2017年广东省深圳市中考数学一模试卷及答案
- 格式:docx
- 大小:190.16 KB
- 文档页数:21
2017年广东省深圳市福田区中考数学一模试卷一、选择题(每题3分,共26分)1.2016年深圳市生产总值同比增长9%,记作+9%,而尼日利亚国内生产总值同比下滑2.24%,应记作()A.2.24% B.﹣2.24% C.2.24 D.﹣2.242.很多美味的食物,它们的包装盒也很漂亮,观察banana boat、可爱多冰激凌、芒果原浆以及玫瑰饴的包装盒,从正面看、从上面看分别得到的平面图形是长方形、圆的是()A.B. C.D.3.2016年6月21日,京东宣布与沃尔玛达成深度战略合作,京东向沃尔玛发行近1.45亿股A类普通股,而京东则获得1号店第三方平台1号商城的主要资产,1.45亿用科学记数法表示为()A.1.45×1010B.0.145×109C.1.45×108D.14.5×1084.下列计算正确的是()A.3x﹣2x=1 B.(﹣a3)2=﹣a6C.x6÷x2=x3D.x3•x2=x55.下表是全国7个城市2017年3月份某日空气质量指数(AQI)的统计结果:城市北京成都深圳长沙上海武汉广州AQI指数25724924162 18549该日空气质量指数的中位数是()A.49 B.62 C.241 D.976.一次函数y=kx+b图象如图所示,则关于x的不等式kx+b<0的解集为()A.x<﹣5 B.x>﹣5 C.x≥﹣5 D.x≤﹣57.某校举办诗词大会有4名女生和6名男生获奖,现从中任选1人去参加区诗词大会,则选中女生的概率是()A.B.C.D.8.如图,已知E′(2,﹣1),F′(,),以原点O为位似中心,按比例尺1:2把△EFO扩大,则E′点对应点E的坐标为()A.(﹣4,2)B.(4,﹣2)C.(﹣1,﹣1)D.(﹣1,4)9.下列命题中,正确的是()A.对角线相等的平行四边形是菱形B.有两边及一角相等的两个三角形全等C.同位角相等D.直角三角形斜边上的中线等于斜边的一半10.如图,在△ABC中,∠C=90°,AB=8,AC=4,以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F,再分别以点E、F为圆心,大于EF长为半径画弧,两弧交于点G,作射线AG,交BC于点D,则D到AB的距离为()A.2 B.4 C.D.11.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为6,则阴影部分的面积为()A.12πB.6πC.9πD.18π12.在边长为2的正方形ABCD中,P为AB上的一动点,E为AD中点,FE交CD 延长线于Q,过E作EF⊥PQ交BC的延长线于F,则下列结论:①△APE≌△DQE;②PQ=EF;③当P为AB中点时,CF=;④若H为QC的中点,当P从A移动到B时,线段EH扫过的面积为,其中正确的是()A.①②B.①②④C.②③④D.①②③二、填空题(每题3分,共12分)13.分解因式:5x2﹣20=.14.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,∠B=70°,则∠DAC=.15.在实数范围内规定新运算“△”其规则是:a△b=a+b﹣1,则x△(x﹣2)>3的解集为.16.如图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为.三、解答题(共7小题,共52分)17.计算:|﹣9|+(﹣3)0﹣(﹣)﹣2+sin45°.18.分式的化简求值:•(1+),其中x=﹣2.19.原创大型文化情感类节目《朗读者》在中央电视台综合频道、综艺频道播出后引起社会各界强烈反响,小明想了解本小区居民对《朗读者》的看法,进行了一次抽样调查,把居民对《朗读者》的看法分为四个层次:A.非常喜欢;B.较喜欢;C.一般;D.不喜欢;并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)本次调查的居民总人数为=人;(2)将图1和图2补充完整;(3)图2中“C”层次所在扇形的圆心角的度数为;(4)估计该小区4000名居民中对《朗读者》的看法表示喜欢(包括A层次和B 层次)的大约有人.20.深圳市民中心广场上有旗杆如图①所示,某学校兴趣小组测量了该旗杆的高度,如图②,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为16米,落在斜坡上的影长CD为8米,AB⊥BC;同一时刻,太阳光线与水平面的夹角为45°.1米的标杆EF竖立在斜坡上的影长FG为2米,求旗杆的高度.21.为提升青少年的身体素质,深圳市在全市中小学推行“阳光体育”活动,某学校为满足学生的需求,准备再购买一些篮球和足球,已知用800元购买篮球的个数比购买足球的个数少2个,足球的单价为篮球单价的.(1)求篮球、足球的单价分别为多少元?(2)如果计划用不多于5200元购买篮球、足球共60个,那么至少要购买多少个足球?22.如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O交于点E,直线OB与⊙O交于点F和D,连接EF、CF与OA交于点G.(1)求证:直线AB是⊙O的切线;(2)求证:OD•EG=OG•EF;(3)若AB=8,BD=2,求⊙O的半径.23.已知抛物线y=ax2+bx﹣3经过A(﹣1,0)、B(3,0)两点,与y轴交于C 点.(1)求抛物线的解析式;(2)如图①,抛物线的对称轴上有一点P,且点P在x轴下方,线段PB绕点P 顺时针旋转90°,点B的对应点B′恰好落在抛物线上,求点P的坐标.(3)如图②,直线y=x+交抛物线于A、E两点,点D为线段AE上一点,连接BD,有一动点Q从B点出发,沿线段BD以每秒1个单位的速度运动到D,再沿DE以每秒2个单位的速度运动到E,问:是否存在点D,使点Q从点B到E的运动时间最少?若存在,请求出点D的坐标;若不存在,请说明理由.2017年广东省深圳市福田区中考数学一模试卷参考答案与试题解析一、选择题(每题3分,共26分)1.2016年深圳市生产总值同比增长9%,记作+9%,而尼日利亚国内生产总值同比下滑2.24%,应记作()A.2.24% B.﹣2.24% C.2.24 D.﹣2.24【考点】11:正数和负数.【分析】利用相反意义量的定义判断即可.【解答】解:2016年深圳市生产总值同比增长9%,记作+9%,而尼日利亚国内生产总值同比下滑2.24%,应记作﹣2.24%,故选B2.很多美味的食物,它们的包装盒也很漂亮,观察banana boat、可爱多冰激凌、芒果原浆以及玫瑰饴的包装盒,从正面看、从上面看分别得到的平面图形是长方形、圆的是()A.B. C.D.【考点】U2:简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案.【解答】解:A、从正面看是梯形,从上面看是圆环,故A错误;B、从正面看是三角形,从上面看是圆,故B错误;C、从正面看是长方形,从上面看是圆,故C正确;D、从正面看是长方形,从上面看是长方形,故D错误;故选:C.3.2016年6月21日,京东宣布与沃尔玛达成深度战略合作,京东向沃尔玛发行近1.45亿股A类普通股,而京东则获得1号店第三方平台1号商城的主要资产,1.45亿用科学记数法表示为()A.1.45×1010B.0.145×109C.1.45×108D.14.5×108【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1.45亿=1.45×108,故选C.4.下列计算正确的是()A.3x﹣2x=1 B.(﹣a3)2=﹣a6C.x6÷x2=x3D.x3•x2=x5【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】直接利用同底数幂的乘除运算法则和幂的乘方运算法则、合并同类项法则分别判断求出答案.【解答】解:A、3x﹣2x=1,故此选项错误;B、(﹣a3)2=a6,故此选项错误;C、x6÷x2=x4,故此选项错误;D、x3•x2=x5,故此选项正确.故选:D.5.下表是全国7个城市2017年3月份某日空气质量指数(AQI)的统计结果:城市北京成都深圳长沙上海武汉广州AQI指数25724924162 18549该日空气质量指数的中位数是()A.49 B.62 C.241 D.97【考点】W4:中位数.【分析】根据中位数的定义先把这些数从小到大排列,再找出最中间两个数的平均数,即可得出答案.【解答】解:把这些数从小到大排列为:25,49,49,62,72,185,241,最中间的数是:62,则该日空气质量指数的中位数是62.故选B.6.一次函数y=kx+b图象如图所示,则关于x的不等式kx+b<0的解集为()A.x<﹣5 B.x>﹣5 C.x≥﹣5 D.x≤﹣5【考点】FD:一次函数与一元一次不等式;F3:一次函数的图象.【分析】根据一次函数图象即可求出该不等式的解集.【解答】解:当不等式kx+b<0时,一次函数的图象在x轴的下方,所以x<﹣5故选(A)7.某校举办诗词大会有4名女生和6名男生获奖,现从中任选1人去参加区诗词大会,则选中女生的概率是()A.B.C.D.【考点】X4:概率公式.【分析】先求出总的获奖人数,再根据概率公式列出算式,即可得出答案.【解答】解:∵诗词大会有4名女生和6名男生获奖,共10人,则选中女生的概率是=;故选C.8.如图,已知E′(2,﹣1),F′(,),以原点O为位似中心,按比例尺1:2把△EFO扩大,则E′点对应点E的坐标为()A.(﹣4,2)B.(4,﹣2)C.(﹣1,﹣1)D.(﹣1,4)【考点】SC:位似变换;D5:坐标与图形性质.【分析】根据位似变换的性质计算即可.【解答】解:∵E′(2,﹣1),以原点O为位似中心,按比例尺1:2把△EFO扩大,∴E′点对应点E的坐标为(2×2,﹣1×2),即(4,﹣2),故选:B.9.下列命题中,正确的是()A.对角线相等的平行四边形是菱形B.有两边及一角相等的两个三角形全等C.同位角相等D.直角三角形斜边上的中线等于斜边的一半【考点】O1:命题与定理.【分析】根据矩形的判定、全等三角形的判定、平行线的性质、直角三角形的性质进行判断,即可得出结论.【解答】解:∵对角线相等的平行四边形是矩形,∴选项A错误;∵有两边及一角相等的两个三角形不一定全等,∴选项B错误;∵两直线平行,内错角相等,∴选项C错误;∵直角三角形斜边上的中线等于斜边的一半,∴选项D正确;故选:D.10.如图,在△ABC中,∠C=90°,AB=8,AC=4,以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F,再分别以点E、F为圆心,大于EF长为半径画弧,两弧交于点G,作射线AG,交BC于点D,则D到AB的距离为()A.2 B.4 C.D.【考点】N2:作图—基本作图;KF:角平分线的性质.【分析】如图,作DH⊥AB于H,设DM=DC=x,由S△ABC =S△ADC+S△ADB,可得AC•BC=•AB•DM+CD•AC,列出方程即可解决问题.【解答】解:如图,作DH⊥AB于H,由题意∠DAC=∠DAB,∵DC⊥AC.DM⊥AB,∴DC=DM,设DM=DC=x,在Rt△ABC中,BC==4,∵S△ABC =S△ADC+S△ADB,∴AC•BC=•AB•DM+CD•AC,∴•4•4=•8•x+•4•x,∴x=,∴DM=,故选C.11.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为6,则阴影部分的面积为()A.12πB.6πC.9πD.18π【考点】MM:正多边形和圆;MO:扇形面积的计算.【分析】根据图形分析可得求图中阴影部分面积实为求扇形部分面积,将原图阴影部分面积转化为扇形面积求解即可.【解答】解:如图所示:连接BO,CO,OA,∵正六边形ABCDEF内接于⊙O,∴△OAB,△OBC都是等边三角形,∴∠AOB=∠OBC=60°,∴S△ABC =S△OBC,∴S阴=S扇形OBC∴图中阴影部分面积为:S扇形OBC==6π.故选B.12.在边长为2的正方形ABCD中,P为AB上的一动点,E为AD中点,FE交CD 延长线于Q,过E作EF⊥PQ交BC的延长线于F,则下列结论:①△APE≌△DQE;②PQ=EF;③当P为AB中点时,CF=;④若H为QC的中点,当P从A移动到B时,线段EH扫过的面积为,其中正确的是()A.①②B.①②④C.②③④D.①②③【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】利用正方形的性质、全等三角形的性质、勾股定理等知识一一判断即可;【解答】解:①∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠A=∠B=90°,∵∠A=∠EDQ,∠AEP=∠QED,AE=ED,∴△AEP≌△DEQ,故①正确,②作PG⊥CD于G,EM⊥BC于M,∴∠PGQ=∠EMF=90°,∵EF⊥PQ,∴∠PEF=90°,∴∠PEN+∠NEF=90°,∵∠NPE+∠NEP=90°,∴∠NPE=∠NEF,∵PG=EM,∴△EFM≌△PQG,∴EF=PQ,故②正确,③连接QF.则QF=PF,PB2+BF2=QC2+CF2,设CF=x,则(2+x)2+12=32+x2,∴x=1,故③错误,④当P在A点时,Q与D重合,QC的中点H在DC的中点S处,当P运动到B 时,QC的中点H与D重合,故EH扫过的面积为△ESD的面积的一半为,故④正确.故选B.二、填空题(每题3分,共12分)13.分解因式:5x2﹣20=5(x+2)(x﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式5,再对余下的多项式利用平方差公式继续分解.【解答】解:5x2﹣20,=5(x2﹣4),=5(x+2)(x﹣2).故答案为:5(x+2)(x﹣2).14.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,∠B=70°,则∠DAC=20°.【考点】M5:圆周角定理.【分析】由AD是⊙O的直径,得到∠ACD=90°,根据圆周角定理得到∠D=∠B=70°,于是得到结论.【解答】解:∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠B=70°,∴∠DAC=20°,故答案为:20°.15.在实数范围内规定新运算“△”其规则是:a△b=a+b﹣1,则x△(x﹣2)>3的解集为x>3.【考点】C6:解一元一次不等式;2C:实数的运算.【分析】根据新定义列出不等式,依据不等式的基本性质解之可得.【解答】解:根据题意,得:x+x﹣2﹣1>3,即2x﹣3>3,∴2x>6,解得:x>3,故答案为:x>3.16.如图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为8.【考点】G5:反比例函数系数k的几何意义;G7:待定系数法求反比例函数解析式.【分析】先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据△AOD的面积为3,列出关系式求得k的值.【解答】解:设点D坐标为(a,b),∵点D为OB的中点,∴点B的坐标为(2a,2b),∴k=4ab,又∵AC⊥y轴,A在反比例函数图象上,∴A的坐标为(4a,b),∴AD=4a﹣a=3a,∵△AOD的面积为3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=8.故答案为:8三、解答题(共7小题,共52分)17.计算:|﹣9|+(﹣3)0﹣(﹣)﹣2+sin45°.【考点】2C:实数的运算;15:绝对值;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】本题要分清运算顺序,先把绝对值,乘方计算出来,再进行加减运算.【解答】解:原式=9+1﹣9+×=1+1=2.18.分式的化简求值:•(1+),其中x=﹣2.【考点】6D:分式的化简求值.【分析】根据分式的加法和乘法可以化简题目中的式子,然后将x的值代入即可解答本题.【解答】解:•(1+)==x+2,当x=﹣2时,原式=﹣2+2=.19.原创大型文化情感类节目《朗读者》在中央电视台综合频道、综艺频道播出后引起社会各界强烈反响,小明想了解本小区居民对《朗读者》的看法,进行了一次抽样调查,把居民对《朗读者》的看法分为四个层次:A.非常喜欢;B.较喜欢;C.一般;D.不喜欢;并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)本次调查的居民总人数为=300人;(2)将图1和图2补充完整;(3)图2中“C”层次所在扇形的圆心角的度数为72°;(4)估计该小区4000名居民中对《朗读者》的看法表示喜欢(包括A层次和B 层次)的大约有2800人.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据A层次的有90人,所占的百分比是30%,据此即可求得调查的总人数;(2)利用总人数乘以对应的百分比求得C层次的人数,然后用总人数减去其它层次的人数求得B层次的人数,从而补全直方图;(3)利用360°乘以对应的百分比求得所在扇形的圆心角的度数;(4)利用总人数乘以对应的比例即可求解.【解答】解:(1)抽查的总人数是90÷30%=300(人);故答案为:300,;(2)C层次的人数是300×20%=60(人),则B层次的人数是300﹣90﹣60﹣30=120(人),所占的百分比是=40%,D层次所占的百分比是=10%.;(3)“C”层次所在扇形的圆心角的度数是360°×=72°;故答案为:72°;(4)对“广场舞”的看法表示赞同(包括A层次和B层次)的大约4000×=2800(人).答:估计对“广场舞”的看法表示赞同的大约有2800人.故答案为:2800.20.深圳市民中心广场上有旗杆如图①所示,某学校兴趣小组测量了该旗杆的高度,如图②,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为16米,落在斜坡上的影长CD为8米,AB⊥BC;同一时刻,太阳光线与水平面的夹角为45°.1米的标杆EF竖立在斜坡上的影长FG为2米,求旗杆的高度.【考点】SA:相似三角形的应用;U5:平行投影.【分析】如图作CM∥AB交AD于M,MN⊥AB于N,根据=,求出CM,在RT△AMN中利用等腰直角三角形的性质求出AN即可解决问题.【解答】解:如图作CM∥AB交AD于M,MN⊥AB于N.∵△MCD∽△PQR,∴=,即=,CM=4(米),又∵MN∥BC,AB∥CM,∴四边形MNBC是矩形,∴MN=BC=16米,BN=CM=4米.∵在直角△AMN中,∠AMN=45°,∴AN=MN=16米,∴AB=AN+BN=20米.21.为提升青少年的身体素质,深圳市在全市中小学推行“阳光体育”活动,某学校为满足学生的需求,准备再购买一些篮球和足球,已知用800元购买篮球的个数比购买足球的个数少2个,足球的单价为篮球单价的.(1)求篮球、足球的单价分别为多少元?(2)如果计划用不多于5200元购买篮球、足球共60个,那么至少要购买多少个足球?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设篮球的单价为x元/个,则足球的单价为0.8x元/个,根据用800元购买篮球的个数比购买足球的个数少2个,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)购买m个足球,则购买(60﹣m)个篮球,根据总价=单价×购买数量结合总价钱不多于5200元,即可得出关于m的一元一次不等式,解之即可得出m 的取值范围,取其内的最小正整数即可.【解答】解:(1)设篮球的单价为x元/个,则足球的单价为0.8x元/个,根据题意得: +2=,解得:x=100,经检验,x=100是原方程的解,∴0.8x=80.答:篮球的单价为100元/个,足球的单价为80元/个.(2)设购买m个足球,则购买(60﹣m)个篮球,根据题意得:80m+100(60﹣m)≤5200,解得:m≥40.答:至少要购买40个足球.22.如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O交于点E,直线OB与⊙O交于点F和D,连接EF、CF与OA交于点G.(1)求证:直线AB是⊙O的切线;(2)求证:OD•EG=OG•EF;(3)若AB=8,BD=2,求⊙O的半径.【考点】ME:切线的判定与性质;KH:等腰三角形的性质;S9:相似三角形的判定与性质.【分析】(1)利用等腰三角形的性质,证明OC⊥AB即可;(2)证明OC∥EG,推出△GOC∽△GEF即可解决问题;(3)设OC=OD=r,在Rt△BOC中,根据OB2=OC2+BC2,列出方程即可解决问题;【解答】(1)证明:∵OA=OB,AC=BC,∴OC⊥AB,∴⊙O是AB的切线.(2)证明:∵OA=OB,AC=BC,∴∠AOC=∠BOC,∵OE=OF,∴∠OFE=∠OEF,∵∠AOB=∠OFE+∠OEF,∴∠AOC=∠OEF,∴OC∥EF,∴△GOC∽△GEF,∴=,∵OD=OC,∴OD•EG=OG•EF.(3)解:设OC=OD=r,在Rt△BOC中,∵OB2=OC2+BC2,∴(r+2)2=r2+42,∴r=3,∴⊙O的半径为3.23.已知抛物线y=ax2+bx﹣3经过A(﹣1,0)、B(3,0)两点,与y轴交于C 点.(1)求抛物线的解析式;(2)如图①,抛物线的对称轴上有一点P,且点P在x轴下方,线段PB绕点P 顺时针旋转90°,点B的对应点B′恰好落在抛物线上,求点P的坐标.(3)如图②,直线y=x+交抛物线于A、E两点,点D为线段AE上一点,连接BD,有一动点Q从B点出发,沿线段BD以每秒1个单位的速度运动到D,再沿DE以每秒2个单位的速度运动到E,问:是否存在点D,使点Q从点B到E的运动时间最少?若存在,请求出点D的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)将点A和点B的坐标代入抛物线的解析式可得到关于a、b的方程组,从而可求得a、b的值;(2)先求得抛物线的对称轴为x=1.过点B′作B′M⊥对称轴,垂足为M.然后证明△BNP≌△PMB,依据全等三角形的性质可知BN=PM=3,PN=MB′.设P(1,m),则点B′的坐标为(1﹣m,m﹣2),最后将点B′的坐标代入抛物线的解析式求解即可;(3)过点E作EF∥x轴,作点DF∥y轴,则∠EFD=90°.先求得点G的坐标,则可得到OG=,在Rt△AGO中,利用特殊锐角三角函数值可求得∠A的度数,则∠FED=30°,依据函数30°直角三角形的性质可得到DF=DE.则动点Q沿DE 以每秒2个单位的速度运动到E与它一每秒1个单位的速度运动东F所用时间相等.故此当BD+DF最短时,所用时间最短,依据两点之间线段最短可知当B,D,F在一条直线上时,所用时间最短,此时BE⊥BF,则点D的横坐标为3,然后由函数解析式再求得点D的纵坐标即可.【解答】解:(1)将点A和点B的坐标代入得:,解得:a=1,b=﹣2.∴抛物线的解析式为y=x2﹣2x﹣3.(2)∵A(﹣1,0),B(3,0),∴抛物线的对称轴为x=1.如图所示:过点B′作B′M⊥对称轴,垂足为M.∵∠BPB′=90°,∴∠BPN+∠B′PM=90°.∵∠BPN+∠PBN=90°,∴∠PNB=∠B′PM.在△BPN和△PB′M中.∴△BNP≌△PMB.∴BN=PM=3,PN=MB′.设P(1,m),则点B′的坐标为(1﹣m,m﹣2).将点B′的坐标代入抛物线的解析式得:(1﹣m)2﹣2(1﹣m)﹣3=m﹣2,解得:m1=﹣1,m2=2.∵点P在x轴的下方,∴m=﹣1.∴P(1,﹣1).(3)存在.如图所示:过点E作EF∥x轴,作点DF∥y轴,则∠EFD=90°.将x=0代入直线AE的解析式得y=,∴OG=.∴tan∠GAO=.∴∠FEA=∠GAO=30°.∴DF=DE.∴动点Q沿DE以每秒2个单位的速度运动到E与它一每秒1个单位的速度运动东F所用时间相等.∴当BD+DF最短时,所用时间最短.∴当B,D,F在一条直线上时,所用时间最短.∴点D的横坐标为3.将x=3代入直线AE的解析式得:y=.∴D(3,).。
2017届深圳市中考一模模拟拟测试数学一、选择题(本题共有12小题,每小题3分,共36分)1.﹣4的倒数是()A、-4 B、4 C、1/4 D、-1/42.如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是()A、B、C、D、3. 下列计算正确的是() A、2a3+a2=3a5B、(3a)2=6a2C、(a+b)2=a2+b2D、2a2•a3=2a54. 下列图形中既是轴对称图形又是中心对称图形的是()A、B、C、D、5. 据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为()A、1.6×103吨B、1.6×104吨C、1.6×105吨D、1.6×106吨6. 如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A、40°B、30°C、20°D、10°7. 某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( ) A、赚16元B、赔16元C、不赚不赔D、无法确定8. 某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A、50元,20元B、50元,40元C、50元,50元D、55元,50元9.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()A 、①②B 、①④C 、②③D 、③④10. 如图,正六边形ABCDEF 内接于⊙O,半径为4,则这个正六边形的边心距OM 和的长分别为( )A 、2,3/2πB 、2,πC 、2,3πD 、2,4π11. 如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E .若BF=6,AB=5,则AE 的长为( )A 、4 B 、6 C 、8 D 、1012. 如图,G ,E 分别是正方形ABCD 的边AB ,BC 的点,且AG=CE ,AE⊥EF,AE=EF ,现有如下结论:①BE=GE ; ②△AGE≌△ECF; ③∠FCD=45°; ④△GBE∽△ECH,其中,正确的结论有( )A 、1个 B 、2个 C 、3个 D 、4个11题图 12题图二、填空题(本题共有4小题,每小题3分,共12分) 13. 因式分解:a 3﹣4a= ________.14. 从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是________15. 用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星________ 个.16. 如图,△ABC 的内心在x 轴上,点B 的坐标是(2,0),点C 的坐标是(0,﹣2),点A 的坐标是(﹣3,b ),反比例函数y=(x <0)的图象经过点A ,则k= ________.三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题9分,共52分) 17. 计算:sin30°+(﹣1)2013﹣+(π﹣3)0﹣cos60° .18. 解不等式组并写出它的所有非负整数解.⎪⎩⎪⎨⎧-≤-〉+x x x x 996344932319. 丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查了人(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是度。
【七校联考】2016_2017学年深圳市中考一模数学试卷一、选择题(共12小题;共60分)1. 的计算结果是A. B. C. D.2. 如图是小明用八块小正方体搭的积木,该几何体的俯视图是A. B.C. D.3. 下列计算正确的是A. B. C. D.4. 一个盒子装有除颜色外其它均相同的个红球和个白球,现从中任取个球,则取到的是一个红球,一个白球的概率为A. B. C. D.5. 为了了解某班学生每天使用零花钱的情况,随机调查了名同学,结果如下,下列说法正确的是每天零花钱元人数A. 众数是元B. 平均数是元C. 极差是元D. 中位数是元6. 直线,直角三角形如图放置,若,则的度数为A. B. C. D.7. 已知,是反比例函数图象上的两个点,当时,,那么一次函数的图象不经过A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 下列说法正确的是A. 将抛物线向左平移个单位后,再向下平移个单位,则此时抛物线的解析式是B. 方程有两个不相等的实数根C. 平行四边形既是中心对称图形又是轴对称图形D. 平分弦的直径垂直于弦,并且平分这条弦所对的两条弧9. 若整数同时满足不等式与,则该整数是A. B. C. D. 和10. 初三学生周末去距离学校的某地游玩,一部分学生乘慢车先行小时后,另一部分学生乘快车前往,结果他们同时到达目的地,已知快车的速度是慢车的倍,求慢车的速度,设慢车的速度是,根据题意列方程为A. B. C. D.11. 如图,内接于,于点,若,,的半径,则的值为A. B. C. D.12. 已知菱形在平面直角坐标系的位置如图所示,,,,点是对角线上的一个动点,,当周长最小时,点的坐标为A. B. C. D.二、填空题(共4小题;共20分)13. 将分解因式得.14. 含角的直角三角板如图放置在平面直角坐标系中,其中,,则直线的解析式为.15. 如图,正方形的面积为,对角线交于点,以,为邻边做平行四边形,对角线交于点,以,为邻边做平行四边形,,依此类推,则平行四边形的面积为.16. 如图,反比例函数的图象上有一动点,连接并延长交图象的另一支于点,在第二象限内有一点,满足,当点运动时,点始终在函数的图象上运动,,则关于的方程的解为.三、解答题(共7小题;共91分)17. 计算:.18. 先化简,再求值:,其中,.19. 小宇想测量位于池塘两端的、两点的距离.他沿着与直线平行的道路行走,当行走到点处,测得,再向前行走米到点处,测得.若直线与之间的距离为米,求、两点的距离.20. 为了解南山荔枝的销售情况,某部门对该市场的三种荔枝品种A,B,C在月上半月的销售进行调查统计,绘制成如下两个统计图(均不完整),请你结合图中的信息,解答下列问题:(1)该市场月上半月共销售这三种荔枝多少吨?(2)补全图的统计图并计算图中A所在扇形的圆心角的度数;(3)某商场计划六月下半月进货A,B,C 三种荔枝共千克,根据该市场月上半月的销售情况,求该商场应购进C品种荔枝多少千克比较合理?21. 四边形的对角线交于点,且,,以为直径的过点.(1)求证:四边形是菱形;(2)若的延长线与圆相切于点,已知直径,求阴影部分的面积.22. 某商场经营A种品牌的玩具,购进时的单价是元,据市场调查,在一段时间内,销售单价是元时,销售量是件,而销售单价每涨元,就会少售出件玩具.(1)不妨设该种品牌玩具的销售单价为元,请用含的代数式表示该玩具的销售量;(2)若玩具厂规定该品牌玩具销售单价不低于元,且商场要完成不少于件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?(3)该商场计划将()中所得的利润的一部分资金用于采购一批B种玩具并转手出售,根据市场调查准备两种方案,方案①:如果月初出售,可获利,并可用本和利再投资C种玩具,到月末又可获利;方案②:如果只到月末出售可直接获利,但要另支付仓库保管费元,请问商场如何使用这笔资金,采用哪种方案获利较多?23. 如图,抛物线经过点和,对称轴为直线.(1)求抛物线的解析式;(2)抛物线与轴的另一个交点为,点在线段上,已知,若动点从出发沿线段以每秒个单位长度的速度匀速运动,同时另一动点以某一速度从出发沿线段匀速运动,问是否存在某一时刻,使线段被直线垂直平分?若存在,求出点的运动速度;若不存在,请说明理由.(3)在()的前提下,过点的直线与轴的负半轴交于点,是否存在点,使以,,为顶点的三角形与相似?如果存在,请直接写出的坐标;若不存在,请说明理由.答案第一部分1. D2. D3. D4. C5. B6. C7. C8. A9. B 10. B11. D 12. D 第二部分13. 14.15.16. , 第三部分17.原式18.原式当 , 时,原式19. 作 于点 ,作 于点 ,如图所示,由题意可得, 米, 米, , ,米,米,米, 即 、 两点的距离是 米. 20. (1) (吨).答:该市场 月上半月共销售这三种荔枝 吨. (2) C 品种的零售量为 (吨),图中A所在扇形的圆心角的度数为,补全统计图如下:(3)(千克).答:该商场应购进C品种荔枝千克比较合理.21. (1),,四边形是平行四边形,为直径,,即,四边形是菱形;(2)连接,为的切线,,,,四边形是菱形,,过作于,则,,四边形是菱形,,,,,扇形阴影半圆扇形22. (1)根据题意,得:销售单价为元时,销售量为.(2)由题意可得,利润,化简,得,即与的函数关系式是:,,当时,;获得最大利润为元.(3)设取用资金为元,则:;;当时,即,解得,此时获利相同;当时,即,解得,此时方案①获利多;当时,即,解得,此时方案②获利多.23. (1)设抛物线的解析式为,把点和代入得到解得,.(2)令得到,解得或,,,,,,,如图,过点作于点,于点,,,被垂直平分,,,,或.,,,,.即点的速度为每秒个单位长度.(3)存在.或.。
2017年广东省深圳市中考数学试卷'、选择题1.-2的绝对值是(A. - 2 B . 2 C. - D.2.图中立体图形的主视图是(3.随看“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为(5 A . 8.2 X 1055 6 7B . 82 X 105C . 8.2 X 106D . 82X1074.观察下列图形,其中既是轴对称又是中心对称图形的是(5.下列选项中,哪个不可以得到11 // 12?( )B .D. C.D.A. / 1= Z 2B. Z 2= Z 3C .Z 3= Z 5D . Z 3+ Z 4=180 °6.不等式组1Sift MJb... 的解集为7.—球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A. 10%x=330B.(1 —10%)x=330C. (1 —10%)2x=330 D . (1+10% )x=3308如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧,dpql的交点得到直线I,在直线I上取一点C,使得/ CAB=25 ° ,延长AC至M,求/ BCM的度数为()A. 40 °B. 50 ° C . 60 ° D . 70 °9 •下列哪一个是假命题()A •五边形外角和为360 °B•切线垂直于经过切点的半径C.(3, —2)关于y轴的对称点为(-3, 2)D .抛物线y=x2—4x+2017对称轴为直线x=210 .某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A .平均数B .中位数C .众数D .方差11•如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点CB 60 ° D B 30 °处测得树顶的仰角为,然后在坡顶测得树顶的仰角为,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是()m .A. 20豳・B. 30C. 30 逐D. 4012 •如图,正方形ABCD的边长是3, BP=CQ,连接AQ , DP交于点O,并分别与边CD , BC交于点F , E,连接AE,下列结论:①AQ丄DP :②OA 2=OE?OP ;③S△ AOD=S四边形OECF;④当BP=1时,tan Z OAE= ,其中正确结论的个数是()二、填空题313 .因式分解:a - 4a=14 .在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是15 •阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=- 1,那么(1+i) ? (1 - i)=16 .如图,在Rt△ ABC 中,Z ABC=90 ° , AB=3 , BC=4 , Rt△ MPN , Z MPN=90点P在AC上,PM交AB于点E, PN交BC于点F,当PE=2PF时,AP=二、解答题17 •计算:一 -2 - 2cos45 ° (- 1)—2+ _ .裨| +诉:18.先化简,再求值:(,其中x= - 1 .19 .深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y20 .一个矩形周长为56厘米.(1) 当矩形面积为180平方厘米时,长宽分别为多少?(2) 能围成面积为200平方米的矩形吗?请说明理由.21 .如图,一次函数y=kx +b与反比例函数y= ' (x>0)交于A (2, 4), B (a, X1), 与x轴,y轴分别交于点C , D.(1)直接写出一次函数y=kx +b的表达式和反比例函数y= (x>0)的表达式;CD丄AB于点H,点M是i上任意一(1 )求。
2017年广东省中考数学模拟试卷(一)及答案1.﹣3的相反数是()A.13B.-13C.3D.﹣32.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.广D.州3.2016年3月,中国中车集团中标美国地铁史上最大一笔采购订单:芝加哥地铁车辆采购项目.该项目标的金额为13.09亿美元.13.09亿用科学记数法表示为()A.13.09×108B.[1.309\times {{10}^{10}}\).C.1.309×109D.1309×1064.如图所示,几何体的主视图是()A.B.C.D.图象的每条曲线上y都随x增大而增大,则k的取值范围是5.反比例函数y=1−kx()图象的每条曲线上y都随x增大而增大,则k的取值范围是(1)反比例函数y=1−kx()A.k>1B.k>0C.k<1D.k<06.丽华根据演讲比赛中九位评委所给的分数作了如下表格:如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数C.方差D.中位数7.如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42°B.48°C.52°D.58°8.如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4B.7C.3D.129.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.72048+x −72048=5B.72048+5=72048+xC.72048−720x=5D.72048−72048+x=510.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为()A.(√22)2013B.(√22)2014C.(12)2013D.(12)201411.分解因式:x y2−x=_ _.12.一副三角板,如图所示叠放在一起,则图中∠α的度数是_ _.13.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是_ _元.14.一个不透明的盒子中装有2个白球,5个红球和3个黄球,这些球除颜色外,没有任何其它区别,现从这个盒子中随机摸出一个球,摸到红球的概率为_ _.15.若关于x 的方程x 2+2x +m −5=0有两个相等的实数根,则m =_ _.16.如图,菱形OABC 中,∠A =120°,OA =1,将菱形OABC 绕点O 按顺时针方向旋转90°,则图中阴影部分的面积是_ _.17.计算:2cos45∘+(√2−1)0−(12)−1.18.化简,再求值:(a −2ab−b 2a )÷a−b a,其中a =2,b =﹣3. 19.如图,点C 、E 、B 、F 在同一直线上,AB ∥DE ,AC ∥DF ,AC =DF ,判断CE 与FB 的数量关系,证明你的结论.20.垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共_ _吨;,每回收1吨塑料类垃圾可获得0.7吨二(3)调查发现,在可回收物中塑料类垃圾占15级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.√3(取1.732)22.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC 于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.23.如图,一次函数y=k1x+b与反比例函数y=k2的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;的解集;(2)根据所给条件,请直接写出不等式k1x+b>k2x图象上的两点,且y1≥y2,求实数p的取值范围.(3)若P(p,y1),Q(−2,y2)是函数y=k2x24.如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan∠FGD的值.25.如图,等边△ABO放置在平面直角坐标系中,OA=4,动点P、Q同时从O、B两点出发,分别沿OA、BO方向匀速运动,它们的速度均为每秒1个单位长度,当点P到达点A时,P、Q两点停止运动,设点P的运动时间为x(s)(0<x<4),解答下列问题:(1)求点Q的坐标(用含x的代数式表示)(2)设△OPQ的面积为S,求S与x之间的函数关系式;当x为何值时,S有最大值?最大值是多少?个平方单位?若存在,求出相应的x (3)是否存在某个时刻x,使△OPQ的面积为3√34值;若不存在,请说明理由.1.【能力值】无【知识点】(1)相反数【详解】(1)【考点】相反数【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣3)+3=0.故选:C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.【答案】(1)C2.【能力值】无【知识点】(1)正方体相对两个面上的文字【详解】(1)【考点】专题:正方体相对两个面上的文字【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“设”与“丽”是相对面,“建”与“州”是相对面,“美”与“广”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.【答案】(1)D3.【能力值】无【知识点】(1)正指数科学记数法【详解】(1)【考点】科学记数法—表示较大的数【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:13.09亿=13 0900 0000=1.309×109,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【答案】(1)C4.【能力值】无【知识点】(1)由立体图形到视图【详解】(1)【考点】简单组合体的三视图【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.【答案】(1)B5.【能力值】无【知识点】(1)反比例函数的应用【详解】(1)【考点】反比例函数的性质来说,当k<0时,每一条曲线上,y随x的增大而增大;当k 【分析】对于函数y=kx>0时,每一条曲线上,y随x的增大而减小.的图象上的每一条曲线上,y随x的增大而增大,【解答】解:∵反比例函数y=1−kx∴1﹣k<0,∴k>1.故选:A.【点评】本题考查反比例函数的增减性的判定.在解题时,要注意整体思想的运中k的意义不理解,直接认为k<0,造成错误.用.易错易混点:学生对解析式y=kx【答案】(1)A6.【能力值】无【知识点】(1)众数、中位数【详解】(1)【考点】统计量的选择【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选:D.【点评】本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.【答案】(1)D7.【能力值】无【知识点】(1)圆周角定理及其推理【详解】(1)【考点】圆周角定理【分析】首先连接OC,由等腰三角形的性质,可求得∠OCB的度数,继而求得∠BOC 的度数,然后利用圆周角定理求解,即可求得答案.【解答】解:连接OC,∵OB=OC,∠OBC=42°,∴∠OCB=∠OBC=42°,∴∠BOC=180°﹣∠OBC﹣∠OCB=96°,∠BOC=48°.∴∠A=12故选:B.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.【答案】(1)B8.【能力值】无【知识点】(1)平行四边形及其性质、相似三角形的性质【详解】(1)【考点】平行四边形的性质;相似三角形的判定与性质【分析】由EF∥AB,根据平行线分线段成比例定理,即可求得DEDA =EFAB,则可求得AB的长,又由四边形ABCD是平行四边形,根据平行四边形对边相等,即可求得CD的长.【解答】解:∵DE:EA=3:4,∴DE:DA=3:7∵EF∥AB,∴DEDA =EFAB,∵EF=3,∴37=3AB,解得:AB=7,∵四边形ABCD是平行四边形,∴CD=AB=7.故选:B.【点评】此题考查了平行线分线段成比例定理与平行四边形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.【答案】(1)B9.【能力值】无【知识点】(1)分式方程的应用【详解】(1)【考点】由实际问题抽象出分式方程【分析】本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【解答】解:因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:72048+x,根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048+x , 可以列出方程:72048−72048+x =5.故选:D .【点评】这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,再利用等量关系列出方程.【答案】(1)D10.【能力值】无【知识点】(1)等腰直角三角形【详解】(1)【考点】等腰直角三角形【分析】根据等腰直角三角形的性质结合三角形的面积公式可得出部分Sn 的值,根据面积的变化即可找出变化规律“S n =4×(12)n−1”,依此规律即可解决问题.【解答】解:观察,发现:S 1=22=4,S 2=(2×√22)2=2,S 3=(√2×√22)2=1,S 4=(1×√22)2=12,…,∴S n =[2×(√22)n−1]2=4×(12)n−1,∴S 2016=4×(12)2016−1=(12)2013.故选:C .【点评】本题考查了等腰直角三角形的性质、三角形的面积、正方形的面积以及规律型中数字的变化类,根据面积的变化找出变化规律“S n =4×(12)n−1”是解题的关键.【答案】(1)C11.【能力值】无【知识点】(1)因式分解法【详解】(1)【考点】55:提公因式法与公式法的综合运用.菁优网版权所有【分析】先提取公因式x ,再对余下的多项式利用平方差公式继续分解.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.【答案】(1)解:x y2−x,=x(y2−1),=x(y﹣1)(y+1).故答案为:x(y﹣1)(y+1).12.【能力值】无【知识点】(1)三角形的内角和【详解】(1)【考点】三角形内角和定理【分析】根据三角板的常数以及三角形的一个外角等于与它不相邻的两个内角的和求出∠1的度数,再根据直角等于90°计算即可得解.【点评】本题考查了三角形的外角性质以及三角形内角和定理,熟知三角板的度数是解题的关键.【答案】(1)解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°13.【能力值】无【知识点】(1)解常规一元一次方程【详解】(1)【考点】一元一次方程的应用【分析】设每件的进价为x元,根据八折出售可获利25%,根据:进价=标价×8折﹣获利,可得出方程:200×80%﹣25%x=x,解出即可.【点评】此题考查了一元一次方程的应用,属于基础题,关键是仔细审题,根据等量关系:进价=标价×8折﹣获利,利用方程思想解答.【答案】(1)解:设每件的进价为x元,由题意得:200×80%=x(1+25%),解得:x=128,故答案为:128.14.【能力值】无【知识点】(1)公式求概率【详解】(1)【考点】概率公式【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.【答案】(1)解:根据题意可得:一个不透明的盒子中装有2个白球,5个红球和3个黄球,共10个,摸到红球的概率为:510=12.故答案为:12.15.【能力值】无【知识点】(1)一元二次方程的根【详解】(1)【考点】根的判别式【分析】根据已知条件“关于x的方程x2+2x+m−5=0有两个相等的实数根”知,根的判别△=b2−4ac=0式,然后列出关于m的方程,解方程即可.【点评】本题主要考查了一元二次方程的根的判别式.一元二次方程ax2+bx+c=0(a ≠0)的根的判别式△=b2﹣4ac:①△>0⇒方程有两个不等实数根;②△=0⇒方程有两个相等实数根;③△<0⇒方程没有实数根.【答案】(1)解:∵关于x 的方程x 2+2x +m −5=0有两个相等的实数根, ∴△=4﹣4(m ﹣5)=0,解得,m =6;故答案为:6.16.【能力值】无【知识点】(1)扇形面积的计算、旋转变换、菱形的性质【详解】(1)【考点】菱形的性质;扇形面积的计算;旋转的性质【分析】连接OB 、OB ′,阴影部分的面积等于扇形BOB ′的面积减去两个△OCB 的面积和扇形OCA ′的面积.根据旋转角的度数可知:∠BOB ′=90°,已知了∠A =120°,那么∠BOC =∠A ′OB ′=30°,可求得扇形A ′OC 的圆心角为30°,进而可根据各图形的面积计算公式求出阴影部分的面积.【解答】解:连接OB 、OB ′,过点A 作AN ⊥BO 于点N ,菱形OABC 中,∠A =120°,OA =1,∴∠AOC =60°,∠COA ′=30°,∴AN =12,∴NO =√12−(12)2=√32, ∴BO =√3,∴S △CBO =S △C ′B ′O =12×12AO.2CO.sin60∘=√34, S 扇形OCA ′=30π×1360=π12, S 扇形OBB =90π×(√3)2360=3π4; ∴阴影部分的面积=3π4﹣(2×√34+π12)=2π3−√32. 故答案为:2π3−√32.【点评】此题考查了菱形的性质、扇形的面积公式、等边三角形的性质等知识点.【答案】(1)2π3−√3217.【能力值】无【知识点】(1)实数、锐角三角函数的性质、负指数幂运算、零指数幂运算【详解】(1)【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值【分析】根据45°角的余弦等于√22,任何非0数的0次幂等于1,有理数的负整数指数次幂等于正整数指数次幂的倒数,进行计算即可得解.【点评】本题考查了实数的运算,主要利用了零指数幂,负整数指数幂,以及特殊角的三角函数值,是基础题,熟记性质以及特殊角的三角函数值是解题的关键.【答案】(1)解:2cos45∘+(√2−1)0−(1)−1=2×√22+1﹣2=√2﹣1.18.【能力值】无【知识点】(1)分式的混合运算【详解】(1)【考点】分式的化简求值【分析】首先化简(a−2ab−b2a )÷a−ba,然后把a=2,b=﹣3代入化简后的算式,求出算式的值是多少即可.【点评】此题主要考查了分式的化简求值问题,要熟练掌握,化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.【答案】(1)解:(a−2ab−b2a )÷a−ba=(a−b)2a ÷a−ba=a﹣b当a=2,b=﹣3时,原式=2﹣(﹣3)=5.19.【能力值】无【知识点】(1)全等形的概念及性质【详解】(1)【考点】全等三角形的判定与性质【分析】根据两直线平行,内错角相等可得∠ABC=∠DEF,∠C=∠F,然后利用“角角边”证明△ABC和△DEF全等,根据全等三角形对应边相等可得BC=EF,然后都减去BE 即可得证.【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判断方法是解题的关键,难点在于利用平行线的性质求出三角形全等的条件.【答案】(1)答:CE=FB.证明如下:∵AB∥DE,∴∠ABC=∠DEF,∵AC∥DF,∴∠C=∠F,在△ABC和△DEF中,{∠ABC=∠DEF∠C=∠FAC=DF,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣BE=EF﹣BE,即CE=FB.20.【能力值】无【知识点】(1)扇形统计图、条形统计图(2)扇形统计图、条形统计图(3)扇形统计图、条形统计图【详解】(1)【考点】扇形统计图;条形统计图【分析】根据D类垃圾量和所占的百分比即可求得垃圾总数,然后乘以其所占的百分比即可求得每个小组的频数从而补全统计图;【点评】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.(2)【考点】扇形统计图;条形统计图【分析】求得C组所占的百分比,即可求得C组的垃圾总量;【点评】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.(3)【考点】扇形统计图;条形统计图【分析】首先求得可回收垃圾量,然后求得塑料颗粒料即可;【点评】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.【答案】(1)观察统计图知:D类垃圾有5吨,占10%,∴垃圾总量为5÷10%=50吨,故B类垃圾共有50×30%=15吨,故统计表为:(2)∵C组所占的百分比为:1﹣10%﹣30%﹣54%=6%,∴有害垃圾为:50×6%=3吨;(3)5000×54(吨),答:每月回收的塑料类垃圾可以获得378吨二级原料.21.【能力值】无【知识点】(1)解直角三角形的实际应用【详解】(1)【考点】解直角三角形的应用﹣方向角问题【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.【点评】此题考查了方向角问题.此题难度适中,注意能借助于方向角构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.【答案】(1)解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×√3≈108.25(米)>100米.2答:消防车不需要改道行驶.22.【能力值】无【知识点】(1)全等三角形的性质(D )(2)全等三角形的性质(D )【详解】(1)【考点】全等三角形的判定与性质;翻折变换(折叠问题)【分析】由AD ∥BC ,知∠ADB =∠DBC ,根据折叠的性质∠ADB =∠BDF ,所以∠DBC =∠BDF ,得BE =DE ,即可用AAS 证△DCE ≌△BFE ;【点评】本题考查了折叠的性质、全等三角形的判定和性质、等角对等边、平行线的性质以及勾股定理的综合运用,熟练的运用折叠的性质是解决本题的关键.(2)【考点】全等三角形的判定与性质;翻折变换(折叠问题)【分析】在Rt △BCD 中,CD =2,∠ADB =∠DBC =30°,知BC =2√,在Rt △BCD 中,CD =2,∠EDC =30°,知CE =2√33,所以BE =BC ﹣EC =4√33. 【点评】本题考查了折叠的性质、全等三角形的判定和性质、等角对等边、平行线的性质以及勾股定理的综合运用,熟练的运用折叠的性质是解决本题的关键.【答案】(1)∵AD ∥BC ,∴∠ADB =∠DBC ,根据折叠的性质∠ADB =∠BDF ,∠F =∠A =∠C =90°,∴∠DBC =∠BDF ,∴BE =DE ,在△DCE和△BFE中,{∠BEF=∠DEC∠C=∠FBE=DE,∴△DCE≌△BFE;(2)在Rt△BCD中,∵CD=2,∠ADB=∠DBC=30°,∴BC=2√3,在Rt△ECD中,∵CD=2,∠EDC=30°,∴DE=2EC,∴(2EC)2−EC2=CD2,∴CE=2√33,∴BE=BC﹣EC=4√33.23.【能力值】无【知识点】(1)一次函数的应用(2)一次函数的应用(3)一次函数的应用【详解】(1)【考点】反比例函数与一次函数的交点问题【分析】把A、B的坐标代入反比例函数解析式求出m=﹣n,过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,求出梯形BCAD的面积和△BDA的面积,即可得出关于n的方程,求出n的值,得出A、B的坐标,代入反比例函数和一次函数的解析式,即可求出答案;【点评】本题考查了一次函数的反比例函数的交点问题,用待定系数法求出一次函数和反比例函数的解析式,一次函数和反比例函数的图象和性质,三角形的面积等知识点,主要考查学生运用性质进行计算的能力,题目比较好,有一定的难度,用了数形结合和思想.(2)【考点】反比例函数与一次函数的交点问题【分析】根据A、B的横坐标,结合图象即可得出答案;【点评】本题考查了一次函数的反比例函数的交点问题,用待定系数法求出一次函数和反比例函数的解析式,一次函数和反比例函数的图象和性质,三角形的面积等知识点,主要考查学生运用性质进行计算的能力,题目比较好,有一定的难度,用了数形结合和思想.(3)【考点】反比例函数与一次函数的交点问题【分析】分为两种情况:当点P在第三象限时和当点P在第一象限时,根据坐标和图象即可得出答案.【点评】本题考查了一次函数的反比例函数的交点问题,用待定系数法求出一次函数和反比例函数的解析式,一次函数和反比例函数的图象和性质,三角形的面积等知识点,主要考查学生运用性质进行计算的能力,题目比较好,有一定的难度,用了数形结合和思想.【答案】(1)得:k2=2m=﹣2n,把A(2,m),B(n,﹣2)代入y=k2x即m=﹣n,则A(2,﹣n),过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,∵A(2,﹣n),B(n,﹣2),∴BD=2﹣n,AD=﹣n+2,BC=|﹣2|=2,∵S△ABC =12.BC.BD∴12×2×(2﹣n)=5,解得:n=﹣3,即A(2,3),B(﹣3,﹣2),把A(2,3)代入y=k2x得:k2=6,即反比例函数的解析式是y=6x;把A(2,3),B(﹣3,﹣2)代入y=k1x+b得:{3=2k1+b−2=−3k1+b,解得:k1=1,b=1,即一次函数的解析式是y=x+1;(2)∵A(2,3),B(﹣3,﹣2),∴不等式k1x+b>k2x的解集是﹣3<x<0或x>2;(3)分为两种情况:当点P在第三象限时,要使y1≥y2,实数p的取值范围是P≤﹣2,当点P在第一象限时,要使y1≥y2,实数p的取值范围是P>0,即P的取值范围是p≤﹣2或p>0.24.【能力值】无【知识点】(1)等边三角形的性质、切线的判定、解直角三角形(2)等边三角形的性质、切线的判定、解直角三角形(3)等边三角形的性质、切线的判定、解直角三角形【详解】(1)【考点】等边三角形的性质;切线的判定;解直角三角形【分析】连结OD,根据等边三角形的性质得∠C=∠A=∠B=60°,而OD=OB,所以∠ODB=60°=∠C,于是可判断OD∥AC,又DF⊥AC,则OD⊥DF,根据切线的判定定理可得DF是⊙O的切线;【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的性质以及解直角三角形等知识.(2)【考点】等边三角形的性质;切线的判定;解直角三角形【分析】先证明OD为△ABC的中位线,得到BD=CD=6.在Rt△CDF中,由∠C=60°,得∠CDF=30°,根据含30度的直角三角形三边的关系得CF=12CD=3,所以AF=AC﹣CF=9,然后在Rt△AFG中,根据正弦的定义计算FG的长;【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的性质以及解直角三角形等知识.(3)【考点】等边三角形的性质;切线的判定;解直角三角形【分析】过D作DH⊥AB于H,由垂直于同一直线的两条直线互相平行得出FG∥DH,根据平行线的性质可得∠FGD=∠GDH.解Rt△BDH,得BH=12BD=3,DH=√3BH=√33.解Rt△AFG,得AG=12AF=92,则GH=AB﹣AG﹣BH=92,于是根据正切函数的定义得到tan∠GDH=GHDH =√32,则tan∠FGD可求.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的性质以及解直角三角形等知识.【答案】(1)证明:连结OD,如图,∵△ABC为等边三角形,∴∠C=∠A=∠B=60°,而OD=OB,∴△ODB是等边三角形,∠ODB=60°,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)解:∵OD ∥AC ,点O 为AB 的中点,∴OD 为△ABC 的中位线,∴BD =CD =6.在Rt △CDF 中,∠C =60°,∴∠CDF =30°,∴CF =12CD =3,∴AF =AC ﹣CF =12﹣3=9,在Rt △AFG 中,∵∠A =60°,∴FG =AF ×sinA =9×√32=9√32; (3)解:过D 作DH ⊥AB 于H .∵FG ⊥AB ,DH ⊥AB ,∴FG ∥DH ,∴∠FGD =∠GDH .在Rt △BDH 中,∠B =60°,∴∠BDH =30°,∴BH =12BD =3,DH =√3BH =3√3.在Rt △AFG 中,∵∠AFG =30°,∴AG=12AF=92,∵GH=AB﹣AG﹣BH=12﹣92﹣3=92,∴tan∠GDH=GHDH =923√3=√32,∴tan∠FGD=tan∠GDH=√32.25.【能力值】无【知识点】(1)解直角三角形(2)解直角三角形(3)解直角三角形【详解】(1)【考点】三角形综合题【分析】过点Q作QD⊥OA于点D,解直角三角形QOD,分别求出OD,QD和x的关系式,即可得到点Q的坐标;.【点评】本题主要考查了和三角形有关的知识,其中用到了二次函数的最值、等边三角形的性质、特殊角的锐角的锐角三角函数值、解一元二次方程、图形面积的求法,题目的综合性较强,对学生的计算能力要求很高,是一道不错的中考压轴题目.(2)【考点】三角形综合题【分析】由三角形面积公式可得s与x之间的二次函数关系式,然后利用配方法求得其最大值即可;【点评】本题主要考查了和三角形有关的知识,其中用到了二次函数的最值、等边三角形的性质、特殊角的锐角的锐角三角函数值、解一元二次方程、图形面积的求法,题目的综合性较强,对学生的计算能力要求很高,是一道不错的中考压轴题目.(3)【考点】三角形综合题【分析】存在某个时刻x的值,使△OPQ的面积为3√34个平方单位,由(2)可知把y=3√34代入求出对应的x值即可.【点评】本题主要考查了和三角形有关的知识,其中用到了二次函数的最值、等边三角形的性质、特殊角的锐角的锐角三角函数值、解一元二次方程、图形面积的求法,题目的综合性较强,对学生的计算能力要求很高,是一道不错的中考压轴题目.【答案】(1)过点Q 作QD ⊥OA 于点D ,如图所示:∵△ABO 是等边三角形,∴∠AOB =60°,∵动点Q 从B 点出发,速度为每秒1个单位长度,∴BQ =x ,∴OQ =4﹣x ,在Rt △QOD 中,OD =OQ •cos60°=(4﹣x )×12=2﹣12x ,QD =OQ •sin60°=(4﹣x )×√32=2√3﹣√32x ,∴点Q 的坐标为(2﹣12x ,2√﹣√32x );(2)∵动点P 从O 点出发,速度为每秒1个单位长度,∴OP =x ,∴S =12OP •QD =12x (2√﹣√32x )=-√34x 2+x ,=−√34(x −2)2+√3(0<x <4),∵a =﹣√34<0,∴当x =2时,S 有最大值,最大值为√3;(3)存在某个时刻x 的值,使△OPQ 的面积为3√34个平方单位,理由如下:,假设存在某个时刻,使△OPQ 的面积为3√34个平方单位,由(2)可知)=−√34x 2+√3x =3√34,解得x =1或x =3,∵0<x<4,∴x=1或x=3都成了,个平方单位.即当x=1s或3s时,能使△OPQ的面积为3√34。
2017 年广东省深圳市中考数学试卷一、选择题1.﹣ 2 的绝对值是()A.﹣ 2 B.2C.﹣D.2.图中立体图形的主视图是()A.B.C.D.3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达 8200000 吨,将 8200000 用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106 D.82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.下列选项中,哪个不可以得到l1∥ l2?()A.∠ 1=∠2 B.∠ 2=∠3 C.∠ 3=∠5 D.∠ 3+∠4=180°6.不等式组的解集为()A.x>﹣ 1 B.x<3 C. x<﹣ 1 或 x>3D.﹣ 1< x< 37.一球鞋厂,现打折促销卖出330 双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程()A.10%x=330 B.(1﹣10%) x=330C.( 1﹣ 10%)2x=330 D.(1+10%)x=330 8.如图,已知线段 AB,分别以 A、B 为圆心,大于 AB 为半径作弧,连接弧的交点得到直线 l,在直线 l 上取一点 C,使得∠ CAB=25°,延长 AC 至 M,求∠ BCM的度数为()A.40°B.50°C.60°D.70°9.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣ 2)关于 y 轴的对称点为(﹣ 3, 2)D.抛物线 y=x2﹣4x+2017 对称轴为直线 x=210.某共享单车前 a 公里1 元,超过 a 公里的,每公里 2 元,若要使使用该共享单车50%的人只花 1 元钱, a 应该要取什么数()A.平均数B.中位数C.众数D.方差11.如图,学校环保社成员想测量斜坡 CD 旁一棵树 AB 的高度,他们先在点 C 处测得树顶 B 的仰角为 60°,然后在坡顶 D 测得树顶 B 的仰角为 30°,已知斜坡CD的长度为 20m,DE的长为 10cm,则树 AB 的高度是()m.A.20B.30 C. 30D. 4012.如图,正方形 ABCD的边长是 3,BP=CQ,连接 AQ,DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,下列结论:① AQ⊥DP;② OA2=OE?OP;③ S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1B.2C.3D.4二、填空题13.因式分解:a3﹣4a=.14.在一个不透明的袋子里,有 2 个黑球和 1 个白球,除了颜色外全部相同,任意摸两个球,摸到 1 黑1 白的概率是.15.阅读理解:引入新数i,新数i 满足分配律,结合律,交换律,已知i2=﹣1,那么( 1+i)?(1﹣i) =.16.如图,在 Rt△ABC中,∠ ABC=90°,AB=3,BC=4, Rt△MPN,∠ MPN=90°,点 P 在 AC上, PM 交 AB 于点 E,PN 交 BC于点 F,当 PE=2PF时, AP=.三、解答题17.计算: |﹣2|﹣2cos45°+(﹣1)﹣2+.18.先化简,再求值:(+)÷,其中x=﹣1.19.深圳市某学校抽样调查, A 类学生骑共享单车, B 类学生坐公交车、私家车等, C 类学生步行, D 类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y( 1)学生共人, x=, y=;( 2)补全条形统计图;( 3)若该校共有 2000 人,骑共享单车的有人.20.一个矩形周长为56 厘米.(1)当矩形面积为 180 平方厘米时,长宽分别为多少?(2)能围成面积为 200 平方米的矩形吗?请说明理由.2017 年中考数学真题试题21.如图,一次函数y=kx+b 与反比例函数y= (x>0)交于 A(2,4), B( a,1),与 x 轴, y 轴分别交于点 C,D.(1)直接写出一次函数 y=kx+b 的表达式和反比例函数 y= (x>0)的表达式;(2)求证: AD=BC.22.如图,线段 AB 是⊙ O 的直径,弦 CD⊥AB 于点 H,点 M 是上任意一点,AH=2,CH=4.(1)求⊙ O 的半径 r 的长度;(2)求 sin∠CMD;(3)直线 BM 交直线 CD于点 E,直线 MH 交⊙ O 于点 N,连接 BN 交 CE于点 F,求 HE?HF的值.2017 年中考数学真题试题23.如图,抛物线 y=ax2+bx+2 经过点 A(﹣ 1,0),B( 4,0),交 y 轴于点 C;( 1)求抛物线的解析式(用一般式表示);( 2)点 D 为y 轴右侧抛物线上一点,是否存在点 D 使S△ABC= S△ABD?若存在请直接给出点 D 坐标;若不存在请说明理由;( 3)将直线 BC绕点 B 顺时针旋转 45°,与抛物线交于另一点E,求 BE的长.2017 年中考数学真题试题2017 年广东省深圳市中考数学试卷参考答案与试题解析一、选择题1.﹣ 2 的绝对值是()A.﹣ 2 B.2C.﹣D.【考点】 15:绝对值.【分析】根据绝对值的定义,可直接得出﹣ 2 的绝对值.【解答】解: | ﹣2| =2.故选 B.2.图中立体图形的主视图是()A.B.C.D.【考点】 U2:简单组合体的三视图.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有一个小正方体,在中间.故选 A.3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达 8200000 吨,将 8200000 用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106 D.82×107【考点】 1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a× 10n的形式,其中 1≤a< 10,n 为整数.确||定n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n是负数.【解答】解:将 8200000 用科学记数法表示为: 8.2×106.故选: C.4.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【考点】 R5:中心对称图形; P3:轴对称图形.【分析】根据中心对称图形的定义旋转 180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、是中心对称图形,不是轴对称图形,选项不符合题意;B、是轴对称图形,不是中心对称图形,选项不符合题意;C、是中心对称图形,不是轴对称图形,选项不符合题意;D、是中心对称图形,也是轴对称图形,选项符合题意.故选 D.5.下列选项中,哪个不可以得到l1∥ l2?()A.∠ 1=∠2 B.∠ 2=∠3 C.∠ 3=∠5 D.∠ 3+∠4=180°【考点】 J9:平行线的判定.【分析】分别根据平行线的判定定理对各选项进行逐一判断即可.【解答】解: A、∵∠ 1=∠2,∴ l1∥l2,故本选项错误;B、∵∠ 2=∠ 3,∴ l1∥l2,故本选项错误;C、∠ 3=∠5 不能判定 l1∥l2,故本选项正确;D、∵∠ 3+∠ 4=180°,∴ l1∥l2,故本选项错误.故选 C.6.不等式组的解集为()A.x>﹣ 1 B.x<3 C. x<﹣ 1 或 x>3D.﹣ 1< x< 3【考点】 CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式 3﹣ 2x<5,得: x>﹣ 1,解不等式 x﹣ 2< 1,得: x<3,∴不等式组的解集为﹣ 1<x<3,故选: D.7.一球鞋厂,现打折促销卖出330 双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程()A.10%x=330 B.(1﹣10%) x=330C.( 1﹣ 10%)2x=330D.(1+10%)x=330【考点】 89:由实际问题抽象出一元一次方程.【分析】设上个月卖出x 双,等量关系是:上个月卖出的双数×(1+10%) =现在卖出的双数,依此列出方程即可.【解答】解:设上个月卖出x 双,根据题意得(1+10%) x=330.故选 D.8.如图,已知线段AB,分别以 A、B 为圆心,大于AB 为半径作弧,连接弧的交点得到直线 l,在直线 l 上取一点 C,使得∠ CAB=25°,延长 AC 至 M,求∠ BCM的度数为()2017 年中考数学真题试题A.40°B.50°C.60°D.70°【考点】 N2:作图—基本作图; KG:线段垂直平分线的性质.【分析】根据作法可知直线 l 是线段 AB 的垂直平分线,故可得出 AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l 是线段 AB 的垂直平分线,∴AC=BC,∴∠ CAB=∠CBA=25°,∴∠ BCM=∠CAB+∠ CBA=25°+25°=50°.故选 B.9.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣ 2)关于 y 轴的对称点为(﹣ 3, 2)D.抛物线 y=x2﹣4x+2017 对称轴为直线 x=2【考点】 O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解: A、五边形外角和为360°是真命题,故 A 不符合题意;B、切线垂直于经过切点的半径是真命题,故 B 不符合题意;C、(3,﹣ 2)关于 y 轴的对称点为(﹣ 3, 2)是假命题,故C 符合题意;D、抛物线 y=x2﹣4x+2017 对称轴为直线 x=2 是真命题,故 D 不符合题意;故选: C.10.某共享单车前 a 公里 1 元,超过 a 公里的,每公里 2 元,若要使使用该共享单车 50%的人只花 1 元钱, a 应该要取什么数()A.平均数B.中位数C.众数D.方差【考点】 WA:统计量的选择.【分析】由于要使使用该共享单车 50%的人只花 1 元钱,根据中位数的意义分析即可【解答】解:根据中位数的意义,故只要知道中位数就可以了.故选 B.11.如图,学校环保社成员想测量斜坡 CD 旁一棵树 AB 的高度,他们先在点 C 处测得树顶 B 的仰角为 60°,然后在坡顶 D 测得树顶 B 的仰角为 30°,已知斜坡CD的长度为 20m,DE的长为 10cm,则树 AB 的高度是()m.A.20B.30 C. 30D. 40【考点】 TA:解直角三角形的应用﹣仰角俯角问题.【分析】先根据 CD=20米,DE=10m得出∠ DCE=30°,故可得出∠ DCB=90°,再由∠BDF=30°可知∠ DBE=60°,由 DF∥AE 可得出∠ BGF=∠BCA=60°,故∠GBF=30°,所以∠ DBC=30°,再由锐角三角函数的定义即可得出结论.【解答】解:在Rt△CDE中,∵ CD=20m,DE=10m,∴ sin∠DCE= = ,∴∠ DCE=30°.∵∠ ACB=60°,DF∥ AE,∴∠ BGF=60°∴∠ ABC=30°,∠ DCB=90°.∵∠ BDF=30°,∴∠ DBF=60°,∴∠ DBC=30°,∴ BC===20 m,∴ AB=BC?sin60°=20 ×=30m.故选 B.12.如图,正方形 ABCD的边长是 3,BP=CQ,连接 AQ,DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,下列结论:① AQ⊥DP;② OA2=OE?OP;③ S△AOD=S四边形OECF;④当 BP=1时, tan∠OAE=,其中正确结论的个数是()A.1B.2C.3D.4【考点】 S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质; T7:解直角三角形.【分析】由四边形 ABCD是正方形,得到AD=BC,∠ DAB=∠ ABC=90°,根据全等三角形的性质得到∠ P=∠ Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似三角形的性质得到AO2=OD?OP,由 OD≠OE,得到 OA2≠OE?OP;故②错误;根据全等三角形的性质得到CF=BE,DF=CE,于是得到 S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD四边形OECF;故③正确;根据相似三角形的性质得到BE= ,求得 QE=,=SQO= , OE=,由三角函数的定义即可得到结论.【解答】解:∵四边形 ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵ BP=CQ,∴AP=BQ,在△ DAP与△ ABQ中,,∴△ DAP≌△ ABQ,∴∠ P=∠ Q,∵∠ Q+∠ QAB=90°,∴∠ P+∠ QAB=90°,∴∠ AOP=90°,∴AQ⊥ DP;故①正确;∵∠ DOA=∠AOP=90,∠ADO+∠ P=∠ADO+∠DAO=90°,∴∠ DAO=∠P,∴△ DAO∽△ APO,∴,∴AO2=OD?OP,∵ AE>AB,∴AE>AD,∴OD≠ OE,∴OA2≠OE?OP;故②错误;在△ CQF与△ BPE中,∴△ CQF≌△ BPE,∴CF=BE,∴DF=CE,在△ ADF与△ DCE中,,∴△ ADF≌△ DCE,∴S△ADF﹣ S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1, AB=3,∴ AP=4,∵△ AOP∽△ DAP,∴,∴BE= ,∴ QE= ,∵△ QOE∽△ PAD,∴,∴QO= ,OE= ,∴AO=5﹣QO= ,∴tan∠ OAE= = ,故④正确,故选 C.二、填空题313.因式分解: a ﹣4a= a(a+2)(a﹣2).【分析】首先提取公因式 a,进而利用平方差公式分解因式得出即可.32【解答】解: a ﹣ 4a=a(a ﹣ 4)=a(a+2)(a﹣2).故答案为: a( a+2)( a﹣ 2).14.在一个不透明的袋子里,有 2 个黑球和 1 个白球,除了颜色外全部相同,任意摸两个球,摸到 1 黑 1 白的概率是.【考点】 X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所摸。
2017年广东省深圳市中考数学试卷一、选择题1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.(3分)图中立体图形的主视图是()A.B.C.D.3.(3分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105C.8.2×106D.82×107 4.(3分)观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.(3分)下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.(3分)不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<3 7.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=3308.(3分)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°9.(3分)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=210.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.(3分)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是()m.A.20B.30 C.30D.4012.(3分)如图,正方形ABCD 的边长是3,BP=CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②OA 2=OE•OP ;③S △AOD =S 四边形OECF ;④当BP=1时,tan ∠OAE=,其中正确结论的个数是( )A .1B .2C .3D .4二、填空题13.(3分)因式分解:a 3﹣4a= .14.(3分)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 .15.(3分)阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知i 2=﹣1,那么(1+i )•(1﹣i )= .16.(3分)如图,在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,Rt △MPN ,∠MPN=90°,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当PE=2PF 时,AP= .三、解答题17.(5分)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.18.(6分)先化简,再求值:(+)÷,其中x=﹣1.19.(7分)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.(8分)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方米的矩形吗?请说明理由.21.(8分)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.22.(9分)如图,线段AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点M 是上任意一点,AH=2,CH=4. (1)求⊙O 的半径r 的长度; (2)求sin ∠CMD ;(3)直线BM 交直线CD 于点E ,直线MH 交⊙O 于点N ,连接BN 交CE 于点F ,求HE•HF 的值.23.(9分)如图,抛物线y=ax 2+bx +2经过点A (﹣1,0),B (4,0),交y 轴于点C ; (1)求抛物线的解析式(用一般式表示);(2)点D 为y 轴右侧抛物线上一点,是否存在点D 使S △ABC =S △ABD ?若存在请直接给出点D 坐标;若不存在请说明理由;(3)将直线BC 绕点B 顺时针旋转45°,与抛物线交于另一点E ,求BE 的长.。
2017深圳中考数学试卷及答案考高分上名校就选思学佳-深圳市市 7 2017 年初中毕业生学业考试数学姓名:学校:得分:一、选择题1.(3 分)﹣2 的绝对值是()A.﹣2 B.2 C.﹣ D.2.(3 分)图中立体图形的主视图是()A. B. C. D.3.(3 分)随着一带一路建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达 8200000 吨,将 8200000 用科学记数法表示为()A.8.210 5 B.8210 5 C.8.210 6 D.8210 74.(3 分)观察下列图形,其中既是轴对称又是中心对称图形的是()A. B. C. D.5.(3 分)下列选项中,哪个不可以得到 l 1 ∥l 2 ?()A.1=2 B.2=3C.3=5D.3+4=1806.(3 分)不等式组的解集为()考高分上名校就选思学佳-A.x>﹣1 B.x<3 C.x<﹣1 或 x>3 D.﹣1<x <37.(3 分)一球鞋厂,现打折促销卖出 330 双球鞋,比上个月多卖 10%,设上个月卖出 x 双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2 x=330 D.(1+10%)x=3308.(3 分)如图,已知线段 AB,分别以 A、B 为圆心,大于 AB 为半径作弧,连接弧的交点得到直线 l,在直线 l 上取一点 C,使得CAB=25,延长 AC 至 M,求BCM 的度数为()A.40 B.50 C.60 D.709.(3 分)下列哪一个是假命题()A.五边形外角和为 360B.切线垂直于经过切点的半径C.(3,﹣2)关于 y 轴的对称点为(﹣3,2)D.抛物线 y=x 2 ﹣4x+2017 对称轴为直线 x=210.(3 分)某共享单车前 a 公里 1 元,超过 a 公里的,每公里 2 元,若要使使用该共享单车50%的人只花 1 元钱,a 应该要取什么数()A.平均数 B.中位数 C.众数 D.方差11.(3 分)如图,学校环保社成员想测量斜坡 CD 旁一棵树 AB 的高度,他们先在点 C 处测得树顶 B 的仰角为 60,然后在坡顶 D 测得树顶 B 的仰角为 30,已知斜坡 CD 的长度为20m,DE 的长为 10m,则树 AB 的高度是()m.考高分上名校就选思学佳-A.20 B.30 C.30 D.4012.(3 分)如图,正方形ABCD 的边长是 3,BP=CQ,连接 AQ,DP 交于点 O,并分别与边 CD,BC 交于点F,E,连接 AE,下列结论:①AQDP;②OA 2 =OEOP;③S △ AOD =S 四边形 OECF ;④当 BP=1 时,tanOAE=,其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题13.(3 分)因式分解:a 3 ﹣4a= .14.(3 分)在一个不透明的袋子里,有 2 个黑球和 1 个白球,除了颜色外全部相同,任意摸两个球,摸到 1 黑1 白的概率是.15.(3 分)阅读理解:引入新数 i,新数 i 满足分配律,结合律,交换律,已知 i 2 =﹣1,那么(1+i)(1﹣i)= .16.(3 分)如图,在Rt△ABC 中,ABC=90,AB=3,BC=4,Rt△MPN,MPN=90,点 P 在 AC 上,PM 交 AB 于点 E,PN 交 BC 于点 F,当 PE=2PF 时,AP= .考高分上名校就选思学佳-三、解答题17.(5 分)计算:| ﹣2|﹣2cos45+(﹣1)﹣ 2 +.18.(6 分)先化简,再求值:( + ),其中 x=﹣1.19.(7 分)深圳市某学校抽样调查,A 类学生骑共享单车,B 类学生坐公交车、私家车等,C 类学生步行,D 类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A 30 xB 18 0.15C m 0.40D n y(1)学生共人,x= ,y= ;(2)补全条形统计图;(3)若该校共有 2000 人,骑共享单车的有人.20.(8 分)一个矩形周长为 56 厘米.考高分上名校就选思学佳-(1)当矩形面积为 180 平方厘米时,长宽分别为多少?(2)能围成面积为 200 平方厘米的矩形吗?请说明理由.21.(8 分)如图,一次函数 y=kx+b 与反比例函数 y= (x>0)交于 A(2,4),B(a,1),与 x 轴,y 轴分别交于点 C,D.(1)直接写出一次函数 y=kx+b 的表达式和反比例函数 y= (x>0)的表达式;(2)求证:AD=BC.22.(9 分)如图,线段 AB 是⊙O 的直径,弦 CDAB 于点 H,点 M 是上任意一点,AH=2,CH=4.(1)求⊙O 的半径 r 的长度;(2)求 sinCMD;(3)直线 BM 交直线 CD 于点 E,直线 MH 交⊙O 于点 N,连接 BN 交 CE 于点 F,求 HEHF的值.23.(9 分)如图,抛物线 y=ax 2 +bx+2 经过点 A(﹣1,0),B(4,0),交 y 轴于点 C;(1)求抛物线的解析式(用一般式表示);(2)点 D 为 y 轴右侧抛物线上一点,是否存在点 D 使 S △ ABC = S △ ABD ?若存在请直接给出点D 坐标;若不存在请说明理由;(3)将直线 BC 绕点 B 顺时针旋转 45,与抛物线交于另一点 E,求BE 的长.考高分上名校就选思学佳-考高分上名校就选思学佳-2017 年广东省深圳市中考数学试卷参考答案与试题解析一、选择题1.【解答】解:|﹣2|=2.故选 B.2.【解答】解:从正面看,共有两层,下面三个小正方体,上面有一个小正方体,在中间.故选 A.3.【解答】解:将 8200000 用科学记数法表示为:8.210 6 .故选:C.4.【解答】解:A、是中心对称图形,不是轴对称图形,选项不符合题意;B、是轴对称图形,不是中心对称图形,选项不符合题意;C、不是中心对称图形,不是轴对称图形,选项不符合题意;D、是中心对称图形,也是轴对称图形,选项符合题意.故选D.5.【解答】解:A、∵1=2,l 1 ∥l 2 ,故本选项错误;B、∵2=3,l 1 ∥l 2 ,故本选项错误;C、3=5 不能判定 l 1 ∥l 2 ,故本选项正确;D、∵3+4=180,l 1 ∥l 2 ,故本选项错误.故选 C.6.【解答】解:解不等式 3﹣2x<5,得:x>﹣1,解不等式 x﹣2<1,得:x<3,不等式组的解集为﹣1<x<3,故选:D.7.【解答】解:设上个月卖出 x 双,根据题意得(1+10%)x=330.故选 D.8.【解答】解:∵由作法可知直线 l 是线段 AB 的垂直平分线,考高分上名校就选思学佳-AC=BC,CAB=CBA=25,BCM=CAB+CBA=25+25=50.故选B.9.【解答】解:A、五边形外角和为 360是真命题,故 A 不符合题意;B、切线垂直于经过切点的半径是真命题,故 B 不符合题意;C、(3,﹣2)关于 y 轴的对称点为(﹣3,2)是假命题,故 C 符合题意;D、抛物线 y=x 2 ﹣4x+2017 对称轴为直线 x=2 是真命题,故 D 不符合题意;故选:C.10.【解答】解:根据中位数的意义,故只要知道中位数就可以了.故选 B.11.【解答】解:在 Rt △CDE 中,∵CD=20m,DE=10m,sinDCE= = ,DCE=30.∵ACB=60,DF∥AE,BGF=60ABC=30,DCB=90.∵BDF=30,DBF=60,DBC=30,BC= = =20 m,AB=BCsin60=20 =30m.故选 B.12.【解答】解:∵四边形 ABCD 是正方形,AD=BC,DAB=ABC=90,考高分上名校就选思学佳-∵BP=CQ,AP=BQ,在△DAP 与△ABQ 中,,△DAP ≌△ABQ,P=Q,∵Q+QAB=90,P+QAB=90,AOP=90,AQDP;故①正确;∵DOA=AOP=90,ADO+P=ADO+DAO=90,DAO=P,△DAO∽△APO,,AO 2 =ODOP,∵AE>AB,AE>AD,ODOE,OA 2 OEOP;故②错误;在△CQF 与△BPE 中,△CQF≌△BPE,CF=BE,DF=CE,在△ADF 与△DCE 中,,△ADF≌△DCE,S △ ADF ﹣S △ DFO =S △ DCE ﹣S △ DOF ,考高分上名校就选思学佳-即 S △ AOD =S四边形 OECF ;故③正确;∵BP=1,AB=3,AP=4,∵△PBE∽△PAD,,BE= ,QE= ,∵△QOE∽△PAD,,QO= ,OE= ,AO=5﹣QO= ,tanOAE= = ,故④正确,故选 C.二、填空题13.【解答】解:a 3 ﹣4a=a(a 2 ﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).14.【解答】解:依题意画树状图得:∵共有 6 种等可能的结果,所摸到的球恰好为 1 黑 1 白的有 4 种情况,所摸到的球恰好为 1 黑 1 白的概率是: = .故答案为:.15.【解答】解:由题意可知:原式=1﹣i 2 =1﹣(﹣1)=2故答案为:2考高分上名校就选思学佳-16.【解答】解:如图作 PQAB 于 Q,PRBC 于 R.∵PQB=QBR=BRP=90,四边形 PQBR 是矩形,QPR=90=MPN,QPE=RPF,△QPE∽△RPF,= =2,PQ=2PR=2BQ,∵PQ∥BC,AQ:QP:AP=AB:BC:AC=3:4:5,设 PQ=4x,则 AQ=3x,AP=5x,BQ=2x,2x+3x=3,x= ,AP=5x=3.故答案为 3.三、解答题17.【解答】解:| ﹣2|﹣2cos45+(﹣1)﹣ 2 +,=2﹣﹣2 +1+2 ,=2﹣﹣ +1+2 ,=3.18.【解答】解:当 x=﹣1 时,考高分上名校就选思学佳-原式= =3x+2=﹣119.【解答】解:(1)由题意总人数= =120 人,x= =0.25,m=1200.4=48,y=1﹣0.25﹣0.4﹣0.15=0.2,n=1200.2=24,(2)条形图如图所示,(3)20000.25=500 人,考高分上名校就选思学佳-故答案为 500.20.【解答】解:(1)设矩形的长为 x 厘米,则另一边长为(28﹣x)厘米,依题意有x(28﹣x)=180,解得 x 1 =10(舍去),x 2 =18,28﹣x=28﹣18=10.故长为 18 厘米,宽为 10 厘米;(2)设矩形的长为 x 厘米,则宽为(28﹣x)厘米,依题意有x(28﹣x)=200,即 x 2 ﹣28x+200=0,则△=28 2 ﹣4200=784﹣800<0,原方程无实数根,故不能围成一个面积为 200 平方厘米的矩形.21.【解答】解:(1)将点 A(2,4)代入y= 中,得,m=24=8,反比例函数的解析式为 y= ,将点 B(a,1)代入 y= 中,得,a=8,B(8,1),将点 A(2,4),B(8,1)代入 y=kx+b 中,得,,,一次函数解析式为 y=﹣ x+5;(2)∵直线 AB 的解析式为 y=﹣ x+5,C(10,0),D(0,5),如图,过点 A 作 AEy 轴于 E,过点 B 作 BFx 轴于 F,E(0,4),F(8,0),AE=2,DE=1,BF=1,CF=2,考高分上名校就选思学佳-在 Rt△ADE 中,根据勾股定理得,AD= = ,在 Rt △BCF 中,根据勾股定理得,BC= = ,AD=BC.22.【解答】解:(1)如图 1 中,连接 OC.∵ABCD,CHO=90,在 Rt△COH 中,∵OC=r,OH=r﹣2,CH=4,r 2 =4 2 +(r﹣2) 2 ,r=5.(2)如图 1 中,连接 OD.∵ABCD,AB 是直径, = = ,AOC= COD,∵CMD= COD,CMD=COA,sinCMD=sinCOA= = .(3)如图 2 中,连接 AM.∵AB 是直径,AMB=90,考高分上名校就选思学佳-MAB+ABM=90,∵E+ABM=90,E=MAB,MAB=MNB=E,∵EHM=NHF△EHM∽△NHF, = ,HEHF=HMHN,∵HMHN=AHHB,HEHF=AHHB=2(10﹣2)=16.23.【解答】解:(1)∵抛物线 y=ax 2 +bx+2 经过点 A(﹣1,0),B(4,0),,解得,抛物线解析式为 y=﹣ x 2 + x+2;(2)由题意可知 C(0,2),A(﹣1,0),B(4,0),AB=5,OC=2,考高分上名校就选思学佳-S △ ABC = ABOC= 52=5,∵S △ ABC = S △ ABD ,S △ ABD = 5= ,设 D(x,y), AB|y|= 5|y|= ,解得|y|=3,当 y=3 时,由﹣ x 2 + x+2=3,解得 x=1 或 x=2,此时 D 点坐标为(1,3)或(2,3);当 y=﹣3 时,由﹣ x 2 + x+2=﹣3,解得 x=﹣2(舍去)或 x=5,此时 D 点坐标为(5,﹣3);综上可知存在满足条件的点 D,其坐标为(1,3)或(2,3)或(5,﹣3);(3)∵AO=1,OC=2,OB=4,AB=5,AC= = ,BC= =2 ,AC 2 +BC 2 =AB 2 ,△ABC 为直角三角形,即 BCAC,如图,设直线 AC 与直线 BE 交于点 F,过 F 作FMx 轴于点 M,由题意可知FBC=45,CFB=45,CF=BC=2 , = ,即 = ,解得 OM=2,= ,即 = ,解得 FM=6,F(2,6),且 B(4,0),设直线 BE 解析式为 y=kx+m,则可得,解得,考高分上名校就选思学佳-直线 BE 解析式为 y=﹣3x+12,联立直线 BE 和抛物线解析式可得,解得或,E(5,﹣3),BE= = .考高分上名校就选思学佳-思学佳教育有限公司成立于 2008 年,一直致力打造最专业,最完整的 K12 辅导机构。
2017年广东省深圳市中考数学试卷一、选择题1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.(3分)图中立体图形的主视图是()A. B. C.D.3.(3分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×1074.(3分)观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.(3分)下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.(3分)不等式组的解集为()A.x>﹣1 B.x 3 C.x ﹣1或x>3 D.﹣1x 37.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=3308.(3分)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°9.(3分)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=210.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.(3分)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是()m.A.20B.30 C.30D.4012.(3分)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE?OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题13.(3分)因式分解:a3﹣4a=.14.(3分)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.(3分)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)?(1﹣i)=.16.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.三、解答题17.(5分)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.18.(6分)先化简,再求值:(+)÷,其中x=﹣1.19.(7分)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A 30 xB 18 0.15C m 0.40D n y(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.(8分)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方米的矩形吗?请说明理由.21.(8分)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.22.(9分)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE?HF的值.23.(9分)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y 轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.2017年广东省深圳市中考数学试卷参考答案与试题解析一、选择题1.(3分)(2017?深圳)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.【考点】15:绝对值.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.【点评】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.(3分)(2017?深圳)图中立体图形的主视图是()A. B. C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有一个小正方体,在中间.故选A.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017?深圳)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值 1时,n是负数.【解答】解:将8200000用科学记数法表示为:8.2×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017?深圳)观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、是中心对称图形,不是轴对称图形,选项不符合题意;B、是轴对称图形,不是中心对称图形,选项不符合题意;C、是中心对称图形,不是轴对称图形,选项不符合题意;D、是中心对称图形,也是轴对称图形,选项符合题意.故选D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.(3分)(2017?深圳)下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【考点】J9:平行线的判定.【分析】分别根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∵∠1=∠2,∴l1∥l2,故本选项错误;B、∵∠2=∠3,∴l1∥l2,故本选项错误;C、∠3=∠5不能判定l1∥l2,故本选项正确;D、∵∠3+∠4=180°,∴l1∥l2,故本选项错误.故选C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.6.(3分)(2017?深圳)不等式组的解集为()A.x>﹣1 B.x 3 C.x ﹣1或x>3 D.﹣1x 3【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3﹣2x5,得:x>﹣1,解不等式x﹣21,得:x3,∴不等式组的解集为﹣1x3,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(3分)(2017?深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330【考点】89:由实际问题抽象出一元一次方程.【分析】设上个月卖出x双,等量关系是:上个月卖出的双数×(1+10%)=现在卖出的双数,依此列出方程即可.【解答】解:设上个月卖出x双,根据题意得(1+10%)x=330.故选D.【点评】本题考查了由实际问题抽象出一元一次方程,理解题意找到等量关系是解决本题的关键.8.(3分)(2017?深圳)如图,已知线段AB,分别以A、B为圆心,大于AB 为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.(3分)(2017?深圳)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=2【考点】O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、五边形外角和为360°是真命题,故A不符合题意;B、切线垂直于经过切点的半径是真命题,故B不符合题意;C、(3,﹣2)关于y轴的对称点为(﹣3,2)是假命题,故C符合题意;D、抛物线y=x2﹣4x+2017对称轴为直线x=2是真命题,故D不符合题意;故选:C.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3分)(2017?深圳)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差【考点】WA:统计量的选择.【分析】由于要使使用该共享单车50%的人只花1元钱,根据中位数的意义分析即可【解答】解:根据中位数的意义,故只要知道中位数就可以了.故选B.【点评】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.11.(3分)(2017?深圳)如图,学校环保社成员想测量斜坡CD旁一棵树AB 的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是()m.A.20B.30 C.30D.40【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】先根据CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可得出结论.【解答】解:在Rt△CDE中,∵CD=20m,DE=10m,∴sin∠DCE==,∴∠DCE=30°.∵∠ACB=60°,DF∥AE,∴∠BGF=60°∴∠ABC=30°,∠DCB=90°.∵∠BDF=30°,∴∠DBF=60°,∴∠DBC=30°,∴BC===20m,∴AB=BC?sin60°=20×=30m.故选B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.12.(3分)(2017?深圳)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE?OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质;T7:解直角三角形.【分析】由四边形ABCD是正方形,得到AD=BC,∠DAB=∠ABC=90°,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似三角形的性质得到AO2=OD?OP,由OD≠OE,得到OA2≠OE?OP;故②错误;根据全等三角形的性质得到CF=BE,DF=CE,于是得到S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;根据相似三角形的性质得到BE=,求得QE=,QO=,OE=,由三角函数的定义即可得到结论.【解答】解:∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD?OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE?OP;故②错误;在△CQF与△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正确,故选C.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.二、填空题13.(3分)(2017?深圳)因式分解:a3﹣4a=a(a+2)(a﹣2).【考点】55:提公因式法与公式法的综合运用.【专题】44 :因式分解.【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.(3分)(2017?深圳)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所摸到1黑1白的情况,再利用概率公式即可求得答案.【解答】解:依题意画树状图得:∵共有6种等可能的结果,所摸到的球恰好为1黑1白的有4种情况,∴所摸到的球恰好为1黑1白的概率是:=.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.解题时注意:概率=所求情况数与总情况数之比.15.(3分)(2017?深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)?(1﹣i)=2.【考点】4F:平方差公式;2C:实数的运算.【专题】23 :新定义.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:2【点评】本题考查新定义型运算,解题的关键是正确理解新定义,本题属于基础题型.16.(3分)(2017?深圳)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt △MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=3.【考点】S9:相似三角形的判定与性质.【分析】如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,可得2x+3x=3,求出x即可解决问题.【解答】解:如图作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ,∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=,∴AP=5x=3.故答案为3.【点评】本题考查相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.三、解答题17.(5分)(2017?深圳)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】因为2,所以|﹣2|=2﹣,cos45°=,=2,分别计算后相加即可.【解答】解:|﹣2|﹣2cos45°+(﹣1)﹣2+,=2﹣﹣2×+1+2,=2﹣﹣+1+2,=3.【点评】本题考查了有关负整数指数、特殊的三角函数值、乘方等知识的计算,属于常考题型,此类计算题要细心,熟练掌握特殊角的三角函数值,明确实数的运算法则.18.(6分)(2017?深圳)先化简,再求值:(+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】根据分式的运算法则即可求出答案.【解答】解:当x=﹣1时,原式=×=3x+2=﹣1【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7分)(2017?深圳)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A 30 xB 18 0.15C m 0.40D n y(1)学生共120人,x=0.25,y=0.2;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有500人.【考点】VC:条形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据B类学生坐公交车、私家车的人数以及频率,求出总人数,再根据频数与频率的关系一一解决即可;(2)求出m、n的值,画出条形图即可;(3)用样本估计总体的思想即可解决问题;【解答】解:(1)由题意总人数==120人,x==0.25,m=120×0.4=48,y=1﹣0.25﹣0.4﹣0.15=0.2,n=120×0.2=24,(2)条形图如图所示,(3)2000×0.25=500人,故答案为500.【点评】本题考查条形图、频率分布表、样本估计总体等知识,解题的关键是记住频率=频数总人数,频率之和为1,属于中考常考题型.20.(8分)(2017?深圳)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方米的矩形吗?请说明理由.【考点】AD:一元二次方程的应用.【分析】(1)设出矩形的一边长为未知数,用周长公式表示出另一边长,根据面积列出相应方程求解即可.(2)同样列出方程,若方程有解则可,否则就不可以.【解答】解:(1)设矩形的长为x厘米,则另一边长为(28﹣x)厘米,依题意有x(28﹣x)=180,解得x1=10(舍去),x2=18,28﹣x=28﹣18=10.故长为18厘米,宽为10厘米;(2)设矩形的长为x厘米,则宽为(28﹣x)厘米,依题意有x(28﹣x)=200,即x2﹣28x+200=0,则△=282﹣4×200=784﹣8000,原方程无解,故不能围成一个面积为200平方厘米的矩形.【点评】考查一元二次方程的应用;用到的知识点为:长方形的长=周长的一半﹣宽.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.(8分)(2017?深圳)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先确定出反比例函数的解析式,进而求出点B的坐标,最后用待定系数法求出直线AB的解析式;(2)由(1)知,直线AB的解析式,进而求出C,D坐标,构造直角三角形,利用勾股定理即可得出结论.【解答】解:(1)将点A(2,4)代入y=中,得,m=2×4=8,∴反比例函数的解析式为y=,将点B(a,1)代入y=中,得,a=8,∴B(8,1),将点A(2,4),B(8,1)代入y=kx+b中,得,,∴,∴一次函数解析式为y=﹣x+5;(2)∵直线AB的解析式为y=﹣x+5,∴C(10,0),D(0,5),如图,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∴E(0,4),F(8,0),∴AE=2,DE=1,BF=1,CF=2,在Rt△ADE中,根据勾股定理得,AD==,在Rt△BCF中,根据勾股定理得,BC==,∴AD=BC.【点评】此题是反比例函数与一次函数交点坐标问题,主要考查了待定系数法,勾股定理,解(1)的关键是掌握待定系数法求函数的解析式,解(2)的关键是构造直角三角形.22.(9分)(2017?深圳)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE?HF的值.【考点】MR:圆的综合题.【分析】(1)在Rt△COH中,利用勾股定理即可解决问题;(2)只要证明∠CMD=△COA,求出sin∠COA即可;(3)由△EHM∽△NHF,推出=,推出HE?HF=HM?HN,又HM?HN=AH?HB,推出HE?HF=AH?HB,由此即可解决问题.【解答】解:(1)如图1中,连接OC.∵AB⊥CD,∴∠CHO=90°,在Rt△COH中,∵OC=r,OH=r﹣2,CH=4,∴r2=42+(r﹣2)2,∴r=5.(2)如图1中,连接OD.∵AB⊥CD,AB是直径,∴==,∴∠AOC=∠COD,∵∠CMD=∠COD,∴∠CMD=∠COA,∴sin∠CMD=sin∠COA==.(3)如图2中,连接AM.∵AB是直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,∵∠E+∠ABM=90°,∴∠E=∠MAB,∴∠MAB=∠MNB=∠E,∵∠EHM=∠NHFM∴△EHM∽△NHF,∴=,∴HE?HF=HM?HN,∵HM?HN=AH?HB,∴HE?HF=AH?HB=2?(10﹣2)=16.【点评】本题考查圆综合题、垂径定理、勾股定理、相似三角形的判定和性质、相交弦定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考压轴题.23.(9分)(2017?深圳)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【考点】HF:二次函数综合题.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D到x轴的距离,即可求得D点的纵坐标,代入抛物线解析式可求得D点坐标;(3)由条件可证得BC⊥AC,设直线AC和BE交于点F,过F作FM⊥x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE和抛物线解析式可求得E点坐标,则可求得BE的长.【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)由题意可知C(0,2),A(﹣1,0),B(4,0),∴AB=5,OC=2,∴S△ABC=AB?OC=×5×2=5,∵S△ABC=S△ABD,∴S△ABD=×5=,设D(x,y),∴AB?|y|=×5|y|=,解得|y|=3,当y=3时,由﹣x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);当y=﹣3时,由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此时D点坐标为(5,﹣3);综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3);(3)∵AO=1,OC=2,OB=4,AB=5,∴AC==,BC==2,∴AC2+BC2=AB2,∴△ABC为直角三角形,即BC⊥AC,如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,由题意可知∠FBC=45°,∴∠CFB=45°,∴CF=BC=2,∴=,即=,解得OM=2,=,即=,解得FM=6,∴F(2,6),且B(4,0),设直线BE解析式为y=kx+m,则可得,解得,∴直线BE解析式为y=﹣3x+12,联立直线BE和抛物线解析式可得,解得或,∴E(5,﹣3),∴BE==.【点评】本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中求得D点的纵坐标是解题的关键,在(3)中由条件求得直线BE的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.。
G42 2017年广东省深圳市龙岗区中考数学一模试卷(6页,答案23)一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,恰有一个是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应的位置上)1.若关于x的方程x2+3x+a=0有一个根为﹣1,则a的值为()A.2 B.﹣1 C.﹣2 D.12.如图是一个用于防震的L形的包装用泡沫塑料,当俯视它时看到的图形形状是()A. B.C.D.3.如图,在地面上的点A处测得树顶B的仰角α=75°,若AC=6米,则树高BC为()A.6sin75°米B.米C.米D.6tan75°米4.对于反比例函数y=﹣,下列说法不正确的是()A.图象经过点(1,﹣3)B.图象分布在第二、四象限C.当x>0时,y随x的增大而增大D.点A(x1,y1)、B(x2、y2)都在反比例函数y=﹣的图象上,若x1<x2,则y1<y25.周星驰拍摄的电影《美人鱼》取景地在深圳杨梅坑,据称是深圳最美的溪谷,为估计全罗湖区8000名九年级学生去过杨梅坑的人数,随机抽取400名九年级学生,发现其中有50名学生去过该景点,由此估计全区九年级学生中有()个学生去过该景点.A.1000人B.800人C.720人D.640人6.将y=x2向上平移2个单位后所得到的抛物线的解析式为()A.y=x2﹣2 B.y=x2+2 C.y=(x﹣2)2D.y=(x+2)27.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.4:9 D.1:38.若二次函数的解析式为y=2x2﹣4x+3,则其函数图象与x轴交点的情况是()A.没有交点B.有一个交点C.有两个交点D.以上都不对9.如图,一农户要建一个矩形花圃,花圃的一边利用长为12m的住房墙,另外三边用25m长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,花圃面积为80m2,设与墙垂直的一边长为xm(已标注在图中),则可以列出关于x的方程是()A.x(26﹣2x)=80 B.x(24﹣2x)=80 C.(x﹣1)(26﹣2x)=80 D.x(25﹣2x)=8010.如图,在平面直角坐标系中,设点P到原点O的距离为ρ,OP与x轴正方向的交角为a,则用[ρ,a]表示点P的极坐标,例如:点P的坐标为(1,1),则其极坐标为[,45°].若点Q的极坐标为[4,120°],则点Q的平面坐标为()A.(﹣2,﹣2)B.(2,﹣2)C.(﹣2,﹣2)D.(﹣4,﹣4)11.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有()个.A.1个B.2个C.3个D.4个12.如图,已知正方形ABCD的边长为4,点E、F分别在边AB、ABC上,且AE=BF=1,CE、DF相交于点O,下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD=,④△COD的面积等于四边形BEOF的面积中,正确的有()A.1个B.2个C.3个D.4个二、填空题(共4小题)13.已知3x=4y,则=.14.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=cm.15.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于.16.如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上,矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为.三、解答题(共7小题)17.计算:|﹣|+0﹣2sin45°+()﹣2.18.2017年深圳市男生体育中考考试项目为二项,在200米和1000米两个项目中选一个项目;另外在运球上篮、实心球、跳绳、引体向上四个项目中选一个.(1)每位男考生一共有种不同的选择方案;(2)若必胜,必成第一个项目都恰好选了200米,然后在第二组四个项目中各任意选取另外一个用画树状图或列表的方法求必胜和必成选择同种方案的概率.(友情提醒:各种方案可用A、B、C、…或①、②、③、…等符号来代表可简化解答过程)19.如图,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求该反比例函数和一次函数的解析式.(2)求△AOC的面积.20.黄岩岛自古以来就是中国的领土,如图,为维护海洋利益,三沙市一艘海监船在黄岩岛附近海域巡航,某一时刻海监船在A处测得该岛上某一目标C在它的北偏东45°方向,海监船以30海里每小时的速度沿北偏西30°方向航行2小时后到达B处,此时测得该目标C在它的南偏东75°方向.求:(1)∠C的度数;(2)求该船与岛上目标C之间的距离即CB的长度(结果保留根号)21.大梅沙国际风筝节于2016年10月29﹣30日在大梅沙海滨公园举行,老李决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,但每天需支付各种费用共200元,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)当售价定为多少时,老李每天获得利润最大,每天的最大利润是多少?22.如图,点F在▱ABCD的对角线AC上,过点F、B分别作AB、AC的平行线相交于点E,连接BF,∠ABF=∠FBC+∠FCB.(1)求证:四边形ABEF是菱形;(2)若BE=5,AD=8,sin∠CBE=,求AC的长.23.如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x 轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC 相似,若存在,求出点Q的坐标,若不存在,请说明理由.2017年广东省深圳市龙岗区中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,恰有一个是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应的位置上)1.若关于x的方程x2+3x+a=0有一个根为﹣1,则a的值为()A.2 B.﹣1 C.﹣2 D.1【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义,把x=﹣1代入方程得到关于a的一次方程,然后解此一次方程即可.【解答】解:把x=﹣1代入方程x2+3x+a=0得1﹣3+a=0,解得a=2.故选A.2.如图是一个用于防震的L形的包装用泡沫塑料,当俯视它时看到的图形形状是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得到两个左右相邻的矩形,故选B.3.如图,在地面上的点A处测得树顶B的仰角α=75°,若AC=6米,则树高BC为()A.6sin75°米B.米C.米D.6tan75°米【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据题意可知BC⊥AC,在Rt△ABC中,AC=7米,∠BAC=α,利用三角函数即可求出BC的高度.【解答】解:∵BC⊥AC,AC=7米,∠BAC=α,∴=tanα,∴BC=AC•tanα=6tanα(米).故选;D.4.对于反比例函数y=﹣,下列说法不正确的是()A.图象经过点(1,﹣3)B.图象分布在第二、四象限C.当x>0时,y随x的增大而增大D.点A(x1,y1)、B(x2、y2)都在反比例函数y=﹣的图象上,若x1<x2,则y1<y2【考点】反比例函数的性质.【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【解答】解:A、∵﹣=﹣3,∴点(1,﹣3)在它的图象上,故本选项正确;B、k=﹣3<0,∴它的图象在第二、四象限,故本选项正确;C、k=﹣3<0,当x>0时,y随x的增大而增大,故本选项正确;D、点A(x1,y1)、B(x2、y2)都在反比例函数y=﹣的图象上,若x1<x2<0,则y1<y2,故本选项错误.故选D.5.周星驰拍摄的电影《美人鱼》取景地在深圳杨梅坑,据称是深圳最美的溪谷,为估计全罗湖区8000名九年级学生去过杨梅坑的人数,随机抽取400名九年级学生,发现其中有50名学生去过该景点,由此估计全区九年级学生中有()个学生去过该景点.A.1000人B.800人C.720人D.640人【考点】用样本估计总体.【分析】用样本中去过该景点的人数所占比例乘以总人数即可得.【解答】解:根据题意,估计全区九年级学生中去过该景点的学生有8000×=1000(人),故选:A.6.将y=x2向上平移2个单位后所得到的抛物线的解析式为()A.y=x2﹣2 B.y=x2+2 C.y=(x﹣2)2D.y=(x+2)2【考点】二次函数图象与几何变换.【分析】根据向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后写出解析式即可.【解答】解:∵y=x2向上平移2个单位,∴平移后的抛物线顶点坐标为(0,2),∴所得到的抛物线的解析式为y=x2+2.故选B.7.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.4:9 D.1:3【考点】相似三角形的判定与性质;平行四边形的性质.【分析】设DE=3k,EC=k,则CD=4k,由四边形ABCD是平行四边形,推出AB=CD=4k,DE∥AB,推出△DEF∽△BAF,推出=()2由此即可解决问题.【解答】解:设DE=3k,EC=k,则CD=4k,∵四边形ABCD是平行四边形,∴AB=CD=4k,DE∥AB,∴△DEF∽△BAF,∴=()2=()2=,故选B.8.若二次函数的解析式为y=2x2﹣4x+3,则其函数图象与x轴交点的情况是()A.没有交点B.有一个交点C.有两个交点D.以上都不对【考点】抛物线与x轴的交点.【分析】先计算判别式的值,然后根据判别式的意义进行判断.【解答】解:因为△=(﹣4)2﹣4×2×3=﹣8<0,所以抛物线与x轴没有交点.故选A.9.如图,一农户要建一个矩形花圃,花圃的一边利用长为12m的住房墙,另外三边用25m长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,花圃面积为80m2,设与墙垂直的一边长为xm(已标注在图中),则可以列出关于x的方程是()A.x(26﹣2x)=80 B.x(24﹣2x)=80 C.(x﹣1)(26﹣2x)=80 D.x(25﹣2x)=80【考点】由实际问题抽象出一元二次方程.【分析】设与墙垂直的一边长为xm,则与墙平行的一边长为(26﹣2x)m,根据花圃面积为80m2即可列出关于x的一元二次方程,此题得解.【解答】解:设与墙垂直的一边长为xm,则与墙平行的一边长为(26﹣2x)m,根据题意得:x(26﹣2x)=80.故选A.10.如图,在平面直角坐标系中,设点P到原点O的距离为ρ,OP与x轴正方向的交角为a,则用[ρ,a]表示点P的极坐标,例如:点P的坐标为(1,1),则其极坐标为[,45°].若点Q的极坐标为[4,120°],则点Q的平面坐标为()A.(﹣2,﹣2)B.(2,﹣2)C.(﹣2,﹣2)D.(﹣4,﹣4)【考点】坐标与图形性质.【分析】弄清极坐标中第一个数表示点到原点的距离,第二个数表示这一点与原点的连线与x轴的夹角,根据点Q[4,120°]利用特殊角的三角函数值即可求出点Q的坐标.【解答】解:由题目的叙述可知极坐标中第一个数表示点到原点的距离,而第二个数表示这一点与原点的连线与x轴的夹角,极坐标Q[4,120°],这一点在第三象限,则在平面直角坐标系中横坐标是:﹣4cos60°=﹣2,纵坐标是﹣4sin60°=﹣2,于是极坐标Q[4,120°]的坐标为(﹣2,﹣2),故选:A.11.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有()个.A.1个B.2个C.3个D.4个【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】利用抛物线的对称性可确定A点坐标为(﹣3,0),则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;由抛物线开口向下得到a>0,再利用对称轴方程得到b=2a>0,则可对③进行判断;利用x=﹣1时,y<0,即a﹣b+c<0和a>0可对④进行判断.【解答】解:∵抛物线的对称轴为直线x=﹣1,点B的坐标为(1,0),∴A(﹣3,0),∴AB=1﹣(﹣3)=4,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵抛物线开口向下,∴a>0,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a>0,∴ab>0,所以③错误;∵x=﹣1时,y<0,∴a﹣b+c<0,而a>0,∴a(a﹣b+c)<0,所以④正确.故选C.12.如图,已知正方形ABCD的边长为4,点E、F分别在边AB、ABC上,且AE=BF=1,CE、DF相交于点O,下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD=,④△COD的面积等于四边形BEOF的面积中,正确的有()A.1个B.2个C.3个D.4个【考点】正方形的性质;解直角三角形.【分析】①正确.由△EBC≌△FCD(SAS),推出∠CFD=∠BEC,推出∠BCE+∠BEC=∠BCE+∠CFD=90°,推出∠DOC=90°.②错误.用反证法证明.③正确.易证得∠OCD=∠DFC,由此tan∠OCD=tan∠DFC==.④正确.由△EBC≌△FCD,推出S△EBC=S△FCD,推出S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四边形BEOF.【解答】解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°,∵AE=BF=1,∴BE=CF=4﹣1=3,在△EBC和△FCD中,,∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°,故①正确;连接DE,如图所示:若OC=OE,∵DF⊥EC,∴CD=DE,∵CD=AD<DE(矛盾),故②错误;∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠DFC==,故③正确;∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四边形BEOF,故④正确;故选C.二、填空题(共4小题)13.已知3x=4y,则=.【考点】等式的性质.【分析】根据等式的性质2可得出答案.【解答】解:根据等式性质2,等式3x=4y两边同时除以3y,得:=.故答案为:.14.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF= 2.5cm.【考点】矩形的性质;三角形中位线定理.【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:BD=AC==10(cm),∴DO=5cm,∵点E、F分别是AO、AD的中点,∴EF=OD=2.5cm,故答案为:2.5.15.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于.【考点】解直角三角形.【分析】连接AB,先根据题意判断出△AOB的形状,再得出∠AOB的度数,由特殊角的三角函数值即可得出结论.【解答】解:∵以O为圆心,任意长为半径画弧,与射线OM交于点A,∴OA=OB,∵以A为圆心,AO长为半径画弧,两弧交于点B,∴△AOB是等边三角形,∴∠AOB=60°,∴sin∠AOB=sin60°=;故答案为:.16.如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上,矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为.【考点】反比例函数系数k的几何意义.【分析】首先根据反比例函数y2=的解析式可得到S△ODB=S△OAC=×3=,再由阴影部分面积为6可得到S矩形PDOC=9,从而得到图象C1的函数关系式为y=,再算出△EOF的面积,可以得到△AOC与△EOF 的面积比,然后证明△EOF∽△AOC,根据对应边之比等于面积比的平方可得到EF﹕AC的值.【解答】解:如图,∵B、C反比例函数y2=的图象上,∴S△ODB=S△OAC=×3=,∵P在反比例函数y1=的图象上,∴S矩形PDOC=k1=6++=9,∴图象C1的函数关系式为y=,∵E点在图象C1上,∴S△EOF=×9=,∴==3,∵AC⊥x轴,EF⊥x轴,∴AC∥EF,∴△EOF∽△AOC,∴=,故答案为:.三、解答题(共7小题)17.计算:|﹣|+0﹣2sin45°+()﹣2.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=+1﹣2×+4=5.18.2017年深圳市男生体育中考考试项目为二项,在200米和1000米两个项目中选一个项目;另外在运球上篮、实心球、跳绳、引体向上四个项目中选一个.(1)每位男考生一共有8种不同的选择方案;(2)若必胜,必成第一个项目都恰好选了200米,然后在第二组四个项目中各任意选取另外一个用画树状图或列表的方法求必胜和必成选择同种方案的概率.(友情提醒:各种方案可用A、B、C、…或①、②、③、…等符号来代表可简化解答过程)【考点】列表法与树状图法.【分析】(1)先根据题意画出树状图,再得出不同的选择方案;(2)根据在第二组四个项目中各任意选取另外一个画树状图,即可得出共有16种不同情况,其中必胜和必成选择同种方案有4种,据此可得必胜和必成选择同种方案的概率.【解答】解:(1)由题可得树状图:∴每位男考生一共有8种不同的选择方案,故答案为:8;(2)在第二组四个项目中各任意选取另外一个,画树状图如下:共有16种不同情况,其中必胜和必成选择同种方案有4种,∴必胜和必成选择同种方案的概率==.19.如图,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣(1)求该反比例函数和一次函数的解析式.(2)求△AOC的面积.【考点】反比例函数与一次函数的交点问题;解直角三角形.【分析】(1)由OH和tan∠AOH的值即可求出点A的坐标,利用反比例函数图象上点的坐标特征即可求出k值和点B的坐标,再根据点A、B的坐标利用待定系数法即可求出直线AB的解析式;(2)将x=0代入直线AB的解析式中求出y值,由此即可得出OC的长度,再根据三角形的面积公式即可求出△AOC的面积.【解答】解:(1)∵OH=3,tan∠AOH=,∴AH=OH•tan∠AOH=4,∴点A的坐标为(﹣4,3).∵点A在反比例函数y=(k≠0)的图象上,∴k=﹣4×3=﹣12,∴反比例函数解析式为y=﹣.∵点B(m,﹣2)在反比例函数y=﹣的图象上,∴m=﹣=6,∴点B的坐标为(6,﹣2).将A(﹣4,3)、B(6,﹣2)代入y=ax+b,,解得:,∴一次函数的解析式为y=﹣x+1.(2)当x=0时,y=﹣x+1=1,∴点C的坐标为(0,1),∴OC=1,∴S△AOC=OC•AH=×1×4=2.20.黄岩岛自古以来就是中国的领土,如图,为维护海洋利益,三沙市一艘海监船在黄岩岛附近海域巡航,某一时刻海监船在A处测得该岛上某一目标C在它的北偏东45°方向,海监船以30海里每小时的速度沿北偏西30°方向航行2小时后到达B处,此时测得该目标C在它的南偏东75°方向.求:(1)∠C的度数;(2)求该船与岛上目标C之间的距离即CB的长度(结果保留根号)【考点】解直角三角形的应用﹣方向角问题.【分析】(1)由由平行线的性质得到∠EBA=∠FAB=30°,进而求得∠ABC,根据三角形的内角和即可求得结论;(2)过A作AD⊥BC于D,根据正弦三角函数和正切三角函数可求得则BD和CD,即可求得结论.【解答】解:(1)由题意得:∠EBA=∠FAB=30°,∴∠ABC=∠EBC﹣∠EBA=75°﹣30°=45°,∴∠C=180°﹣45°﹣75°=60°;(2)过A作AD⊥BC于D,则BD=AD=AB•sin∠ABD=2×30×=30,CD===10,∴CB=BD+CD=(30+10)(海里),答:该船与岛上目标C之间的距离即CB的长度为(30+10)海里.21.大梅沙国际风筝节于2016年10月29﹣30日在大梅沙海滨公园举行,老李决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,但每天需支付各种费用共200元,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)当售价定为多少时,老李每天获得利润最大,每天的最大利润是多少?【考点】二次函数的应用.【分析】(1)设蝙蝠型风筝售价为x元时,销售量为y个,根据“当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个”,即可得出y关于x的函数关系式;(2)设王大伯获得的利润为W,根据“总利润=单个利润×销售量”,即可得出W关于x的函数关系式,利用配方法将W关于x的函数关系式变形为W=﹣10(x﹣20)2+1000,根据二次函数的性质即可解决最值问题.【解答】解:(1)设蝙蝠型风筝售价为x元时,销售量为y个,根据题意可知:y=180﹣10(x﹣12)=﹣10x+300(12≤x≤30).(2)设王大伯获得的利润为W,则W=(x﹣10)y=﹣10x2+400x﹣3000,=﹣10x2+400x﹣3000=﹣10(x﹣20)2+1000,∵a=﹣10<0,∴当x=20时,W取最大值,最大值为1000.答:当售价定为20元时,王大伯获得利润最大,最大利润是1000元.22.如图,点F在▱ABCD的对角线AC上,过点F、B分别作AB、AC的平行线相交于点E,连接BF,∠ABF=∠FBC+∠FCB.(1)求证:四边形ABEF是菱形;(2)若BE=5,AD=8,sin∠CBE=,求AC的长.【考点】菱形的判定与性质;勾股定理;平行四边形的性质.【分析】(1)由外角的性质可得∠AFB=∠FBC+∠FCB,又因为∠ABF=∠FBC+∠FCB,易得AB=AF,由菱形的判定定理可得结论;(2)作DH⊥AC于点H,由特殊角的三角函数可得∠CBE=30°,由平行线的性质可得∠2=∠CBE=30°,利用锐角三角函数可得AH,DH,由菱形的性质和勾股定理得CH,得AC.【解答】(1)证明:∵EF∥AB,BE∥AF,∴四边形ABEF是平行四边形.∵∠ABF=∠FBC+∠FCB,∠AFB=∠FBC+∠FCB,∴∠ABF=∠AFB,∴AB=AF,∴▱ABEF是菱形;(2)解:作DH⊥AC于点H,∵,∴∠CBE=30°,∵BE∥AC,∴∠1=∠CBE,∵AD∥BC,∴∠2=∠1,∴∠2=∠CBE=30°,Rt△ADH中,,DH=AD•sin∠2=4,∵四边形ABEF是菱形,∴CD=AB=BE=5,Rt△CDH中,,∴.23.如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x 轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC 相似,若存在,求出点Q的坐标,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P(m,m2+2m+1),表示出PE=﹣m2﹣3m,再用S四边形AECP=S△AEC+S△APC=AC×PE,建立函数关系式,求出极值即可;(3)先判断出PF=CF,再得到∠PCF=∠EAF,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.【解答】解:(1)∵点A(0,1).B(﹣9,10)在抛物线上,∴,∴,∴抛物线的解析式为y=x 2+2x +1,(2)∵AC ∥x 轴,A (0,1)∴x 2+2x +1=1,∴x 1=﹣6,x 2=0,∴点C 的坐标(﹣6,1),∵点A (0,1).B (﹣9,10),∴直线AB 的解析式为y=﹣x +1,设点P (m , m 2+2m +1),∴E (m ,﹣m +1)∴PE=﹣m +1﹣(m 2+2m +1)=﹣m 2﹣3m ,∵AC ⊥EP ,AC=6,∴S 四边形AECP =S △AEC +S △APC =AC ×EF +AC ×PF =AC ×(EF +PF )=AC ×PE =×6×(﹣m 2﹣3m ) =﹣m 2﹣9m =﹣(m +)2+, ∵﹣6<m <0∴当m=﹣时,四边形AECP 的面积的最大值是,此时点P (﹣,﹣).(3)∵y=x 2+2x +1=(x +3)2﹣2,∴P (﹣3,﹣2),∴PF=y F ﹣y P =3,CF=x F ﹣x C =3,∴PF=CF ,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF ,∴在直线AC 上存在满足条件的Q ,设Q (t ,1)且AB=9,AC=6,CP=3∵以C 、P 、Q 为顶点的三角形与△ABC 相似,①当△CPQ ∽△ABC 时,∴,∴,∴t=﹣4,∴Q (﹣4,1)②当△CQP ∽△ABC 时,∴,∴,∴t=3,∴Q (3,1).。
深圳市2017年初中毕业生学业考试数学试题解析第Ⅰ卷(共60分)一、选择题1.-2的绝对值是( )A .-2B .2C .12-D .122.图中立体图形的主视图是( )A .B .C .D .3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为( )A .58.210⨯B .58210⨯C .68.210⨯D .78210⨯4.观察下列图形,其中既是轴对称又是中心对称图形的是( )A .B .C .D .5.下列选项中,哪个不可以..得到12//l l ?( )A .12∠=∠B .23∠=∠C . 35∠=∠D .34180∠+∠=o6.不等式组32521x x -<⎧⎨-<⎩的解集为( )A .1x >-B .3x <C .1x <-或3x >D .13x -<<7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10%330x =B .(110%)330x -=C . 2(110%)330x -=D .(110%)330x +=8.如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 为半径作弧,连接弧的交点得到直线l ,在直线l 上取一点C ,使得25CAB ∠=o ,延长AC 至M ,求BCM ∠的度数为( )A .40oB .50oC . 60oD .70o9.下列哪一个是假命题( )A .五边形外角和为360oB .切线垂直于经过切点的半径C . (3,2)-关于y 轴的对称点为(3,2)-D .抛物线242017y x x =-+对称轴为直线2x =10.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a 应该要取什么数( )A .平均数B .中位数C .众数D .方差11.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60o,然后在坡顶D 测得树顶B 的仰角为30o ,已知斜坡CD 的长度为20m ,DE 的长为10m ,则树AB 的高度是( )mA .203B .30C . 303D .4012.如图,正方形ABCD 的边长是3,BP CQ =,连接,AQ DP 交于点O ,并分别与边,CD BC 交于点,F E ,连接AE .下列结论:①AQ DP ⊥;②2OA OE OP =g;③AOD OECF S S ∆=四边形;④当1BP =时,13tan 16OAE ∠=.其中正确结论的个数是( )A .1B .2C .3D .4二、填空题13.因式分解:34a a -= .14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 . 15.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知21i =-,那么(1)(1)i i +-=g .16.如图,在Rt ABC ∆中,90ABC ∠=o ,3AB =,4BC =,Rt MPN ∆,90MPN ∠=o ,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当2PE PF =时,AP = .三、解答题17.计算2|22|2cos45(1)8---+-+o .18.先化简,再求值:22()224x x x x x x +÷-+-,其中1x =-. 19.深圳市某学校抽样调查,A 类学生骑共享单车,B 类学生坐公交车、私家车等,C 类学生步行,D 类学生(其它),根据调查结果绘制了不完整的统计图.类型频数 频率 A30 x B18 0.15 Cm 0.40 D n y(1)学生共__________人,x =__________,y =__________;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有___________人.20.一个矩形周长为56厘米,(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.21.如图一次函数y kx b =+与反比例函数(0)m y x x=>交于(2,4)A 、(,1)B a ,与x 轴,y 轴分别交于点C D 、.(1)直接写出一次函数y kx b =+的表达式和反比例函数(0)m y x x=>的表达式;(2)求证:AD BC =. 22.如图,线段AB 是O e 的直径,弦CD AB ⊥于点H ,点M 是弧CBD 上任意一点,2,4AH CH ==.(1)求O e 的半径r 的长度;(2)求sin CMD ∠;(3)直线BM 交直线CD 于点E ,直线MH 交O e 于点N ,连接BN 交CE 于点F ,求HE HF g 的值.23.如图,抛物线22y ax bx =++经过点(1,0),(4,0)A B -,交y 轴于点C :(1)求抛物线的解析式(用一般式表示).(2)点D为y轴右侧抛物线上一点,是否存在点D使23ABC ABDS S∆∆=,若存在请直接给出点D坐标;若不存在请说明理由.(3)将直线BC绕点B顺时针旋转45o,与抛物线交于另一点E,求BE的长.。
2017年广东省深圳市中考数学一模试卷及答案1.﹣4的倒数是()A.﹣4B.4C.14D.-142.如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是()(1)A.B.C.D.3.下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2a3=2a54.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为()A.1.6×103吨B.1.6×104吨C.1.6×105吨D.1.6×106吨6.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()(1)A.40°B.30°C.20°D.10°7.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定8.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A.50元,20元B.50元,40元C.50元,50元D.55元,50元9.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()(1)A.①②B.①④C.②③D.③④10.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()(1)A.2,π3B.2√3,πC.√,2π3D.2√3,4π311.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()(1)A.4B.6C.8D.1012.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE= GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()(1)A.1个B.2个C.3个D.4个13.因式分解:a3−4a=14.从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是15.用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星______个.16.如图,△ABC的内心在x轴上,点B的坐标是(2,0),点C的坐标是(0,﹣2),点A的坐标是(﹣3,b),反比例函数y=kx(x<0)的图象经过点A,则k=(1)17.计算:sin30°+(−1)2013+(π−3)0﹣cos60°.18.解不等式组并写出它的所有非负整数解{32x+3x>94x−24⩽96−9x19.丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)该旅行社今年五月接待来丹东的游客2000人,请估计首选去河口的人数约为多少人.(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是______°(4)该旅行社今年五月接待来丹东的游客2000人,请估计首选去河口的人数约为多少人.20.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B 处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)(1)21.某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费.22.如图,直角坐标系中,⊙M经过原点O(0,0),点A(√3,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.23.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S△BOC,求点P的坐标;(3)如图2,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,交x轴于点E,是否存在点Q,使得直线AC将△ADE的面积分成1:2的两部分?若存在,求出所有点Q的坐标;若不存在,请说明理由.1.【能力值】无【知识点】(1)略,【详解】(1)﹣4的倒数是﹣14故选:D.【答案】(1)D2.【能力值】无【知识点】(1)略【详解】(1)从正面看易得第一层有2个正方形,第二层最右边有一个正方形.故选:C.【答案】(1)C3.【能力值】无【知识点】(1)略【详解】(1)A、2a3与a2不是同类项不能合并,故A选项错误;B、(3a)2=9a2,故B选项错误;C、(a+b)2=a2+2ab+b2,故C选项错误;D、2a2a3=2a5,故D选项正确,故选:D.【答案】(1)D4.【能力值】无【知识点】(1)略【详解】(1)A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.【答案】(1)A5.【能力值】无【知识点】(1)略【详解】(1)将16万吨用科学记数法表示为:1.6×105吨.故选:C.【答案】(1)C6.【能力值】无【知识点】(1)略【详解】(1)∵AB∥CD,∠ABE=60°,∴∠CFE=∠ABE=60°,∵∠D=50°,∴∠E=∠CFE﹣∠D=10°,故选:D.【答案】(1)D7.【能力值】无【知识点】(1)略【详解】(1)设赚了25%的衣服的成本为x元,则(1+25%)x=120,解得x=96元,则实际赚了24元;设赔了25%的衣服的成本为y元,则(1﹣25%)y=120,解得y=160元,则赔了160﹣120=40元;∵40>24;∴赔大于赚,在这次交易中,该商人是赔了40﹣24=16元.故选:B.【答案】(1)B8.【能力值】无【知识点】(1)略【详解】(1)50出现了3次,出现的次数最多,则众数是50;把这组数据从小到大排列为:20,25,30,50,50,50,55,最中间的数是50,则中位数是50.故选:C.【答案】(1)C9.【能力值】无【知识点】(1)略【详解】(1)由图象可知当x=1时,y<0,∴a+b+c<0,故①不正确;<1,由图象可知0<﹣b2a>﹣1,∴b2a又∵开口向上,∴a>0,∴b>﹣2a,∴2a+b>0,故②正确;由图象可知二次函数与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴△>0,即b 2﹣4ac >0,故③正确;由图象可知抛物线开口向上,与y 轴的交点在x 轴的下方,∴a >0,c <0,∴ac <0,故④不正确;综上可知正确的为②③,故选:C .【答案】(1)C10.【能力值】无【知识点】(1)略【详解】(1)连接OB ,∵OB =4,∴BM =2,∴OM =2√3 ,BC ^=60π×4180=43π, 故选:D .【答案】(1)D11.【能力值】无【知识点】(1)略【详解】(1)连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO= BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO=√A B2−OB2=√52−32=4,∴AE=2AO=8.故选:C.【答案】(1)C12.【能力值】无【知识点】(1)略【详解】(1)∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE= GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中{AG=CE∠GAE=∠CEFAE=EF∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选:B.【答案】(1)B13.【能力值】无【知识点】(1)略【详解】(1)a3−4a=a(a2−4)=a(a+2)(a−2)【答案】(1)a(a+2)(a−2)14.【能力值】无【知识点】(1)略【详解】(1)一共有6种情况,积是正数的有2种情况,所以,P(积为正数)=26=13.故答案为:13.【答案】(1)1315.【能力值】无【知识点】(1)略【详解】(1)当n为奇数时:通过观察发现每一个图形的每一行有n+12个,故共有3(n+12)个;当n为偶数时,中间一行有n2+1个,故共有3n2+1个.所以当n=99时,共有3×99+12=150个.故答案为150.【答案】(1)15016.【能力值】无【知识点】(1)略【详解】(1)∵△ABC的内心在x轴上,∴OB平分∠ABC,∵点B的坐标是(2,0),点C的坐标是(0,﹣2),∴OB=OC,∴△OBC为等腰直角三角形,∴∠OBC=45°,∴∠ABC=90°,∴A B2+BC2=AC2,∴(−3−2)2+b2+22+22=(−3)2+(b+2)2,解得b=5,∴A点坐标为(﹣3,5),∴k=﹣3×5=﹣15.故答案为﹣15.【答案】(1)﹣1517.【能力值】无【知识点】(1)略【详解】(1)原式=12﹣1+1﹣12=0.【答案】(1)018.【能力值】无【知识点】(1)略【详解】(1)解不等式①得:x>2,解不等式②得:x≤10,则不等式组的解集为2<x≤10,故不等式组的非负整数解为3,4,5,6,7,8,9,10,【答案】(1)3,4,5,6,7,8,9,1019.【能力值】无【知识点】(1)略(2)略(3)略(4)略【详解】(1)调查的总人数是:30÷10%=300(人);(2)凤凰山的人数是:300×20%=60(人),×100%=33%,选择河口的人数所占的比例:99300×100%=25%,选择市内景区的所占比例:75300(3)“凤凰山”部分的圆心角是:360×20%=72°,故答案是:72;(4)估计首选去河口的人数约为:2000×33%=660(人).【答案】(1)300(2)(3)72(4)66020.【能力值】无【知识点】(1)略【详解】(1)如图,过点C作CD⊥AB于点D,设CD=x.∵在直角△ACD中,∠CAD=30°,=√3 x.∴AD=CDtan30∘同理,在直角△BCD中,BD=CDtan60∘=√33x.又∵AB=30米,∴AD+BD=30米,即√3 x+√33x=30.解得x=13.答:河的宽度的13米.【答案】(1)1321.【能力值】无【知识点】(1)略(2)略【详解】(1)设甲队单独完成需x天,则乙队单独完成需1.5x天.根据题意,得120 x +1201.5x=1.解得x=200.经检验,x=200是原分式方程的解.答:甲队单独完成需200天,乙队单独完成需300天.(2)设甲队每天的施工费为y元.根据题意,得200y+200×150×2≤300×10 000+300×150×2,解得y≤15150.答:甲队每天施工费最多为15150元.【答案】(1)甲队单独完成需200天,乙队单独完成需300天(2)甲队每天施工费最多为15150元22.【能力值】无【知识点】(1)略(2)略【详解】(1)∵点A(√3,0)与点B(0,﹣1),∴OA =√3 ,OB =1,∴AB =2,∵AB 是⊙M 的直径,∴⊙M 的直径为2,∵∠COD =∠CBO ,∠COD =∠CBA ,∴∠CBO =∠CBA ,即BD 平分∠ABO ;(2)如图,过点A 作AE ⊥AB 于E ,交BD 的延长线于点E ,过E 作EF ⊥OA 于F ,即AE 是切线,∵在Rt △ACB 中,tan ∠OAB =OB OA =√3=√33 ,∴∠OAB =30°,∵∠ABO =90°,∴∠OBA =60°,∴∠ABC =∠OBC =30°,∴OC =OB •tan30°=1× √33=√33 ,∴AC =OA ﹣OC = 2√33,∴∠ACE =∠ABC+∠OAB =60°,∴∠EAC =60°, ∴△ACE 是等边三角形,∴AE=AC=2√33,∴AF=12AE=√33,EF=1,∴OF=OA﹣AF=2√33,∴点E的坐标为(2√33,1).【答案】(1)见解析(2)(2√33,1)23.【能力值】无【知识点】(1)略(2)略(3)略【详解】(1)将A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得:{−9−3b+c=0c=3,解得:{b=−2c=3,∴抛物线的函数表达式为y=﹣x2﹣2x+3.(2)当y=0时,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,∴点B的坐标为(1,0),∴S△BOC=12×1×3=32.设点P的纵坐标为m,则S△AOP=32|m|,∵S△AOP=4S△BOC,∴32 |m|=4×32,∴m=±4.当y=4时,﹣x2﹣2x+3=4,解得:x1=x2=﹣1,∴点P的坐标为(﹣1,4);当y=﹣4时,﹣x2﹣2x+3=﹣4,解得:x1=﹣1﹣2√2,x2=﹣1+2 √2,∴点P的坐标为(﹣1﹣2√2,﹣4)或(﹣1+2√2,﹣4).综上所述:点P的坐标为(﹣1,4)、(﹣1﹣2√2,﹣4)或(﹣1+2√2,﹣4).(3)设直线AC的函数表达式为y=kx+a(k≠0),将A(﹣3,0),C(0,3)代入y=kx+a,得:{−3k+b=0b=3,解得:{k=1b=3,∴直线AC的函数表达式为y=x+3.设点Q的坐标为(x,x+3)(﹣3<x<0),则点D的坐标为(x,﹣x2﹣2x+3),点E的坐标为(x,0),∴DQ=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x,QE=x+3.∵直线AC将△ADE的面积分成1:2的两部分,且△AEQ和△ADQ等高,∴DQ=2QE或2DQ=QE,∴﹣x2﹣3x=2(x+3)或x+3=2(﹣x2﹣3x),解得:x1=﹣3(舍去),x2=﹣2,x3=﹣12,∴点Q的坐标为(﹣2,1)或(﹣12,52).∴存在点Q(﹣2,1)或(﹣12,52),使得直线AC将△ADE的面积分成1:2的两部分.【答案】(1)y=﹣x2﹣2x+3(2)点P的坐标为(﹣1,4)、(﹣1﹣2√2,﹣4)或(﹣1+2√2,﹣4)(3)Q(﹣2,1)或(﹣12,52)。