对弧长的曲线积分
- 格式:ppt
- 大小:1.24 MB
- 文档页数:32
曲线积分知识点讲稿一.对弧长的曲线积分:1.引例 :设L 是质量分布不均匀的构件,密度为f(x,y),则弧M i-1M i 的质量△M i =f(ξi , ηi )△s iM=i ni i i s f ∆∑=→),(lim1ηξλ2.弧长曲线积分的定义: 设L 为OXY 平面内的一条光滑曲线弧,端点为A,B,函数f(x,y)在L 上有界,在L 上任意插入一系列点),(,),,(),,(111222111---⋯n n n y x M y x M y x M ,并取B M A M n ==,0,把L 分成n 个小段,令第i 个小弧段的长度为△s i ,又),(i i ηξ为第i 个小弧段上的任意一点,作乘积i i i s f ∆),(ηξ(i=1,2,3,…,n),并对i 求和i ni i i s f ∆∑=),(1ηξ,如果当各个小弧段的长度的最大值λ→0时,这个和式的极限存在,则称此极限值为函数f(x,y)在曲线弧L 上对弧长的曲线积分或第一类曲线积分,记为⎰Lds y x f ),(,即⎰Lds y x f ),(=i ni i i s f ∆∑=→),(lim1ηξλ其中f(x,y)叫做被积函数,L 叫做积分弧段. 3.对弧长曲线积分的性质: (1). =±⎰Lds y x g y x f )],(),([⎰Lds y x f ),(⎰±Lds y x g ),((2). ⎰Lds y x kf ),(=⎰Lds y x f k ),((3).⎰Lds y x f ),(=⎰1),(L ds y x f +)(),(212L L L ds y x f L +=⎰(4). 变换L 的起点和终点,对弧长的曲线积分的值不变(但一般取下限<上限). (5).⎰=LL ds其中L 表示曲线的弧长,也可看作如下三种情况的推广.a b dxba-=⎰, [b-a]的长度,D dxdyD=⎰⎰ D 的面积,Ω=⎰⎰⎰ΩdxdydzΩ的体积.Y二.对弧长的曲线积分的计算法设f(x,y)在曲线弧L 上有定义且连续 (1).L 是参数方程 ⎩⎨⎧==)()(t y t x ψϕ (α≤t ≤β)φ(t),ψ(t)有一阶连续导数 并且0)()(22≠'+'t t ψϕ 22)()(y x s ∆+∆≈∆ 又∵dt t t dt t x )()()(ϕϕϕ'≈-+=∆ , dt t t dt t y )()()(ψψψ'≈-+=∆∴△s 的近似值即弧长元素d s 为222222))(())(()()(dt t dt t dy dx ds ψϕ'+'=+==dt t t )()(22ψϕ'+'∴⎰Lds y x f ),(=])(),([⎰βαψϕt t f dt t t )()(22ψϕ'+'(2).曲线L 的方程 : ⎩⎨⎧≤≤==)(,)(b x a x y y x x 则⎰Lds y x f ),(=⎰bax y x f )](,[dx x y )(12'+(3). 曲线L 的方程 ⎩⎨⎧≤≤==)(,)(d y c yy y x x 则⎰Lds y x f ),(=⎰dcy y x f ]),([dy y x )(12'+(4).曲线Γ为空间曲线其方程为: ⎪⎩⎪⎨⎧≤≤===)(,)()()(βαωψϕt t z t y t x 则⎰Γds z y x f ),,(=⎰βαωψϕ)](),(),([t t t f dt t t t )()()(222ωψϕ'+'+'★(5)曲线方程是极坐标形式 L: r=r(θ), θ0≤θ≤θ1 ⎩⎨⎧==θθθθs i n )(c o s)(r y r x (θ0≤θ≤θ1) 则θθθθθθθθθd r r r r f ds y x f L⎰⎰'+=1)()(]sin )(,cos )([),(22计算对弧长的曲线积分 : 1.⎰+Lds y x )2(,其中L 为连接两点(2,0),(0,3)的直线段解: AB:132=+y x ,即x y 233-=∴2131,232='+-='y y X0 A(2,0)⎰⎰⎰+=-+=+220)321(213213)2332()2(dx x dx x x ds y x L=2137)341(21322=+x x 2. ∮L(x 2+y 2)n ds,其中L 为圆周 x=acost, y=asint (0≤t ≤2π)解: adt dt y x ds t a y t a x ='+'=='-='22,cos ,sin∮L(x 2+y 2)n ds=1220222])sin ()cos [(+=+⎰n n aadt t a t a ππ3. I=∮L(x 2+y 2+5)n ds= 12π , 其中L 为x 2+y 2=1的圆周.4. I=∮L(4x 2+5y 2-16)ds= 4K , 其中L 为椭圆14522=+yx,周长为K.5. ds eyx L22∮+,其中L 为圆周x 2+y 2 =a 2, 直线x y 3=及X 轴在第一象限内所围成的扇形的整个边界.解 直线OA L 1 : x y 3=, 扇形2 :x=acost,y=asint (0≤t ≤π/3)X 轴 : L 3 y=0 , L=L 1+L 2+L 3 I=ds eyx L22∮+=⎰+122L yx ds e+⎰+222L yx ds e+⎰+322L yx ds e∵dx dx ds y L 2)3(1,3:21=+==' , t a y t a x L cos ,sin :2='-='a d t dt y x ds ='+'=22 , dx ds y L ==',0:3 ∴ I=dx e dt e a dx e axaa x⎰⎰⎰++03222π=a xaa xet ae e 030202)()(++π=2)32(-+ae aπ6.⎰Γyzds x 2,其中四个点为 A(0,0,0),B(0,0,2),C(1,0,2),D(1,3,2), Γ为折线ABCD解: AB,BC,CD 是直线写成参数(一次)式直线方程: AB: x=0,y=0,z=t (0→2)BC: x=1,y=0,z=2 CD: x=1, y=t (0→3),z=2⎰Γy z d s x 2=⎰AByzds x 2+⎰BCyzds x 2+⎰CDyzds x 2=0+0+⎰CDyzds x2=dt t ⎰++31002=9 X7.求心形线r=a(1+cos θ) 的长度(a>0)解: θθθcos 2cos )]cos 1([222222a a a a r ++=+=θθ222sin )(a r =' ∴ds=θθθθd a d r r 2cos2)(22='+ X]2c o s 2c o s [22c o s 22020⎰⎰⎰-==ππππθθθθθθd d a d a ds L∮=a a 8]2sin22sin 2[220=-ππθθ一.对坐标的曲线积分的概念与性质:1.引例 :变力沿曲线所作的功设质点受力为 F(x,y)=p(x,y)i+Q(x,y)j j y i x M M i i i i )()(1∆+∆=-i i i i i M M F w 1),(-≈∆ηξi i i i i i i y Q x P w ∆+∆≈∆),(),(ηξηξ X]),(),([i i i i i i niniiy Q x P wW ∆+∆≈∆=∑∑ηξηξ]),(),([limi i i i i i niy Q x P W ∆+∆=∑→ηξηξλ2.坐标曲线积分的定义:设L 为OXY 平面内从点A 到点B 的一条有向光滑曲线弧,,函数P(x,y),Q(x,y)在上有界,在L 上沿L 的方向任意插入一系列点),(,),,(),,(111222111---⋯n n n y x M y x M y x M ,,把L 分成n 个有向小弧段,M i-1M i (i=1,2,…; B M A M n ==,0)令△x i =x i -x i-1,△y i =y i -y i-1,点),(i i ηξ为M i-1M i 上的任意一点,如果当各小弧段长度的最大值λ→0时,i ni i i x P ∆∑=),(1ηξ,这个和式的极限存在,则称此极限值为函数P(x,y)在有向曲线弧L 上对坐标x 的曲线积分,记为⎰Ldx y x P ),(,类似地,如果i ni i iy Q ∆∑=→),(lim1ηξλ总存在,则称此极限为函数Q(x,y)在有向曲线弧L 上对坐标y 的曲线积分,记为⎰Ldy y x Q ),(即⎰Ldx y x P ),(=i ni iix P ∆∑=→),(lim 10ηξλ⎰Ldy y x Q ),(=i ni i iy Q ∆∑=→),(lim 1ηξλ其中P(x,y),Q(x,y)叫做被积函数,L 叫做积分弧段,此两个积分也称为第二类曲线积分在书写上常把两者合并:⎰Ldx y x P ),(+⎰L dy y x Q ),(= dy y x Q dx y x P L),(),(+⎰3.坐标曲线积分的性质:(1).如果有向弧 L=L 1+L 2 , 则dy y x Q dx y x P L),(),(+⎰=dy y x Q dx y x P L ),(),(1+⎰+dyy x Q dx y x P L ),(),(2+⎰(2).设L 是有向曲线弧段,-L 是与L 方向相反的有向曲线弧段,则dy y x Q dx y x P L),(),(+⎰-=-dy y x Q dx y x P L),(),(+⎰◣注意◥1.对坐标曲线积分,必须注意曲线L 的方向,化到定积分时,下限α对应于L 的起点,上限β对应于L 的终点,α不一定小于β. 2.对弧长曲线积分,化到定积分时,虽然α→β,β→α弧长不改变,但下限α一定要小于上限β 二. 对坐标的曲线积分的计算方法设 P(x,y),Q(x,y)在有向曲线弧L 上有定义且连续 1.曲线 L : 参数方程⎩⎨⎧≠'+'==0)()(,)()(22t t t y t x ψϕψϕ , (α≤t ≤β) 则dy y x Q dx y x P L),(),(+⎰={}dtt t t Q t t t P ⎰'+'βαψψϕϕψϕ)()](),([)()](),([(2. 曲线Γ为空间曲线其方程为: ⎪⎩⎪⎨⎧≤≤===)(,)()()(βαωψϕt t z t y t x 则dz z y x R dyz y x Q dx z y x P L),,().,(),,(++⎰=dt t t t t R t t t t Q t t t t P )}()](),(),([)()]().(),([)()](),(),([{ωωψϕψωψϕϕωψϕβα'+'+'⎰3. 曲线 L : 函数方程⎪⎩⎪⎨⎧≤≤==b x a x x x y y ,)( ,则dy y x Q dx y x P L),(),(+⎰={}dxx y x y x Q x y x P ba⎰'+)()](,[)](,[4. 曲线 L : 函数方程⎪⎩⎪⎨⎧≤≤==d x c yy y x x ,)( ,则dy y x Q dx y x P L),(),(+⎰={}dy y y x Q y x y y x P dc⎰+']),([)(]),([三.计算坐标曲线积分 1.dy x y dx y x L)()(-++⎰ 其中L 是y 2=x 上从点(1,1)到点(9,3)解:用 x=x(y) , 1≤y ≤3 ,x ’(y)=2y ,dx=2ydy∴dy x y dx y x L)()(-++⎰=⎰-++3122)](2)[(dy y y y y y=3158)213121()2(313123423=++=++⎰y y y dy y y y2.dy x y dx y x L)()(-++⎰ 其中L 是先沿着直线从点A(1,1)到点B(1,3)而后再沿直线到点C(4,3)解: 直线⎪⎩⎪⎨⎧==∴≡→==∴≡→dx dx dy y x BC dydy dx x y AB 03;)41(:01;)31(:dy x y dx y x L)()(-++⎰=dy x y dx y x AB)()(-++⎰+dy x y dx y x BC)()(-++⎰=⎰-ABdy x y )(+⎰+BCdx y x )(=⎰⎰++-4131)3()1(dx x dy y=237)3(21)1(21412312=++-x y3. 22)()(∮y x dy y x dx y x L+--+ ,其中 L: x 2+y 2=a 2逆时针方向 解:设 x=acost ,y=asint ,则 dx=-asint ,dy=acost ,0≤t ≤2π ∴22)()(∮yx dyy x dx y x L+--+=⎰---+π20222]cos )sin (cos )sin )(sin (cos [adtt t t a t t t a=ππ220-=-⎰dt4.dz y x ydy xdx)1(-+++⎰Γ其中Γ是从点A(1,1,1)到点B(3,4,5)的一段直线解: 空间直线AB 的方程 :413121-=-=-z y x ,其参数式为dtdz t z dt dy t y dtdx t x 4,413,312,21=+==+==+= 当 x=1 ,t=0 ; x=3 , t=1∴dz y x ydy xdx )1(-+++⎰Γ=⎰-+++++++10)]13121(4)31(3)21(2[dt t t t t=251)2339()339(121=+=+⎰t t dt t【格林公式】dy y x Q dx y x P dxdy yP xQ LD),(),()(+=∂∂-∂∂⎰⎰∮(D 为单连通区域)1. =+xdy ydx L∮ 0 .2. I=dy y xy dx y x x L)()(3223∮++- 其中 L: x 2+y 2=32逆时针方向 解: 232223,,,y x Q y xy Q xyp y x x P =∂∂+=-=∂∂-=∴ I=⎰⎰+Ddxdy y x )(22=281)41(230430220ππθπ==⎰⎰r rdr r d3.⎰-Lydx x dy xy 22, L:由A(1,0) 沿着y=21x -到B(-1,0)的圆弧解: 设=r L L+BA (即形成单连通区域 D)2222,,,y xQ xy Q xyP y x P =∂∂=-=∂∂-= X⎰-rL y d x x dy xy 22=⎰-Lydx x dy xy 22=⎰⎰+Ddxdy y x )(22=πθπ41][012=⎰⎰d rdr r而因为022=-⎰BAydx x dy xy (y=0) ∴422π=-⎰Lydx x dy xy。
对弧长的曲线积分曲线积分是微积分中的一个重要概念,它在物理、工程学以及数学中都有广泛的应用。
本文将重点讨论对弧长的曲线积分,以及其在实际问题中的意义和计算方法。
一、对弧长的曲线积分的概念对弧长的曲线积分是指在一条曲线上的某个定点到另一定点的路径上,对曲线上的某个物理量在路径上的积分运算。
这个物理量可以是向量场、标量场或者其他更一般的场。
在二维空间中,对弧长的曲线积分可以表示为:∮(Pdx+Qdy)其中,P和Q是曲线上的某个向量场的分量。
在三维空间中,对弧长的曲线积分可以表示为:∮(Pdx+Qdy+Rdz)其中,P、Q和R分别是曲线上的某个向量场的分量。
二、对弧长的曲线积分的意义对弧长的曲线积分可以用于描述物理量在曲线上的累积变化。
例如,在电磁场中,对弧长的曲线积分可以用于计算沿着路径的电场强度变化,从而求解电场对电荷的做功。
此外,对弧长的曲线积分还可以用于计算力场对物体所做的功。
例如,在物体受到重力场作用下沿一条曲线移动时,对弧长的曲线积分可以用于计算重力场对物体的功。
三、对弧长的曲线积分的计算方法对弧长的曲线积分的计算方法与路径的参数化有关。
一般而言,我们需要先将曲线进行参数化,然后根据参数化得到的表达式来计算积分。
在二维空间中,如果曲线的参数化方程为x=t,y=f(t),那么对弧长的曲线积分可以表示为:∫(P(t)x'(t)+Q(t)y'(t))dt,其中x'(t)和y'(t)分别表示参数化方程的偏导数。
在三维空间中,如果曲线的参数化方程为x=r(t),y=s(t),z=g(t),那么对弧长的曲线积分可以表示为:∫(P(t)r'(t)+Q(t)s'(t)+R(t)g'(t))dt,其中r'(t),s'(t)和g'(t)分别表示参数化方程的偏导数。
需要注意的是,对弧长的曲线积分的计算过程中,参数化的选取会影响最终的结果。
对弧长的曲线积分和对坐标的曲线积分
对弧长的曲线积分和对坐标的曲线积分是两种不同的积分方法,它们有不同的积分公式和不同的应用场景。
1. 对弧长的曲线积分:
对弧长的曲线积分也被称为第一类曲线积分,它是对弧长进行积分的一种方法。
这种积分方法可以求得曲线段上变力所做的功。
在这种方法中,我们假设线段在每一点的线密度为
f(x,y),那么在这段线段上任意一点的附近取一个微小弧长ds,则有ds与dx、dy满足勾股定理。
在这种情况下,我们可以将
力F分解为两个分量,即沿着x轴的分力和沿着y轴的分力,它们分别记为P和Q。
这样,力F所做的功就可以分解为沿着
x轴和y轴的两个分量分别所做的功,再将它们相加即可得到
总功。
2. 对坐标的曲线积分:
对坐标的曲线积分也被称为第二类曲线积分,它是对坐标进行积分的一种方法。
这种积分方法可以求得沿着曲线段的功。
在这种方法中,我们将曲线段看作是由许多微小的线段组成的,然后对每一段微小的线段进行积分。
在线段上每一点,我们都有P=Fcosα,Q=Fcosβ,其中F是与x轴夹角为α,与y轴夹
角为β的力。
这样,我们就可以将力F分解为两个分量,即沿着x轴的分力和沿着y轴的分力,它们分别记为P和Q。
然后,我们可以将沿着x轴和y轴的两个分量分别与坐标x和y相乘,再将它们相加即可得到总功。
总之,对弧长的曲线积分和对坐标的曲线积分是两种不同的积分方法,它们有不同的积分公式和不同的应用场景。
在解决实际问题时,我们需要根据具体场景选择合适的积分方法。