冷热电联供技术
- 格式:pdf
- 大小:1.68 MB
- 文档页数:46
冷热电三联供的原理及应用1. 冷热电三联供的定义冷热电三联供是指在一个系统中同时供给制冷、供热和电力的技术和系统。
通过整合制冷、供热和发电的设备,实现了能源的综合利用和能源效率的最大化。
2. 冷热电三联供的原理2.1 热电联供原理热电联供是指利用燃气或其他燃料驱动热机发电,同时利用废热产生热水或蒸汽供暖。
热机通过燃烧燃料产生高温高压气体,推动涡轮发电机发电,同时废热经过回收利用供热。
2.2 制冷供热联供原理制冷供热联供是指利用制冷机组在制冷过程中产生的废热,通过回收利用转化为热能供暖。
制冷机组吸收外界热量并排出冷空气,同时产生废热。
这部分废热通过回收和转化,供给供热系统使用,实现了制冷和供热的综合利用。
2.3 热电制冷供热联供原理热电制冷供热联供是指利用热电联供和制冷供热联供的原理,实现了冷热电三联供。
热电机组通过燃烧燃料发电,同时产生废热供热;制冷机组通过制冷过程产生废热供热。
这种方式不仅能够提供制冷和供热,还可以同时发电,将能源综合利用的效率达到最大化。
3. 冷热电三联供的应用3.1 城市建筑冷热电三联供技术在城市建筑中有广泛的应用。
通过在建筑中安装热电联供或制冷供热联供系统,能够满足建筑的制冷、供热和电力需求。
这种方式不仅节约能源消耗,还降低了建筑的能源成本和碳排放。
3.2 工业园区工业园区中通常存在大量的能源浪费和废热排放。
冷热电三联供技术可以通过回收和利用废热,将其转化为热能供暖,实现能源的综合利用。
这种技术的应用可以为工业园区提供可靠的制冷、供热和电力,同时减少了能源消耗和环境污染。
3.3 高校和医院在高校和医院中,冷热电三联供技术可以满足建筑内的制冷、供热和电力需求。
这种技术的应用不仅能够提高能源利用效率,还可以降低建筑的能源成本。
对于高校和医院这种大规模的场所,能源的综合利用对于节约能源和保护环境非常重要。
3.4 居民社区冷热电三联供技术在居民社区中的应用可以满足居民的制冷、供热和电力需求。
天然气冷、热、电三联供系统简介1、背景天然气是洁净能源,在其完全燃烧后及采取一定的治理措施,烟气中NOx等有害成分远低于相关指标要求,具有良好的环保性能。
美国有关专家预测如果将现有建筑实施冷、热、电三联供(Combined cooling heating and power,简称CCHP)的比例从4%提高到8%,到2020年CO2的排放量将减少30%。
2、概念与优势燃气冷、热、电三联供简单地说即为:天然气发电、余热供热、余热制冷。
相比于常规供能燃煤发电、燃气供热、电制冷,具有能源梯级利用,综合能源利用率高;清洁环保,减少排放CO2,SO2;与大型电网互相支撑,供能安全性高的优势及对燃气和电力有双重削峰填谷作用。
以天然气为燃料的动力装置,例如燃气轮机、燃气内燃机、斯特林发动机、燃料电池等,在发电的同时,其排放的余热被回收,用于供热或驱动空调制冷装置,如吸收式制冷机或除湿装置等,这种以天然气为燃料,同时具备发电、供热和供冷功能的能源转换和供应系统,就是天然气冷、热、电联供系统。
相比传统的集中式供能,天然气冷、热、电三联供系统是建立在用户侧的小型的、模块化的能源供给系统,避免了长距离能源输送的损失,为能源供应增加了安全性、可靠性和灵活性。
3、天然气冷、热、电三联供分类天然气冷、热、电三联供系统应用于商业、工业等各个领域,一般分为楼宇型和区域型两种。
楼宇型冷、热、电三联供系统,规模较小,主要用于满足单独建筑物的能量需求(如医院、学校、宾馆、大型商场等公共设施)。
单独建筑物一天内的负荷变化较大,会出现高峰或低谷的情况,而系统的运行需要不断进行调整,与负荷需求相匹配。
因此,楼宇型冷、热、电三联供系统对设备的启停机及变工况运行性能有较高的要求,同时在系统集成方面,发电设备、热源设备、蓄能设备之间的优化设计以及与电网配合的优化运行模式也十分必要。
区域型分布式冷、热、电三联供系统主要应用于一定区域内的由多栋建筑物组成的建筑群。
冷热电三联供
冷热电联产是指使用一种燃料,在发电的同时将产生的余热回收利用,做到能源阶梯级利用;
与传统的击中式供电相比,这种小型化、分布式的供能方式。
可以使能源的综台使用率提高到85%以上。
一般情况可以节约能源成本的30—50%以上;
由于使用天然气等清洁能源,降低了二氧化硫、氨氧化物和二氧化碳等温室气体的排放量,从而实现了能源的高效利用与环保的统一,减低了碳排放。
冷热电三联供技术优点
1、系统整体能源利用效率非常高;
2、自行笈电,提高了用电的可靠性;
3、减少了电同的投资;
4、降低了输配电网的输配电负荷;
5、减少了长途输电的输电损失;
6、节能环保、经济高效、安全可靠。
冷热电联供系统与传统制冷技术的对比优势
1、使用热力运行,利用了低价的”多余能源”;
2、吸收式冷水机组内没有移动件,节省了维修成本;
3、冰水机组运行无噪音;
4、运行和使用周期成本低;
5、采用水为冷却介质,没有使用对大气层有害的物质。
燃气冷热电三联供工程技术规程燃气冷热电三联供工程技术规程是指燃气、冷热电三者协调运行,由一种设备实现节能、环保以及经济率最高的系统形式。
燃气冷热电三联供系统主要由燃气热源、冷源、电源三部分组成。
适宜的组织燃气热源、冷源、电源的使用,在完全满足用户的热源、冷源、电源的要求的前提下,使能源的使用效率按照一定的比例得到有效的协调和配置。
下面就燃气冷热电三联供工程技术规程进行简要的介绍:一、燃气冷热电三联供节能原理:燃气冷热电三联供主要是采用把多种设备作为热源,将热源、冷源、电源三者有机联合,共同协助利用能源,协调统一用能合理规划,以实现节能、环保以及能源综合利用的系统。
二、冷热电三联供系统的结构:燃气冷热电三联供系统由冷却水系统、暖气供暖系统、发电系统组成,其中冷却水系统包括冷却机组、冷却塔、空调设备等,暖气供暖系统包括水熔炉、水热耦合器、热水发生装置等,发电系统主要有汽轮机发电组织、燃气发电机组织等。
三、冷热电三联供系统的特点:(1)系统有效利用多个能源,可提高企业能源利用效率,以节约能源,有利于环保。
(2)系统结构灵活多变,系统的扩建或维护需要较少的精力,经济性较好。
(3)安装使用简单,运行可靠,不容易出现故障,维护方便。
(4)热效率较高,能够利用温差,热散失小,可以达到更高的能源节约和利用率。
四、燃气冷热电三联供的设备配置要求:(1)燃气冷热电三联供系统的各设备型号应与厂家提供的技术标准相符,并按照厂家的设计参数及安装要求设计施工。
(2)设备的功率大小,应与该系统的供能需求和各类设备的容量要求进行折中确定。
(3)设备安装应按照厂家的技术要求进行,可以根据实际情况进行调整,以达到最佳的设备运行状态。
(4)热源、冷源、电源之间的能量换热器和热交换器应根据系统压力,输出能源量和保温要求进行设置,并要采用低温换热器及蓄热箱等设备,以保证系统稳定运行。
五、系统的控制原则:(1)系统的运行控制,应按照能源的使用效率与节能化要求进行综合协调,实行联动控制,降低能源的损耗。
热电冷联产技术及应用热电冷联产技术是一种将热电联产技术与制冷技术相结合的能源利用方式,通过高温废热转化为电能和制冷能,实现能源的高效利用。
该技术在工农业生产和生活领域具有广泛的应用前景。
热电冷联产技术主要包括热电联产和制冷两个子系统。
热电联产系统通过热电发电机将高温热能转化为电能,同时产生废热。
而制冷系统则利用废热提供制冷能力,实现制冷过程。
热电冷联产技术可以有效降低能源的消耗和废热的排放,提高能源利用效率。
热电冷联产技术在工业领域的应用较为广泛。
例如,钢铁、石化和电力等行业产生大量的高温废热,传统上一般采用水冷方式散热,导致大量热能的浪费。
而热电冷联产技术可以将废热转化为电能和制冷能,实现废热的综合利用。
在钢铁行业,通过热电发电机将高温烟气转化为电能,同时产生制冷剂制冷,可以减少电网的负荷和降低用电成本。
在石化行业,采用热电冷联产技术可以将高温废热转化为电能和制冷能,提高整体能源利用效率,减少对外供电的需求。
在电力行业,热电冷联产技术可以将火电厂等电厂产生的废热转化为电能和制冷能,提高火电厂的能源利用效率和环境保护水平。
热电冷联产技术在农业生产中也具有广泛应用价值。
农业生产过程中,常常会产生大量的温室、畜禽粪便等废热。
利用热电冷联产技术可以将这些废热转化为电能和制冷能,满足温室的供暖和制冷需求,提高农业生产的能源利用效率,降低能源消耗和排放量。
此外,热电冷联产技术还可以用于农村地区的冷链物流系统,提供农产品的冷藏和冷链运输所需的制冷能力,延长农产品的保鲜期,减少食品浪费和损失。
在日常生活中,热电冷联产技术也有一些实际应用。
例如,通过废热发电系统将家庭、写字楼等建筑产生的废热转化为电能和制冷能,满足建筑物的供电和空调需求,提高能源利用效率,降低用电成本。
此外,热电冷联产系统还可以用于地源热泵系统,将地下的废热转化为供暖和制冷能力,实现建筑物的能源共享,提高能源的利用效率。
总而言之,热电冷联产技术是一种将热电联产技术与制冷技术相结合的能源利用方式,具有广泛的应用前景。
冷热电三联供原理冷热电三联供是一种综合利用能源的供热供冷方式,它通过利用热泵技术和热电联供技术,将废热能和可再生能源转化为电能和热能,实现供热、供冷和发电的多种功能。
其原理是利用热泵技术回收废热能和可再生能源,将其转化为热能,并通过热泵系统为建筑物供暖和供冷。
同时,利用热电联供技术将废热能转化为电能,以满足建筑物的电力需求。
冷热电三联供的原理可以分为三个主要步骤:废热回收、热泵供热供冷和热电联供。
首先是废热回收。
在工业生产和能源利用的过程中,会产生大量的废热能。
冷热电三联供系统通过回收这些废热能,将其转化为可利用的热能。
例如,工厂的烟囱排出的热气可以通过热交换器回收废热,将其转化为热水或蒸汽。
接下来是热泵供热供冷。
热泵是一种利用热力学原理将低温热能转化为高温热能的设备。
在冷热电三联供系统中,热泵通过吸收废热能和可再生能源的热量,将其转化为高温热能,然后将其供应给建筑物进行供暖和供冷。
热泵可以根据需要调整工作模式,实现供暖和供冷的切换。
最后是热电联供。
热电联供是指利用废热能产生电能的过程。
在冷热电三联供系统中,通过将废热能输入到发电机中,利用废热驱动发电机发电。
这样既可以满足建筑物的电力需求,又可以将废热能转化为有用的能量,实现能源的综合利用。
冷热电三联供系统的优势在于能够实现能源的高效利用和减少对传统能源的依赖。
首先,通过回收废热能,可以降低能源消耗和环境污染。
其次,利用热泵技术进行供热供冷,能够提高能源利用效率,减少能源损失。
最后,通过热电联供技术将废热能转化为电能,实现能源的多功能利用。
冷热电三联供系统的应用范围广泛。
它可以应用于工业领域、商业建筑和居民区等不同场所。
在工业领域,冷热电三联供可以为工厂提供供热供冷和电力供应,同时减少废热的排放。
在商业建筑中,冷热电三联供可以为写字楼、商场等场所提供舒适的室内环境和稳定的电力供应。
在居民区,冷热电三联供可以为住宅楼和小区提供集中供热供冷和电力供应,提高能源利用效率。