,MN垂直水平地面且M点到水平地面的距离为2米.①记水流的高度为y1,斜坡的高度为y2,求y1﹣y2的最大值(斜坡可视作直线OM);②如果要使水流恰好喷射到小树顶端的点N,直接写出自动喷水装置应向后平移(即抛物线向左)多少米?5.(2023•武汉模拟)如图,灌溉车为绿化带浇水,喷水口H离地竖直高度OH为1.2m.可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度EF=0.5m.下边缘抛物线是由上边缘抛物线向左平移得到,上边抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.4m,灌溉车到绿化带的距离OD为d(单位:m).(1)求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;(2)求下边缘抛物线与x轴的正半轴交点B的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带,直接写出d的取值范围.6.(2022秋•华容区期末)农户销售某农产品,经市场调查发现:若售价为6元/千克,日销售量为40千克,若售价每提高1元/千克,日销售量就减少2千克.现设售价为x元/千克(x≥6且为正整数).(1)若某日销售量为24千克,求该日产品的单价;(2)若政府将销售价格定为不超过18元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给农户补贴a元后(a为正整数),发现最大日收入(日收入=销售额+政府补贴)还是不超过450元,并且只有5种不同的单价使日收入不少于440元,请直接写出所有符合题意的a的值.7.(2023春•蔡甸区月考)如图,抛物线AB,AC是某喷水器喷出的水抽象而成,抛物线AB由抛物线AC 向左平移得到,把汽车横截面抽象为矩形DEFG,其中DE=米,DG=2米,OA=h米,抛物线AC表达式为y=a(x﹣2)2+h+,h=,且点A,B,D,G,C均在坐标轴上.(1)求抛物线AC表达式.(2)求点B的坐标.(3)要使喷水器喷出的水能洒到整个汽车,记OD长为d米,直接写出d的取值范围.8.(2022秋•华容区期末)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y 轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高.球第一次落地点后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取,)9.(2023•淮安一模)某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?10.(2023•盘锦)某工厂生产一种产品,经市场调查发现,该产品每月的销售量y(件)与售价x(万元/件)之间满足一次函数关系,部分数据如表:每件售价x/万元…2426283032…月销售量y/件…5248444036…(1)求y与x的函数关系式(不写自变量的取值范围).(2)该产品今年三月份的售价为35万元/件,利润为450万元.①求:三月份每件产品的成本是多少万元?②四月份工厂为了降低成本,提高产品质量,投资了450万元改进设备和革新技术,使每件产品的成本比三月份下降了14万元.若四月份每件产品的售价至少为25万元,且不高于30万元,求这个月获得的利润w(万元)关于售价x(万元/件)的函数关系式,并求最少利润是多少万元.11.(2023春•江都区月考)某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1(单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示该产品销售价y2(单位:元)与产量x(单位:kg)之间的函数关系,已知0<x≤120,m>60.(1)求线段AB所表示的y1与x之间的函数表达式;(2)若m=90,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m<70,该产品产量为多少时,获得的利润最大?最大利润是多少?12.(2023•梁溪区模拟)为加强劳动教育,各校纷纷落实劳动实践基地.某校学生在种植某种高产番茄时,经过试验发现:①当每平方米种植2株番茄时,平均单株产量为8.4千克;②在每平方米种植的株数不超过10的前提下,以同样的栽培条件,株数每增加1株,平均单株产量减少0.8千克.(1)求平均单株产量y(千克)与每平方米种植的株数x(x为整数,且2≤x<10)之间的函数关系式;(2)已知学校劳动基地共有10平方米的空地用于种植这种番茄.问:当每平方米种植多少株时,该学校劳动基地能获得最大的产量?最大产量为多少千克?13.(2023春•仓山区校级期末)根据以下素材,探索完成任务.如何设计大棚苗木种植方案?素材1:图1中有一个大棚苗木种植基地及其截面图,其下半部分是一个长为20m,宽为1m的矩形,其上半部分是一条抛物线,现测得,大棚顶部的最高点距离地面5m.素材2:种植苗木时,每棵苗木高1.76m,为了保证生长空间,相邻两棵苗木种植点之间间隔1m,苗木顶部不触碰大棚,且种植后苗木成轴对称分布.(1)任务1:确定大棚上半部分形状.根据图2建立的平面直角坐标系,通过素材1提供的信息确定点的坐标,求出抛物线的函数关系式;(2)任务2:探究种植范围.在图2的坐标系中,在不影响苗木生长的情况下,确定种植点的横坐标的取值范围.14.(2023•岳麓区校级二模)从2020年开始,越来越多的商家向线上转型发展,“直播带货”已经成为商家的一种促销的重要手段.某商家在直播间销售一种进价为每件10元的日用商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)满足y=﹣10x+400,设销售这种商品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)该商家每天想获得1250元的利润,又要减少库存,应将销售单价定为多少元?(3)若销售单价不低于28元,且每天至少销售50件时,求W的最大值.15.(2022秋•蜀山区校级期末)某超市经销甲、乙两种商品.商品甲每千克成本为20元,经试销发现,该种商品每天销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系,商品乙的成本为4元/千克,销售单价为10元/千克,但每天供货总量只有80千克,且能当天销售完.为了让利消费者,超市开展了“买一送一”活动,即买1千克的商品甲,免费送1千克的商品乙.(1)直接写出销售量y与销售单价x之间的函数表达式;(2)设这两种商品的每天销售总额为S元,求出S(元)与x(元/千克)的函数关系式;(注:商品的销售额=销售单价×销售量)(3)设这两种商品销售总利润为W,若商品甲的售价不低于成本,不超过成本的150%,当销售单价定为多少时,才能使当天的销售总利润最大?最大利润是多少?(注:销售总利润=两种商品的销售总额﹣两种商品的总成本)16.(2023春•莲池区校级期中)为促进学生德智体美劳全面发展,推动文化学习与体育锻炼协调发展,某校举办了学生趣味运动会.该校计划用不超过5900元购买足球和篮球共36个,分别作为运动会团体一、二等奖的奖品.已知足球单价170元,篮球单价160元.(1)学校至多可购买多少个足球?(2)受卡塔尔世界杯的影响,学校商议决定按(1)问的结果购买足球作为一等奖奖品,以鼓励更多学生热爱足球,同时商场也对足球和篮球的价格进行调整,足球单价下降了a%,篮球单价上涨了,最终学校购买奖品的经费比计划经费的最大值节省了155元,求a的值.17.(2023春•宜都市期末)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有一次函数关系:y=ax+b.当x=5时,y=40;当x=30时,y=140.B 城生产产品的每件成本为7万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本之和为660万元时,求A,B两城各生产产品多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D 两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,若A,B 两城总运费之和的最小值为150万元,求m的值.18.(2023•海淀区校级四模)某公园修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安装一个可调节角度的喷水头,从喷水头喷出的水柱形状是一条抛物线.建立如图所示的平面直角坐标系,抛物线形水柱的竖直高度y(单位:m)与到池中心的水平距离x(单位:m)满足的关系式近似为y=a (x﹣h)2+k(a<0).(1)在某次安装调试过程中,测得x与y的部分对应值如下表:水平距离x/m00.51 1.52 2.53竖直高度y/m 2.25 2.81253 2.8125 2.25 1.31250根据表格中的数据,解答下列问题:①水管的长度是m;②求出y与x满足的函数解析式y=a(x﹣h)2+k(a<0);(2)安装工人在上述基础上进行了下面两种调试:①不改变喷水头的角度,将水管长度增加1m,水柱落地时与池中心的距离为d1;②不改变水管的长度,调节喷水头的角度,使得水柱满足y=﹣0.6(x﹣1.5)2+3.6,水柱落地时与池中心的距离为d2.则比较d1与d2的大小关系是:d1d2(填“>”或“=”或“<”)19.(2023•罗山县三模)实心球是中考体育项目之一.在掷实心球时,实心球被掷出后的运动路线可以看作是抛物线的一部分.已知小军在一次掷实心球训练中,第一次投掷时出手点距地面1.8m,实心球运动至最高点时距地面3.4m,距出手点的水平距离为4m.设实心球掷出后距地面的竖直高度为y(m),实心球距出手点的水平距离为x(m).如图,以水平方向为x轴,出手点所在竖直方向为y轴建立平面直角坐标系.(1)求第一次掷实心球时运动路线所在抛物线的表达式.(2)若实心球投掷成绩(即出手点与着陆点的水平距离)达到12.4m为满分,请判断小军第一次投掷实心球能否得满分.(3)第二次投掷时,实心球运动的竖直高度y与水平距离x近似满足函数关系y=﹣0.08(x﹣5)2+3.8记小军第一次投掷时出手点与着陆点的水平距离为d1,第二次投掷时出手点与着陆点的水平距离为d2,则d1d2.(填“>”“<”“=”)20.(2023•花溪区校级一模)过山车是一项富有刺激性的娱乐工具,在乘坐过山车的过程中能够亲身体验由能量守恒、加速度和力交织在一起产生的效果,那感觉真是妙不可言.如图是合肥某乐园中部分过山车滑道所抽象出来的函数图象,线段AB是一段直线滑道,且AB长为米,点A到地面距离OA=6米,点B到地面距离BE=3米,滑道B﹣C﹣D可以看作一段抛物线,最高点为C(8,4).(1)求滑道B﹣C﹣D部分抛物线的函数表达式;(2)当小车(看成点)沿滑道从A运动到D的过程中,小车距离x轴的垂直距离为2.5米时,它到出发点A的水平距离是多少?(3)现在需要对滑道C﹣D部分进行加固,建造某种材料的水平和竖直支架CF,PH,PG.已知这种材料的价格是75000元/米,为了预算充足,至少需要申请多少元的资金.21.(2022秋•丰都县期末)抛实心球是丰都中考体育考试项目之一,如图1是一名男生投实心球情境,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,掷出时,起点处高度为1.9m,当水平距离为4m时,实心球行进至最高点3.5m处.(1)求y关于x的函数表达式;(2)根据中考体育考试评分标准(男生版),投掷过程中,实心球从起点到落地点的水平距离大于等于9.7m时,即可得满分10分.该男生在此项考试中能否得满分,请说明理由.22.(2022秋•建昌县期末)2022年11月,“中国传统制茶技艺及其相关习俗”申遗成功,弘扬茶文化,倡导“和美雅静”的生活方式已成时尚.某茶商经销某品牌茶,成本为50元/千克,经市场调查发现,每周的销量y(千克)与销售单价x(元/千克)满足一次函数关系,部分数据列表如下:566575…销售单价x(元/千克)销量y(千克)12811090…(1)求y与x的一次函数关系式;(2)求该茶商这一周销售该品牌茶叶所获利润w(元)的最大值.23.(2023•锦州二模)近年来国家出台政策要求电动车上牌照,“保安全、戴头盔”出行.某头盔专卖店购进一批单价为36元的头盔.在销售中,通过分析销售情况发现这种头盔的月销售量y(个)与售价x(元/个)(42≤x≤72)满足一次函数关系,下表是其中的两组对应值.售价x(元/个)…5055…月销售量y(个)…10090…(1)求y与x之间的函数关系式;(2)专卖店的优惠活动:若购买一个这种头盔,就赠送一个成本为6元的头盔面罩.请问这种头盔的售价定为多少元时,月销售利润最大,最大月销售利润是多少元?24.(2023•金湖县三模)某超市购进甲、乙两种商品,已知购进5件甲商品和2件乙商品,需80元:购进3件甲商品和4件乙商品,需90元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当12≤x≤18时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:销售单价x(元/件)1218日销售量y(件)164请写出当12≤x≤18时,y与x之间的函数关系式;(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?25.(2022秋•新抚区期末)疫情防控常态化,全国人民同心抗疫.某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售,市场调查发现,线下的月销量y(件)与线下售价x(元/件,且12≤x≤16)之间满足一次函数关系,部分数据如下表:x(元/件)12131415y(件)1000900800700(1)求y与x之间的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为600件.当x为何值时,线上和线下销售月利润总和W达到最大?最大利润是多少?(3)要使(2)中月利润总和W不低于4400元,请直接写出x的取值范围.26.(2023•嘉鱼县模拟)为巩固扶贫攻坚成果,我县政府督查各部门和单位对口扶贫情况.某单位的帮扶对象种植的农产品在某月(按30天计)的第x天(x为正整数)的销售价格p(元/千克)关于x的函数关系为p=,销售量y(千克)与x之间的关系如图所示.(1)直接写出y与x之间的函数关系式和x的取值范围;(2)求该农产品的销售量有几天不超过60千克?(3)当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额=销售量×销售价格)27.(2023•云梦县校级三模)李丽大学毕业后回家乡创业,开了一家服装专卖店代理品牌服装的销售.已知该品牌服装进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),每天付员工的工资每人82元,每天应支付其他费用106元.(1)直接写出日销售y(件)与销售价x(元/件)之间的函数关系式;(2)当某天的销售价为48元/件时,收支恰好平衡(收入=支出),求该店员工人数;(3)若该店只有2名员工,则每天能获得的最大利润是多少元?此时,每件服装的价格应定为多少元?28.(2023•卧龙区二模)如图,在斜坡底部点O处安装一个自动喷水装置,喷水头(视为点A)的高度(喷水头距喷水装置底部的距离)是1.8米,自动喷水装置喷射出的水流可以近似地看成抛物线.当喷射出的水流与喷水装置的水平距离为8米时,达到最大高度5米.以点O为原点,自动喷水装置所在的直线为y轴,建立平面直角坐标系.(1)求抛物线的函数关系式;(2)斜坡上距离O水平距离为10米处有一棵高度为1.75米的小树NM,MN垂直水平地面,且M点到水平地面的距离为2米,绿化工人向左水平移动喷水装置后,水流恰好喷射到小树顶端的点N,求自动喷水装置向左水平平移(即抛物线向左)了多少米?29.(2023•竞秀区二模)过山车是一项富有刺激性的娱乐工具,深受年轻游客的喜爱.某游乐场修建了一款大型过山车.如图所示,A→B→C为这款过山车的一部分轨道(B为轨道最低点),它可以看成一段抛物线,其中OA=16.9米,OB=13米(轨道厚度忽略不计).(1)求抛物线A→B→C的函数表达式;(2)在轨道上有两个位置P和C到地面的距离均为n米,当过山车运动到C处时,又进入下坡段C→E (接口处轨道忽略不计,E为轨道最低点),已知轨道抛物线C→E→F的形状与抛物线A→B→C完全相同,E点坐标为(33,0),求n的值;(3)现需要对轨道下坡段A→B进行安全加固,建造某种材料的水平和竖直支架GD、GM、HI、HN,且要求MN=2OM,已知这种材料的价格是100000元/米,请计算OM多长时,造价最低?最低造价为多少元?30.(2023•利辛县模拟)如图,某小区的景观池中安装一雕塑OA,OA=2米,在点A处安装喷水装置,喷出两股水流,两股水流可以抽象为平面直角坐标系中的两条抛物线(图中的C1,C2)的部分图象,两条抛物线的形状相同且顶点的纵坐标相同,且经测算发现抛物线C2的最高点(顶点)C距离水池面2.5米,且与OA的水平距离为2米.(1)求抛物线C2的解析式;(2)求抛物线C1与x轴的交点B的坐标;(3)小明同学打算操控微型无人机在C1,C2之间飞行,为了无人机的安全,要求无人机在竖直方向上的活动范围不小于0.5米,设无人机与OA的水平距离为m,求m的取值范围.。
与函数图象有关面积的求法求解与函数图象有关的图形面积问题,在各类考试中常常出现,许多同学难以入手,实际上,求解这类问题的关键是画出图形后,设法将图形转化为三角形,再求出三角形的底和高。
现分类例析如下。
一、直线与坐标轴围成的面积例1 设直线1x y :l 1-=交x 轴于A ,交y 轴于D ,直线27x 21y :l 2+-=交y 轴于B ,且21l l 与交于C.求ABC ∆的面积S.解:画出略图.可见.S S S ABC ABD BCD ∆∆-=∆的面积只要求出底边长和高(点C 、A 的横坐标).在⎪⎩⎪⎨⎧+-=-==-=+-=-=,27x 21y ,1x y ).0,1(A ,0y );27,0),B(1,0D (,0x ,27x 21y ,1x y 再联立得令得分别令中得C(3,2).291)1(27213)1(2721x DB 21x DB 21S Ac =⨯⎥⎦⎤⎢⎣⎡---⨯⎥⎦⎤⎢⎣⎡--⨯=⨯-⨯=所以 二、直线与双曲线例2 设直线y=-x+5与双曲线x4y =交于A 、B 两点,求OAB ∆的面积。
解:画出示意图,直接求OAB ∆的底边AB 长和相应的高,比较困难。
现割补法进行转化,记直线交x 轴于点C ,交y 轴于点D ,则所求面积.S S S S OBD OCA OCD ∆∆∆--=在y=-x+5中,分别令y=0,x=0,得C (5,0),D (0,5)。
又由⎪⎩⎪⎨⎧=+-=,x 4y ,5x y 得A (4,1),B (1,4) 从而.215152115215521S =⨯⨯-⨯⨯-⨯⨯=三、直线与抛物线例3 已知抛物线m x 2x y 2++-=交x 轴于两点10x x ,<x x ),0,x (B ),0,x (A 22122121=+且. 又点P (4,n )在该抛物线上,设抛物线的顶点是C ,求ACP ∆的面积S 。
分析:将ACP ∆分成两个APD ACD 、∆∆,需求底边AD 的长及相应的高,即点C 、点P 的纵坐标。
专题02二次函数章末重难点题型【举一反三】【考点1二次函数的概念】二次函数的定义:一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.y ═ax 2+bx +c (a 、b 、c 是常数,a ≠0)也叫做二次函数的一般形式.【例1】(2019秋•泰兴市校级月考)下列函数关系式中,y 是x 的二次函数是()A .2y ax bx c =++B .21y x x=-C .225y x =++D .2(32)(43)12y x x x =+--【变式1-1】(2019秋•文水县期中)已知函数:①2y ax =;②23(1)2y x =-+;③22(3)2y x x =+-;④21y x x =+.其中,二次函数的个数为()A .1个B .2个C .3个D .4个【变式1-2】(2019秋•苍溪县期中)已知函数||(2)1m y m x mx =-+-,其图象是抛物线,则m 的取值是()A .2m =B .2m =-C .2m =±D .0m ≠【变式1-3】(2019秋•南康区期中)若22(2)32my m x x -=-+-是二次函数,则m 等于()A .2-B .2C .2±D .不能确定【考点2二次函数与一次函数图象】【例2】(2019秋•花都区期中)在同一直角坐标系中2y ax b =+与(0,0)y ax b a b =+≠≠图象大致为()A .B .C .D .【变式2-1】(2018秋•厦门期中)在同一平面直角坐标系中,函数2y ax bx =+与y bx a =-+的图象可能是()A .B .C .D .【变式2-2】(2019秋•沂水县期中)在同一直角坐标系中,一次函数y ax c =+和二次函数2()y a x c =+的图象大致为()A .B .C .D .【变式2-3】(2016秋•工业园区期中)如图,一次函数y x =与二次函数2y ax bx c =++图象相交于A 、B 两点,则函数2(1)y ax b x c =+-+的图象可能是()A .B .C .D .【考点3二次函数的增减性】【例3】(2018春•利津县期末)设1(2,)A y -,2(1,)B y ,3(2,)C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为()A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>【变式3-1】(2019秋•宣威市校级月考)已知二次函数21572y x x =--+,若自变量x 分别取1x ,2x ,3x ,且1230x x x <<<,则对应的函数值1y ,2y ,3y 的大小关系正确的是()A .123y y y >>B .123y y y <<C .231y y y >>D .231y y y <<【变式3-2】(2018秋•建昌县期中)已知抛物线2(0)y ax bx c a =++<过(3,0)A -,(1,0)B ,1(5,)C y -,2(2,)D y -四点,则1y 与2y 的大小关系是()A .12y y >B .12y y =C .12y y <D .不能确定【变式3-3】(2018•南海区期中)已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下表所示:x⋯0123⋯y⋯5212⋯点1(A x ,1)y 、2(B x ,2)y 在函数的图象上,则当101x <<,223x <<时,1y 与2y 的大小关系正确的是()A .y 1≥y 2B .y 1>y 2C .y 1<y 2D .y 1≤y 2【考点4二次函数图象的平移】【例4】(2018秋•花都区期中)抛物线22y x =-经过平移得到22(1)3y x =--+,平移方法是()A .向左平移1个单位,再向下平移3个单位B .向左平移1个单位,再向上平移3个单位C .向右平移1个单位,再向下平移3个单位D .向右平移1个单位,再向上平移3个单位【变式4-1】(2019•天津校级期中)已知抛物线243y x x =-+与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为()A .221y x x =++B .221y x x =+-C .221y x x =-+D .221y x x =--【变式4-2】(2018秋•鼓楼区校级期中)在平面直角坐标系中,如果抛物线22y x =不动,而把x 轴、y 轴分别向下、向右平移2个单位长度,那么在新坐标系下抛物线的解析式为()A .22(2)2y x =-+B .22(2)2y x =+-C .22(2)2y x =--D .22(2)2y x =++【变式4-3】(2018秋•襄州区期中)将二次函数2y x bx c =++的图象先向左平移3个单位长度,再向上平移2个单位长度得到二次函数221y x x =-+的图象,用b ,c 的值分别是()A .14b =,8c =-B .2b =-,4c =C .8b =-,14c =D .4b =,2c =-【考点5二次函数的图象与a ,b ,c 的关系】【例5】(2018秋•渝中区校级期中)已知二次函数的图象如下所示,下列5个结论:①0abc >;②0b a c -->;③42a c b +>-;④30a c +>;⑤()(1a b m am b m +>+≠的实数),其中正确的结论有()A .①②③B .②③④C .②③⑤D .③④⑤【变式5-1】(2018秋•苍溪县期中)二次函数y =ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②3b +2c <0;③m (am +b )+b ≤a ;④(a +c )2<b 2;其中正确结论的个数有()个.A .1个B .2个C .3个D .4【变式5-2】(2018秋•江岸区期中)已知二次函数2(0)y ax bx c a =++≠,过(1,1)(2y ,2)y .①若10y >时,则0a b c ++>②若a b =时,则12y y <③若10y <,20y >,且0a b +<,则0a >④若21b a =-,3c a =-,且10y >,则抛物线的顶点一定在第三象限上述四个判断正确的有()个.A .1B .2C .3D .4【变式5-3】(2019•凉山州)二次函数2y ax bx c =++的部分图象如图所示,有以下结论:①30a b -=;②240b ac ->;③520a b c -+>;④430b c +>,其中错误结论的个数是()A .1B .2C .3D .4【考点6二次函数与一元二次方程之间的关系】【例6】(2019春•天心区校级期中)函数2y ax bx c =++的图象如图所示,那么关于一元二次方程220ax bx c ++-=的根的情况是()A .有两个不相等的实数根B .有两个异号的实数根C .有两个相等的实数根D .没有实数根【变式6-1】(2019春•安吉县期中)如图,抛物线2y x mx =-+的对称轴为直线2x =,若关于x 的一元二次方程20(x mx t t +-=为实数)在13x <<的范围内有解,则t 的取值范围是()A .﹣5<t ≤4B .3<t ≤4C .﹣5<t <3D .t >﹣5【变式6-2】(2018秋•福清市期中)函数21y x x =+-中x 与y 的对应关系如下表所示,方程210x x +-=两实数根中有一个正根1x ,下列对1x 的估值正确的是()x⋯0.50.550.60.650.70.75⋯y⋯0.25-0.1475-0.04-0.07250.190.3125⋯A .10.50.55x <<B .10.550.6x <<C .10.60.65x <<D .10.650.7x <<【变式6-3】(2019秋•萧山区期中)已知关于x 的方程2()()0x m x n +--=,存在a ,b 是方程2()()0x m x n +--=的两个根,则实数m ,n ,a ,b 的大小关系可能是()A .m a b n <<<B .m a n b <<<C .a m b n <<<D .a m n b<<<【考点7二次函数解析式】【例7】经过(4,0)A ,(2,0)B -,(0,3)C 三点的抛物线解析式是.【变式7-1】若二次函数2y ax bx c =++的x 与y 的部分对应值如下表:x7-6-5-4-3-2-y27-13-3-353则二次函数的解析式为.【变式7-2】(2019秋•荣成市期中)二次函数在32x =时,有最小值14-,且函数的图象经过点(0,2),则此函数的解析式为.【变式7-3】(2013秋•潜山县校级月考)抛物线2y ax bx c =++与x 轴两个交点为(1,0)-,(3,0),其形状与抛物线22y x =相同,则抛物线解析式为.【考点8二次函数的应用—销售问题】【例8】(2018秋•鼓楼区校级期中)某公司投资销售一种进价为每件15元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:20800y x =-+,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设该公司每月获得利润为w (元),求每月获得利润w (元)与销售单价x (元)之间的函数关系式,并确定自变量x 的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?【变式8-1】(2019春•宿豫区期中)某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件,设衬衫的单价降x 元,每天获利y 元.(1)如果商场里这批衬衫的库存只有44件,那么衬衫的单价应降多少元,才能使得这批衬衫一天内售完,且获利最大,最大利润是多少?(2)如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降多少元?【变式8-2】(2019春•安吉县期中)为建设美丽家园,某社区将辖区内的一块面积为21000m 的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为2()x m ,种草所需费用1y (元)与2()x m 的函数关系图象如图所示,栽花所需费用2y (元)与2()x m 的函数关系式为220.012030000(01000)y x x x =--+.(1)求1y (元)与2()x m 的函数关系式;(2)设这块21000m 空地的绿化总费用为W (元),请利用W 与x 的函数关系式,求绿化总费用W 的最大值.【变式8-3】(2019秋•沂源县期末)某公司生产的某种商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m (件)与时间t (天)的关系如下表:时间t (天)1351036⋯日销售量m(件)9490867624⋯未来40天内,前20天每天的价格y 1(元/件)与时间t (天)的函数关系式为y 1=t +25(1≤t ≤20且t 为整数),后20天每天的价格y 2(元/件)与时间t (天)的函数关系式为y 2=﹣t +40(21≤t ≤40且t 为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m (件)与t (天)之间的表达式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?【考点9二次函数的应用—面积问题】【例9】(2018秋•开封期中)如图,用30m长的篱笆沿墙建造一边靠墙的矩形菜园,已知墙长18m,设矩形的宽AB为xm.(1)用含x的代数式表示矩形的长BC;(2)设矩形的面积为y,用含x的代数式表示矩形的面积y,并求出自变量的取值范围;(3)这个矩形菜园的长和宽各为多少时,菜园的面积y最大?最大面积是多少?【变式9-1】(2018秋•洛阳期中)为了节省材料,小浪底水库养殖户小李利用水库的岸堤(足够长)为一边,用总长为120米的网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积ym.相等.设BC的长度为xm,矩形区域ABCD的面积为2(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)请你帮养殖户小李计算一下BC边多长时,养殖区ABCD面积最大,最大面积为多少?【变式9-2】(2018秋•洪山区期中)如图,ABCD是一块边长为8米的正方形苗圃,园林部门拟将其改造为矩形AEFG的形状,其中点E在AB边上,点G在A的延长线上,2,设BE的长为x米,改DG BE造后苗圃AEFG的面积为y平方米.(1)求y与x之间的函数关系式(不需写自变量的取值范围);(2)若改造后的矩形苗圃AEFG的面积与原正方形苗圃ABCD的面积相等,此时BE的长为米.(3)当x为何值时改造后的矩形苗圃AEFG的最大面积?并求出最大面积.【变式9-3】(2018秋•鼓楼区期中)如图,一面利用墙(墙的最大可用长度为10)m ,用长为24m 的篱笆围成中间隔有一道篱笆的矩形花圃,设花圃的一边AB 的长为()x m ,面积为2()y m .(1)若y 与x 之间的函数表达式及自变量x 的取值范围;(2)若要围成的花圃的面积为245m ,则AB 的长应为多少?【考点10二次函数的应用—抛物线问题】【例10】(2019秋•南海区校级期中)如图,已知排球场的长度OD 为18米,位于球场中线处球网的高度AB 为2.4米,一队员站在点O 处发球,排球从点O 的正上方1.6米的C 点向正前方飞出,当排球运行至离点O 的水平距离OE 为6米时,到达最高点G 建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.4米时,对方距离球网0.4m 的点F 处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(2)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h 的取值范围是多少?(排球压线属于没出界)【变式10-1】(2019秋•台安县期中)一位篮球运动员投篮,球沿抛物线21752y x =-+运行,然后准确落入篮筐内,已知篮筐的中心距离底面的距离为3.05m .(1)求球在空中运行的最大高度为多少m ?(2)如果该运动员跳投时,球出手离地面的高度为2.25m ,要想投入篮筐,则问他距离蓝筐中心的水平距离是多少?【变式10-2】甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O 点正上方1m 的P 处发出一球,羽毛球飞行的高度()y m 与水平距离()x m 之间满足函数表达式2(4)y a x h =-+,已知点O 与球网的水平距离为5m ,球网的高度为1.55m .(1)当124a =-时,①求h 的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O 的水平距离为7m ,离地面的高度为125m 的Q 处时,乙扣球成功,求a 的值.【变式10-3】(2019秋•萧山区期中)小明跳起投篮,球出手时离地面209m ,球出手后在空中沿抛物线路径运动,并在距出手点水平距离4m 处达到最高4m .已知篮筐中心距地面3m ,与球出手时的水平距离为8m ,建立如图所示的平面直角坐标系.(1)求此抛物线对应的函数关系式;(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?(3)在篮球比赛中,当进攻方球员要投篮时,防守方球员常借身高优势及较强的弹跳封杀对方,这就是平常说的盖帽.(注:盖帽应在球达到最高点前进行,否则就是“干扰球”,属犯规.)若此时,防守方球员乙前来盖帽,已知乙的最大摸球高度为3.19m ,则乙在进攻方球员前多远才能盖帽成功?【考点11二次函数与图形面积的综合】【例11】如图,抛物线2(1)y a x =+的顶点为A ,与y 轴的负半轴交于点B ,且OB OA =.(1)求抛物线的解析式;(2)若点(3,)C b -在该抛物线上,求ABC S ∆的值.【变式11-1】(2019•新余模拟)如图,已知二次函数图象的顶点为(1,3)-,并经过点(2,0)C .(1)求该二次函数的解析式;(2)直线3y x =与该二次函数的图象交于点B (非原点),求点B 的坐标和AOB ∆的面积;【变式11-2】(2019春•利津县期中)如图,抛物线22y x x =+-与x 轴交于A 、B 两点,与y 轴交于点C .(1)求点A ,点B 和点C 的坐标;(2)在抛物线的对称轴上有一动点P ,求PB PC +的值最小时的点P 的坐标;(3)若点M 是直线AC 下方抛物线上一动点,求四边形ABCM 面积的最大值.【变式11-3】如图,二次函数2y ax bx =+的图象经过点(2,4)A 与(6,0)B .(1)求a ,b 的值;(2)点C 是该二次函数图象上A ,B 两点之间的一动点,横坐标为(26)x x <<,写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.【考点12与二次函数有关的存在性问题】【例12】已知抛物线2(0)y x bx c c =-++>过点(1,0)C -,且与直线72y x =-只有一个交点.(1)求抛物线的解析式;(2)若直线3y x =-+与抛物线相交于两点A 、B ,则在抛物线的对称轴上是否存在点Q ,使ABQ ∆是等腰三角形?若存在,求出Q 点坐标;若不存在,说明理由.【变式12-1】(2019•齐齐哈尔一模)如图,过点(1,0)A -、(3,0)B 的抛物线2y x bx c =-++与y 轴交于点C ,它的对称轴与x 轴交于点E .(1)求抛物线解析式;(2)求抛物线顶点D 的坐标;(3)若抛物线的对称轴上存在点P 使3PCB POC S S ∆∆=,求此时DP 的长.【变式12-2】如图,已知抛物线23y x mx =-++与x 轴交于点A 、B 两点,与y 轴交于C 点,点B 的坐标为(3,0),抛物线与直线332y x =-+交于C 、D 两点.连接BD 、AD .(1)求m 的值.(2)抛物线上有一点P ,满足4ABP ABD S S ∆∆=,求点P 的坐标.【变式12-3】(2018•绥阳县模拟)如图,已知抛物线2y x bx c =++的图象经过点(1,0)A ,(3,0)B -,与y 轴交于点C ,抛物线的顶点为D ,对称轴与x 轴相交于点E ,连接BD .(1)求抛物线的解析式.(2)在抛物线上点B 和点D 之间是否存在一点H 使得四边形OBHC 的面积最大,若存在求出四边形OBHC 的最大面积,若不存在,请说明理由.(3)直线BD 上有一点P ,使得PE PC =时,过P 作PF x ⊥轴于F ,点M 为x 轴上一动点,N 为直线PF 上一动点,G 为抛物线上一动点,当以点F ,N ,G ,M 四点为顶点的四边形为正方形时,求点M 的坐标.。
专题02 函数图象中的面积计算问题几种常见面积的计算方法: 1. 三角形的一边在x 轴上时,S △ABC =12B AC x x y -⋅; 2. 三角形的一边在y 轴上时,S △ABC =12B AC y y x -⋅; 3. 割补法求解(1)三角形一个顶点在原点处,S △ABO =()12A B OE x x ⋅⋅+; S △ABO =()12A B OF y y ⋅⋅+.(2)割补法S △ABO =()12A B OC y y ⋅⋅-; S △ABO =()12B A OD x x ⋅⋅-.(3)补法求面积1. (2019·成都中考)如图,在平面直角坐标系xOy 中,一次函数152y x =+和2y x =-的图象交于点A ,反比例函数ky x=的图象经过点A . (1)求反比例函数的表达式; (2)设一次函数152y x =+的图象与反比例函数ky x=的图象的另一个交点为B ,连接OB ,求△ABO 的面积.【答案】见解析.【解析】解:(1)∵一次函数152y x =+和2y x =-的图象交于点A , ∴1522y x y x⎧=+⎪⎨⎪=-⎩,解得:24x y =-⎧⎨=⎩,即A (-2,4),将点A (-2,4)代入ky x=中,得:k =-8, 故反比例函数的表达式为:8y x=-;(2)联立152y x =+,8y x=-得:12122841x x y y =-=-⎧⎧⎨⎨==⎩⎩,, 即B (-8,1).过点B 作BC ⊥x 轴于C ,BD ⊥x 轴于D , ∴S △OAD =S △OBC , ∴S △OAB =S 梯形ABCD , =(BC +AD )×CD ÷2 =(1+4)×6÷2=15.2.(2019·四川凉山州中考)如图,正比例函数y =kx 与反比例函数y =4x的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则△ABC 的面积等于( )A .8B .6C .4D .2【答案】C.【解析】解:由反比例函数意义,可得:S △ABO =S △BOC =2, ∴S △ABC =4. 故答案为:C .3.(2019·四川南充中考)双曲线xky =(k 为常数,且0≠k )与直线b x y +-=2交于),1(),2,21(n B m m A --两点.(1)求k 与b 的值;(2)如图,直线AB 交x 轴于点C ,交y 轴于点D ,若点E 为CD 的中点,求△BOE 的面积.【答案】见解析.【解析】解:(1)∵点1(,2)2A m m --在直线y =-2x +b 上, ∴12()22m b m --+=-,解得b =-2, ∴y =-2x -2,∵点B (1,n )在直线y =-2x -2上, ∴n =-4, ∴B (1,-4),∵B (1,-4)在双曲线上, ∴k =-4.(2)直线y =-2x -2交x 轴于C (-1,0),交y 轴于D (0,-2), ∴S △COD =1|2||1|21=-⨯-⨯ ∵点E 为CD 的中点,∴S △COE =12S △COD =12, ∵S △COB =1|1||4|22⨯-⨯-=.∴S △BOE =S △COB -S △COE =2-1322=.4.(2019·浙江宁波中考)如图,过原点的直线与反比例函数y=kx(k>0)的图象交于A,B两点,点A在第一象限.点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B 作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为.【答案】6.【解析】解:如图,连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF,∵过原点的直线与反比例函数y=kx(k>0)的图象交于A,B两点,∴A与B关于原点对称,∴O是AB的中点,∵BE⊥AE,∴OE=OA,∴∠OAE=∠AEO,∵AE为∠BAC的平分线,∴∠DAE=∠AEO,∴AD∥OE,∴S△ACE=S△AOC,∵AC =3DC ,△ADE 的面积为8, ∴S △ACE =S △AOC =12, 设点A (m ,k m), ∵AC =3DC ,DH ∥AF , ∴3DH =AF , ∴D (3m ,3k m), ∵CH ∥GD ,AG ∥DH , ∴△DHC ∽△AGD , ∴S △HDC =14S △ADG , ∵S △AOC =S △AOF +S 梯形AFHD +S △HDC=12k +12(DH +AF )×FH +S △HDC =12k +12×43k m ×2m +112243k m m ⨯⨯⨯ =12k +43k +16k =12, ∴2k =12,解得:k =6; 故答案为6.5.(2019·甘肃中考)如图,一次函数y =kx +b 的图象与反比例函数y =mx的图象相交于A (﹣1,n )、B (2,﹣1)两点,与y 轴相交于点C .(1)求一次函数与反比例函数的解析式;(2)若点D 与点C 关于x 轴对称,求△ABD 的面积; (3)若M (x 1,y 1)、N (x 2,y 2)是反比例函数y =mx上的两点,当x 1<x 2<0时,比较y 2与y 1的大小关系.【答案】见解析.【解析】解:(1)∵反比例函数y=mx经过点B(2,﹣1),∴m=﹣2,∵点A(﹣1,n)在y=2x-上,∴n=2,∴A(﹣1,2),把A,B坐标代入y=kx+b,则:2 21k bk b-+=⎧⎨+=-⎩,解得:k=-1,b=1,∴一次函数的解析式为y=﹣x+1,反比例函数的解析式为y=2x -.(2)∵直线y=﹣x+1交y轴于C,∴C(0,1),∵D,C关于x轴对称,∴D(0,﹣1),∵B(2,﹣1)∴BD∥x轴,∴S△ABD=12×2×3=3.(3)∵M(x1,y1)、N(x2,y2)是反比例函数y=2x-上的两点,且x1<x2<0,∴y1<y2.6.(2019·甘肃兰州中考)如图,矩形OABC的顶点B在反比例函数y=kx(x>0)的图象上,S矩形OABC=6,则k=___________.【答案】6.【解析】解:|k|=S矩形OABC=6,∵图象在第一象限,∴k>0, ∴k =6.7.(2019·甘肃兰州中考)如图, 在平面直角坐标系xOy 中,反比例函数y =xk(k ≠0)的图象,过等边△BOC 的顶点B ,OC =2,点A 在反比例函数图象上,连接AC 、AO.(1)求反比例函数y =kx(k ≠0)的表达式;(2)若四边形ACBO 的面积是,求点A 的坐标.【答案】见解析.【解析】解:(1)∵ OC =2, ∴OM =1, BM =3, ∴点B(-1 ,-3 ), ∴k =(-1)×(-3)=3,∴y =x3. (2)∵S 四边形ACBO =33=S △AOC + S △BOC∵S △BOC =43OC 2=3, ∴S △AOC =23. ∵OC =2∴21×OC×AN=,∴AN =,设A (x ,, ∴23x, ∴x =12, ∴A (21,23). 8.(2019·山东聊城中考)如图,点A (32,4),B (3,m )是直线AB 与反比例函数y =n x(x >0)图象的两个交点,AC ⊥x 轴,垂足为点C ,已知D (0,1),连接AD ,BD ,BC .(1)求直线AB 的表达式;(2)△ABC 和△ABD 的面积分别为S 1,S 2.求S 2﹣S 1.【答案】见解析. 【解析】解:(1)由点A (32,4),B (3,m )在反比例函数y =nx 图象上, ∴n =6∴反比例函数的解析式为y =6x, 将点B (3,m )代入y =6x,得m =2, 即:B (3,2).设直线AB 的表达式为y =kx +b ,∴34232k b k b ⎧+=⎪⎨⎪+=⎩,解得436k b ⎧=-⎪⎨⎪=⎩ ∴直线AB 的表达式为y =43-x+6;(2)由点A 、B 坐标得AC =4,点B 到直线AC 的距离为3﹣32=32,∴S1=12×4×32=3,设AB与y轴的交点为E, E(0,6),如下图,∴DE=6﹣1=5,∴S2=S△BDE﹣S△ACD=12×5×3﹣12×5×32=154,∴S2﹣S1=154﹣3=34.9.(2019·四川遂宁中考)如图,一次函数y=x﹣3的图象与反比例函数y=kx(k≠0)的图象交于点A与点B(a,﹣4).(1)求反比例函数的表达式;(2)若动点P是第一象限内双曲线上的点(不与点A重合),连接OP,且过点P作y轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求出点P的坐标.【答案】见解析.【解析】解:(1)将B(a,﹣4)代入一次函数y=x﹣3中,得:a=﹣1,∴B(﹣1,﹣4)将B(﹣1,﹣4)代入反比例函数y=kx中得:k=4,∴反比例函数的表达式为y=4x;(2)如图所示,设点P的坐标为(m,4m),则C(m,m﹣3)∴PC=|4m﹣(m﹣3)|,∴△POC的面积=12m×|4m﹣(m﹣3)|=3,解得:m=5或﹣2或1或2∵点P不与点A重合,且A(4,1)∴m≠4,又∵m>0,∴m=5或1或2∴点P的坐标为(5,45)或(1,4)或(2,2).10. (2019·江苏宿迁中考)如图,一次函数y=kx+b的图像与反比例函数y=5x-的图像相交于点A(-1,m)、B(n,-1)两点.(1)求一次函数表达式;(2)求AOB的面积.【答案】见解析.【解析】解:(1)将点A(-1,m)、点B(n,-1)代入y=5x-得:m=5,n=5,即A(-1,5),B(5,-1),将A(-1,5),B(5,-1)代入y=kx+b得:551k b k b -+=⎧⎨+=-⎩,解得:14k b =-⎧⎨=⎩, 即一次函数解析式为:y=-x+4.(2)设直线AB 与x 轴交于点E ,可得E(4,0),∴S △AOB=()12A B OE y y ⨯-=1462⨯⨯=12. 11.(2019·湖北黄冈中考)如图,一直线经过原点O ,且与反比例函数k y x =(k>0)相交于点A 、点B ,过点A 作AC ⊥y 轴,垂足为C ,连接BC. 若△ABC 面积为8,则k =____________.【答案】8.【解析】解:∵反比例函数与正比例函数的图象相交于A 、B 两点,∴A 、B 两点关于原点对称,∴OA =OB ,∴△BOC 的面积=△AOC 的面积=8÷2=4,又∵A 是反比例函数k y x =图象上的点,且AC ⊥y 轴于点C , ∴△AOC 的面积=12|k |, ∴12|k |=4, ∵k >0,∴k =8.故答案为8.。